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Comparison of the diagnostic 
efficacy of mathematical models 
in distinguishing ultrasound 
imaging of breast nodules
Lu Li 1, Hongyan Deng 1, Xinhua Ye 1, Yong Li 2* & Jie Wang 3*

This study compared the diagnostic efficiency of benign and malignant breast nodules using 
ultrasonographic characteristics coupled with several machine-learning models, including logistic 
regression (Logistics), partial least squares discriminant analysis (PLS-DA), linear support vector 
machine (Linear SVM), linear discriminant analysis (LDA), K-nearest neighbor (KNN), artificial neural 
network (ANN) and random forest (RF). The clinical information and ultrasonographic characteristics 
of 926 female patients undergoing breast nodule surgery were collected and their relationships were 
analyzed using Pearson’s correlation. The stepwise regression method was used for variable selection 
and the Monte Carlo cross-validation method was used to randomly divide these nodule cases into 
training and prediction sets. Our results showed that six independent variables could be used for 
building models, including age, background echotexture, shape, calcification, resistance index, 
and axillary lymph node. In the prediction set, Linear SVM had the highest diagnosis rate of benign 
nodules (0.881), and Logistics, ANN and LDA had the highest diagnosis rate of malignant nodules 
(0.910~0.912). The area under the ROC curve (AUC) of Linear SVM was the highest (0.890), followed by 
ANN (0.883), LDA (0.880), Logistics (0.878), RF (0.874), PLS-DA (0.866), and KNN (0.855), all of which 
were better than that of individual variances. On the whole, the diagnostic efficacy of Linear SVM was 
better than other methods.

Breast cancer is one of the most common malignancies in women and poses a significant risk to their  health1,2. 
In recent years, the incidence of breast cancer has increased year by  year3. Early diagnosis, early treatment and 
tumor biology determine the prognosis of  patients4. Therefore, how to diagnose breast cancer is very important 
for patients. Ultrasound is widely recognized as a convenient and safe method for screening breast  cancer5,6. 
The ultrasound indicators, especially the shape, direction, edge, internal echo and internal blood flow grading of 
the nodules, are related to the benign and malignant breast  nodules7. However, the misdiagnosis rate of benign 
and malignant breast nodules based on a single ultrasound index is  high8. Therefore, it is necessary to conduct 
a comprehensive analysis of multi-index ultrasound characteristics.

The Breast Imaging Reporting and Data System (BI-RADS) lexicon was established to ensure standardiza-
tion and objectivity in ultrasound  diagnosis9. However, this grading partially depends on the sonographer’s 
 experience10. Some benign and malignant breast nodules were misclassified, especially by young physicians. 
Misdiagnosing these benign breast nodules as malignant may lead to unnecessary  biopsies11. Many have reported 
that mathematical models coupling with ultrasound characteristics could serve as a means to automatically dis-
criminate among  diseases12,13. Logistic regression (Logistics)14, support vector machine (SVM)15 and artificial 
neural network (ANN)16, partial least squares discriminant analysis (PLS-DA)17, linear discriminant analysis 
(LDA)18, K-nearest neighbor (KNN)19, and random forest (RF)20 are commonly used models for disease diag-
nosis. Logistics, PLS-DA and LDA belong to linear models, while ANN, KNN and RF belong to non-linear 
 models21. SVM could solve linear and non-linear classification  problems15. Each model possesses its own distinct 
computational characteristics, however, few studies have compared the diagnostic performances of these diag-
nostic models. In the present study, we compared the diagnostic effects of ultrasonic imaging combined with 

OPEN

1Department of Ultrasound, The First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, 
China. 2Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, 
Nanjing 210014, China. 3Department of Radiology, The First Affiliated Hospital, Nanjing Medical University, 
Nanjing 210029, China. *email: liyong_213@163.com; njmu_wangjie@126.com

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-42937-x&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2023) 13:16047  | https://doi.org/10.1038/s41598-023-42937-x

www.nature.com/scientificreports/

different mathematical models, including Logistics, SVM, ANN, PLS-DA, LDA, KNN and RF, in identifying 
benign and malignant breast nodules.

Materials and methods
Patient information
This study was a retrospective study with no adverse effects on patients and was approved by the Institutional 
Review Committee of the First Affiliated Hospital of Nanjing Medical University. Breast nodules from female 
patients undergoing ultrasound examination were collected at the First Affiliated Hospital of Nanjing Medical 
University from June 2018 to December 2022. The inclusion criteria required complete clinical data for patients 
and confirmation of nodule lesions through pathology. Borderline diseases such as lobulated tumors of grade II 
were excluded. All images were independently evaluated by two senior physicians with more than a decade of 
experience. Doctors would convene to discuss and reassess controversial issues such as the grading of nodule 
features. If a consensus cannot be reached, the controversial images will undergo further review by a third senior 
doctor and a discussion will be held to reach a final conclusion. A total of 926 breast nodules were included, 
comprising 388 benign and 538 malignant ones. The cases of benign nodules included fibroadenoma, adenosis, 
intraductal papilloma, fibrocystic disease of the breast, lobulated tumors of grade I, hyperplasia of glands, and 
cyst with inflammatory changes. The cases of malignant nodules included mucinous breast cancer, solid papillary 
carcinoma of breast, invasive breast cancer (invasive lobular carcinoma, invasive ductal carcinoma and mixed 
invasive carcinoma), and ductal carcinoma in situ.

Instruments and methods
The birth number, menarche and breast appearance (redness, swelling, and dimples) of patients were recorded. 
A thorough breast ultrasound was performed using ESAOTE MyLab Twice color Doppler ultrasonic diagnosis 
instrument with linear array high-frequency probe LA523 and the frequency of 3 ~ 12 MHz probe frequency. The 
initial preset conditions were as follows: imaging gain at 65%, dynamic range at 10, enhancement at 4, density at 
1, depth at 44 mm, persistence at 6, dynamic compression at 3, and transducer resolution set to low (RES-L). In 
practice, the B-mode image is adjusted to incorporate the target lesion according to patient actual situation to 
achieve optimal resolution. In the color Doppler ultrasound mode, the sampling frame size was optimized to fully 
encompass the mass. The color gain was optimized, enabling the detection of low-velocity vascular flow within 
target lesions with minimal background noise. Ultrasound features included background echotexture, nodular 
size, shape, margin, internal echo, echo intensity, calcification, alder grade, resistance index and axillary lymph 
node. These ultrasound features for each nodule were graded according to the BI-RADS  lexicon9. Background 
echotexture can be classified as either homogeneous or heterogeneous. Homogeneous background echotexture 
is defined by the predominant presence of parenchyma displaying a uniform hyperechoic appearance with 
minimal isoechoic or hypoechoic characteristics and less than 25% fibro glandular  tissue22. Other background 
echotextures are defined as heterogeneous type.

Pathological diagnosis of nodules was taken as the dependent variable (Y), and the above ultrasound features 
and patient’s clinical information were taken as independent variables (X). The assignment of these variables is 
shown in Table 1.

Statistical analysis
The relationship between ultrasonographic characteristics and clinical information (age, birth number, menarche, 
breast appearance and pathological type) was analyzed using Pearson’s correlation, with P<0.05 indicating a sig-
nificant correlation. Principal component analysis (PCA) was adopted to analyze the difference between nodule 

Table 1.  Information on the variable assignment.

Factors Assignment

Age X1, continuous variable

Birth number X2, 0 for no birth; 1 for birth with 1 child; and 2 for birth with more than two children

Menarche X3, 1 for 11-12 years old; 2 for 12-14 years old; and 3 for ≥14 years old

Breast appearance X4, 0 for normal; 1 for heat, redness, swelling or pain; and 2 for dimpling sign

Background echotexture X5, 0 for homogeneous; and 1 for heterogeneous

Nodular size X6, 0 for<1 cm; 1 for≥1 cm&<3 cm; and 2 for≥3 cm

Shape X7, 0 for regular; and 1 for irregular

Margin X8, 0 for smooth or clear; 1 for speculation or ill-defined

Internal echo X9, 0 for anecho; 1 for Isoecho, hyperecho or mild hypoecho; and 2 for marked hypoecho

Echo intensity X10, 0 for hyper echo& isoecho; and 1 for hypoecho

Calcification X11, 0 for none; 1 for macrocalcification; and 2 for punctate calcifications or mixed calcification

Alder grade X12, 0 for Grade 0; 1 for Grade I; 2 for Grade II; and 3 for Grade III

Resistance index X13, continuous variable

Axillary lymph node X14, 0 for negative; and 1 for suspicious

Pathological type Y, 0 for benign; and 1 for malignant
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features in benign and malignant groups. Before establishing the models, the relevant variables were selected 
via the stepwise regression method, where the variable with a P-value < 0.05 was considered to have a significant 
relationship with the dependent  variable23. In data analysis, 90% and 10% of 926 nodule cases were randomly 
divided into training and prediction sets, respectively, using the Monte Carlo cross-validation  method24,25. In 
order to mitigate errors arising from a single calculation, Monte Carlo simulation was performed 100 times. The 
average diagnostic rate of each model for benign and malignant breast nodules in the training and prediction 
sets over 100 computations was separately computed. The diagnostic efficacy among models was compared by 
using the area under the receiver operating characteristic curves (ROC) in the prediction set. All the programs 
of these models were performed using MATLAB software. t-test was used to analyze the difference in diagnostic 
effectiveness among different models, with P<0.05 indicating a significant difference.

Ethics statement
This study was approved by the Institutional Review Committee of the First Affiliated Hospital of Nanjing Medical 
University (Approval number: 2022-SR-048) and patient informed consent was waived. This study retrospectively 
analyzed the ultrasonographic image of the patient’s previous examination, which posed no potential risk or 
harm to the patient. The study was conducted with strict adherence to the Declaration of Helsinki. No patient 
privacy data was included in the data collection, and the data remained strictly confidential throughout the 
collection process.

Result
Breast nodule features
A total of 926 breast nodules were collected, including 388 benign nodules (41.9%) and 538 malignant nodules 
(58.1%). Each breast nodule included 10 ultrasound characteristics and 5 clinical information. Via Pearson’s cor-
relation analysis, benign and malignant breast nodules were significantly correlated with patient’s age (r = 0.548, 
P < 0.05), shape (r = 0.520, P < 0.05), resistance index (r = 0.491, P < 0.05) calcification (r = 0.419, P < 0.05), 
axillary lymph node (r = 0.414, P < 0.05), birth number (r = 0.389, P < 0.05), internal echo (r = 0.348, P < 0.05), 
margin (r = 0.346, P < 0.05), alder grade (r = 0.289, P < 0.05), background echotexture (r = 0.200, P < 0.05) 

Figure 1.  Correlation analysis of ultrasonographic characteristics and clinical information, where *P value < 
0.05; **P value < 0.01; ***P value < 0.001.
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and nodule size (r = 0.137, P < 0.05) (Fig. 1). Logistics based on individual ultrasonographic characteristics 
showed that resistance index has the highest the area under the ROC curve (AUC = 0.764), followed by shape 
(AUC = 0.735), calcification (AUC = 0.703), axillary lymph node (AUC = 0.676) and alder grade (AUC = 0.660) 
(Fig. 2). Besides, many correlations were found among ultrasonographic characteristics and clinical information. 
For example, alder grade was significantly positively correlated with nodular size, shape, calcification, resistance 
index, and axillary lymph node (P < 0.01). Breast appearance was significantly correlated with margin and axil-
lary lymph node (P < 0.01).

Principal component analysis and variable selection
PCA enables the projection of samples from a high-dimensional space to a lower-dimensional space, reveal-
ing the spatial distribution characteristics among different samples in the  data26. PCA demonstrated a certain 
degree of overlap in the distribution regions between benign and malignant nodule samples (Fig. 3). This over-
lap introduces an error rate in diagnosing benign and malignant breast nodules, which is consistent with the 
diagnosis results of individual ultrasonographic characteristics. Therefore, we could apply several mathematical 
models to analyze ultrasonographic characteristics and clinical information for diagnosing benign and malig-
nant nodules. The stepwise regression method showed that 6 variances had a significant relationship with the 
dependent variable, including age (Coeff = 3.553, P < 0.01), background echotexture (Coeff = 0.887, P < 0.01), 
shape (Coeff = 1.835, P < 0.01), calcification (Coeff = 2.157, P < 0.01), resistance index (Coeff = 2.786, P < 0.01), 
and axillary lymph node (Coeff = 2.320, P < 0.01) (Fig. 4).

Model analysis
The model for each mathematical model was built based on the training set using the six variables selected by 
the stepwise regression method. After 100 random runs of Monte Carlo simulation, the diagnosis results of 
seven methods in the training and the prediction sets are shown in Table 2. In the training set, the diagnostic 
rates of all tested methods ranged from 0.849 to 0.999 for benign nodules and from 0.915 to 0.971 for malignant 
nodules, indicating that the diagnosis rate of all models was satisfactory. In the prediction set, the diagnostic 
rates of Logistics, PLS-DA, Linear SVM, RF, ANN, KNN and LDA, for benign nodules were 0.845, 0.833, 0.881, 
0.850, 0.858, 0.846, and 0.851, respectively, and Linear SVM has the higher values than other methods (P < 0.05). 
The diagnostic rates of Logistics, ANN and LDA for malignant nodules (ranging from 0.910 to 0.912) were 
the highest and the diagnostic rate of KNN was the lowest (0.865). Among these methods, only the diagnostic 
rate of RF and KNN in the prediction sets (ranging from 0.846 to 0.898) were much lower than that in train 
sets (> 0.947). The AUC value of Linear SVM was the highest (0.890), followed by ANN (0.883), LDA (0.880), 

Figure 2.  Area under the ROC curve (AUC) of individual variances using Logistics.
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Logistics (0.878), RF (0.874), PLS-DA (0.866), and KNN (0.855). The AUC values of all models were higher than 
individual ultrasonographic characteristics (ranging from 0.494 to 0.764)).

Discussion
Ultrasound is the primary method used to differentiate between benign and malignant breast  nodules27. Our 
result indicated that patient’s age, birth number, shape, resistance index, calcification, axillary lymph node, 
internal echo, margin, alder grade and background echotexture were significantly correlated with benign and 
malignant breast nodules. It has been reported that the breast nodules with irregular morphology, indistinct 

Figure 3.  PCA analysis of ultrasonographic characteristics in benign and malignant breast nodules.

Figure 4.  Variance selection using the stepwise regression method.
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borders, hypoechoic pattern and suspicion of calcifications suggest  malignancy28. Besides, there existed a sig-
nificant correlation between nodule size and its pathology. In general, the larger the nodules are, the higher 
their degree of malignancy. However, it is important to note that nodules with smaller size are often overlooked 
by patients and sonographers. Neovascularization plays a crucial role in the onset, progression, invasion, and 
metastasis of breast  cancer29. The higher the alder grade and resistance index of nodules were, the higher the 
possibility of malignancy, which should be paid attention to. In the BI-RADS classification, the probability of 
malignancy ranged from 2 to 95% for nodules in the 4  categories30. However, when a nodule is classified as grade 
4, breast surgeons may recommend conducting additional examinations for patients, such as mammography, 
magnetic resonance imaging, or even core needle biopsy. These often increase the economic cost and psycho-
logical burden of patients. In addition, BI-RADS classification depends on the experience of  physicians31. Our 
results showed that the AUC value of the test models ranged from 0.855 to 0.890, which was better than that of 
the BI-RADS classification based on junior and senior physicians (0.718-0.790 and 0.766-0.870, respectively) 
reported in the  literature32,33. Our finding suggested that all seven models could effectively predict benign and 
malignant nodules, which could help doctors judge the malignant probability of nodules and reduce unneces-
sary examinations for  patients34.

The stepwise regression method showed that age, background echotexture, shape, calcification, resistance 
index, and axillary lymph node had significant relationships with breast nodule pathology (P < 0.05), suggest-
ing that these variables had a substantial contribution to the model. Using these relevant variables instead of all 
variables has the potential to enhance model performance, simplify the model, and avoid  overfitting35. Among 
these models, Linear SVM had the highest diagnosis rate of benign breast nodules, and Logistics, ANN and LDA 
had the highest diagnosis rate of malignant breast nodules. Linear SVM could be recommended for diagnosing 
benign nodules, while Logistics, ANN and LDA could be recommended for diagnosing malignant ones. The 
diagnosis rate of the KNN and RF in the prediction set was significantly lower than that in the training set, which 
is likely attributed to model  overfitting36. Compared with the training set, the results of the prediction set better 
reflect the performance of the two models. However, the overfitting of RF and KNN in the training set could 
limit their application in practical work.

Many reports indicate that artificial intelligence technology can classify images directly into benign and 
malignant categories by extracting feature variables such as color, contour, and  texture37–39. However, these image 
feature variables extracted by artificial intelligence technology often lack clinical significance, posing significant 
limitations during the practical application of the model. In contrast, the clinical information and ultrasono-
graphic characteristics of breast nodules were used for building our models and these variables hold clinical 
significance. This approach not only uncovers the relationship between breast nodule features and pathology, 
but also enhances the generalizability of these models.

In our study, these models were constructed using algorithm programs provided by MATLAB software, which 
could reduce the complexity of data analysis. Indeed, a certain level of programming knowledge is still required 
when using MATLAB software, particularly for modifying or rectifying inappropriate commands. Additionally, it 
is important to note that a single computation can result in biased estimates and the Monte Carlo cross-validation 
method could be employed to obtain robust statistical analysis results.

While mathematical models cannot fully substitute doctors, they can effectively aid in diagnosis. However, 
there are some limitations to the present study. For example, the present work relied on a limited sample of 
nodules for assessment. The assessment of controversial nodules by doctors involves subjectivity, and inaccurate 
judgment of nodule characteristics can further impact the  diagnosis40. In future work, we will further incorporate 
more variables, including pathological types and ultrasound elasticity, to improve model diagnosis performance. 
In addition, we further used ultrasound images coupled with mathematical models to predict the presence of 
lymph node metastasis in malignant nodules.

Data availability
The datasets generated and/or analysed during the current study are not publicly available due to patient privacy 
protection but are available from the corresponding author on reasonable request.

Table 2.  Diagnosis result of benign and malignant thyroid nodules using different mathematical models. * 95% 
confidence intervals in parentheses.

Method

Training set Prediction set ROC

Benign Malignant Benign Malignant

AUC (N=353) (N=489) (N=35) (N=49)

Logistics 0.872 0.915 0.845 0.912 0.878 (0.871~0.885)*

PLS-DA 0.849 0.918 0.833 0.900 0.866 (0.856~0.877)

Linear SVM 0.883 0.909 0.881 0.899 0.890 (0.882~0.898)

RF 0.947 0.965 0.850 0.898 0.874 (0.864~0.884)

ANN 0.865 0.922 0.858 0.910 0.883 (0.875~0.891)

KNN 0.999 0.971 0.846 0.865 0.855 (0.845~0.866)

LDA 0.851 0.916 0.851 0.910 0.880 (0.872~0.889)
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