
1

Vol.:(0123456789)

Scientific Reports |        (2023) 13:15586  | https://doi.org/10.1038/s41598-023-42916-2

www.nature.com/scientificreports

Early acquired resistance 
to EGFR‑TKIs in lung 
adenocarcinomas 
before radiographic advanced 
identified by CT radiomic delta 
model based on two central studies
Xiumei Li 1,7, Chengxiu Zhang 2,7, Tingting Li 3, Xiuqiang Lin 1, Dongmei Wu 2, Guang Yang 2* & 
Dairong Cao 1,4,5,6*

Early acquired resistance (EAR) to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR‑
TKIs) in lung adenocarcinomas before radiographic advance cannot be perceived by the naked eye. 
This study aimed to discover and validate a CT radiomic model to precisely identify the EAR. Training 
cohort (n = 67) and internal test cohort (n = 29) were from the First Affiliated Hospital of Fujian Medical 
University, and external test cohort (n = 29) was from the Second Affiliated Hospital of Xiamen Medical 
College. Follow‑up CT images at three different times of each patient were collected: (1) baseline 
images before EGFR‑TKIs therapy; (2) first follow‑up images after EGFR‑TKIs therapy (FFT); (3) EAR 
images, which were the last follow‑up images before radiographic advance. The features extracted 
from FFT and EAR were used to construct the classic radiomic model. The delta features which were 
calculated by subtracting the baseline from either FFT or EAR were used to construct the delta 
radiomic model. The classic radiomic model achieved AUC 0.682 and 0.641 in training and internal test 
cohorts, respectively. The delta radiomic model achieved AUC 0.730 and 0.704 in training and internal 
test cohorts, respectively. Over the external test cohort, the delta radiomic model achieved AUC 
0.661. The decision curve analysis showed that when threshold of the probability of the EAR to the 
EGFR‑TKIs was between 0.3 and 0.82, the proposed model was more benefit than treating all patients. 
Based on two central studies, the delta radiomic model derived from the follow‑up non‑enhanced 
CT images can help clinicians to identify the EAR to EGFR‑TKIs in lung adenocarcinomas before 
radiographic advance and optimize clinical outcomes.

Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) were permitted as the first-line targeted 
drugs for the treatment of advanced lung adenocarcinoma with mutated EGFR in the guidelines of the national 
comprehensive cancer network (NCCN)1 and the European society of medical oncology (ESMO)2 due to its 
longer progression-free survival than  chemotherapy3. However, all patients eventually develop into acquired 
resistance to EGFR-TKIs after an average period of 8 to 16  months4,5. The mechanism of drug resistance of first/
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second-generation EGFR-TKIs in non-small cell lung cancer (NSCLC) is a secondary gene mutation, such as TK 
domain mutation (T790M), MET amplification, and RAS  mutation6–8. Substantial evidence has been reported 
that the secondary gene mutation predates radiographic advance (early acquired resistance) and aggravates 
tumor  heterogeneity9,10. Since the size of the tumor in the early acquired resistance period does not increase, the 
early acquired resistance to EGFR-TKIs before radiographic advance can hardly be perceived by the naked eye of 
clinicians. Therefore, identifying the patients with early acquired resistance to EGFR-TKIs before radiographic 
advance is crucial to devising appropriate treatment strategies for optimized clinical outcomes. However, the 
problem remains extremely challenging.

Radiomic features extracted from medical images can reflect tumor heterogeneity, which could be an expres-
sion of underlying genetic  alterations11–13. Previous studies have reported that radiomics has potential in the 
prediction of prognosis after  chemotherapy14,  radiotherapy15, and  immunotherapy16. O’Connor and colleagues 
revealed the effectiveness and necessity of various quantitative imaging biomarkers in the clinical development 
of targeted therapeutics for the early prediction of clinical  outcomes17,18.

Follow-up CT tumor images have a fundamental role in response evaluation to EGFR-TKIs. We hypothesized 
that the hidden information about tumor genetic alterations in the follow-up CT images after EGFR-TKIs therapy 
can be identified by the image radiomic features. Thus, we aimed to develop and validate a radiomic model to 
identify the early acquired resistance to EGFR-TKIs in lung adenocarcinomas before radiographic advance. We 
also aimed to investigate the biological implications of the features in the radiomic model. As far as we know, 
rare studies have been reported on it.

Materials and methods
Studied patient selection. This study followed the TRIPOD  statement19. Institutional review boards 
of both the First Affiliated Hospital of Fujian Medical University (FAHF) and the Second Affiliated Hospital 
of Xiamen Medical College (SAHX) approved this retrospective study and waived the requirement for writ-
ten informed consent. Consecutive patients, who accepted non-surgical treatments for lung carcinoma from 
December 2016 to May 2022, were enrolled from two institutional databases. The inclusion criteria were as 
follows: (1) patients with lung adenocarcinoma and confirmed EGFR sensitive mutation of exon 19 deletion 
mutation (19DEL) and exon 21 L858 point mutation (L858R) by gene detection; (2) only received first/second-
generation EGFR-TKIs therapy; (3) had follow-up non-enhanced CT (NCCT) chest scans at four different time 
points (Fig. 1): baseline images before EGFR-TKIs therapy; first follow-up images after EGFR-TKIs therapy; 
early acquire resistant images, which were the last follow-up images before radiographic advance; and radio-
graphic advance images. (4) Slice thickness of lung window image ≤ 5 mm. The exclusion criteria were as follows: 
(1) patients accepted other therapies during EGFR-TKIs therapy; (2) Insufficient image quality due to image 
artifacts; (3) The margin of the tumor was difficult to delineate.

According to Response Evaluation Criteria In Solid Tumors (RECIST) 1.120, the criteria for acquired resist-
ance to EGFR-TKIs is progressive disease: at least 20% increase in the sum of diameters of all measured target 
lesions, compared to the smallest sum of diameters of all target lesions recorded at or after baseline (the sum 
must demonstrate an absolute increase > 5 mm). The follow-up NCCT lung images of each patient scanned at 
three different times were collected and used to build the models: the baseline images before EGFR-TKIs therapy 
(Baseline), the first follow-up images after EGFR-TKIs therapy (FFT), and the early acquired resistance (EAR) to 
EGFR-TKIs, which were the last follow-up images before radiographic advance. Since the aim of our study is to 
identify the early acquired resistance to EGFR-TKIs in lung adenocarcinomas before the radiographic advance, 
EAR was marked as positive while the FFT was marked as negative.

CT acquisition and tumor volume segmentation. CT scans of FAHF cohort were performed on one of 
the two CT systems (Toshiba: Aquilion CXL 64-slice CT, Aquilion One 320-slice CT). CT scans of SAHX cohort 
were performed on one of the two CT systems (GE Discovery 64-slice CT, GE Revolution ACTS 16-slice). CT 
scan parameters were as follows: tube voltage:120 kV; automatic tube current modulation:100–400 mA; rotation 

Figure 1.  Illustrations of follow-up CT non-enhanced lung images at four different time points. Follow-up CT 
images of a 66 years old man who underwent EGFR-TKIs therapy because of lung adenocarcinoma with exon 
19 deletion mutation. (a) the baseline image before TKIs therapy, included in the baseline images; (b) the first 
follow-up image after TKIs therapy, included in FFT; (c) the last follow-up image before radiographic advance, 
included in EAR; (d) the radiographic advance image.



3

Vol.:(0123456789)

Scientific Reports |        (2023) 13:15586  | https://doi.org/10.1038/s41598-023-42916-2

www.nature.com/scientificreports/

time:0.5–1.0  s; Field of view:350 mm × 350 mm; matrix:512 × 512; convolution kernels: B52f.; reconstruction 
thicknesses and intervals:1.0 mm or 1.25 mm; slice thickness:1.0–5.0 mm (depending on scanners). Interpreta-
tion of CT images was done on a lung window (L, –500; W, 1500) by using a workstation on picture archiving 
and communication system. Delineation of the volume of interest in the targeted tumor was performed with 3D 
slicer (http:// www. slicer. org) by a radiologist with 7 years of experience. The delineation was then reviewed by a 
radiologist with 15 years of experience in lung cancer diagnosis, who modified the delineation when necessary. 
All the tumors in the training, internal test, and external test cohorts were segmented manually slice-by-slice. 
The volume of interest enclosing the CT lung lesion was further refined by excluding areas of fat, air, necrosis, 
and calcification.

Radiomic feature extraction and model development. We resampled all the images to 
0.702 mm × 0.702 mm and extracted features using Pyradiomics (Ver. 3.0)21 from four base images: original CT 
image and 3 images filtered by Laplacian of Gaussian (LoG) filters with different Gaussian kernel sizes ( σ =1.5, 
3.0, 5.0). From each of the four base images, we extracted 18 first-order features, 14 shape features, and 73 texture 
features with a histogram bin count of 50. Texture features included gray level co-occurrence matrix (GLCM), 
gray level size zone matrix (GLSZM), gray level run length matrix (GLRLM), gray level dependence matrix 
(GLDM), and neighborhood gray-tone difference matrix (NGTDM). A total number of 378 IBSI (International 
Biomarker Standardization Initiative)22 compliant features were extracted from each lesion for model building. 
All features were normalized using z-score before further processing. For model development, we used a process 
similar to previous  reported23: (1) To reduce the feature dimension and redundancy, for each pair of features 
whose Pearson Correlation Coefficient (PCC) was larger than 0.98, one random feature was excluded for further 
model building; (2) For further feature selection and model building, we tried to use different combinations of 
four feature selection algorithms (Analysis of variance, Kruskal–Wallis, Relief, and Recursive Feature Elimi-
nation) and 2 classifiers (Support Vector Machine, and Logistic Regression) to build the classification model 
with fivefold cross-validation. The workflow of the radiomic analysis is shown in Fig. 2. The above procedure 
was implemented with open-source software Feature Explorer (version 0.5.2)24, which uses scikit-learn (version 
0.22.2) as the backend for machine learning. Feature Explorer can semi-automatically try out different combi-
nations of feature selection algorithms and classifiers using specified cross-validation scheme to find the best 
models according their average cross-validation performance.

Scout model and final model building. Combination of high dimensions and small sample sizes can 
easily bring about overfitting or the problem of “curse of high-dimensionality”. Therefore, besides the typical 
dimension reduction and feature selection algorithms, we also used scout model for feature selection, where 
a model was built for a sub-group of features solely to select useful features in the sub-group25. With features 
extracted from each of the four base images (original CT image and three images filtered by aforementioned dif-
ferent LoG filters), we built a scout model, using fivefold cross-validation over the training dataset. If the average 
cross-validation AUC ≥ 0.6, all the features retained in the scout model were kept for the final model building. 
The whole process was shown in Fig. 3.

Figure 2.  Radiomic analysis workflow.

http://www.slicer.org
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The building process of the final combined radiomic model was similar to those used for scout models, the 
only difference is that it used features retained in the scout models, and PCC was not used for feature reduction.

We used features extracted from FFT and EAR images from FAHF cohort to construct a classic radiomic 
model to identify the early acquired resistance. Furthermore, we used delta features (difference of features 
between the baseline images and either FFT or EAR from FAHF cohort) to construct the delta radiomic model. 
The classic radiomic model and delta radiomic model were validated using the data from SAHX cohort.

Statistical analysis and model evaluation. We used R Studio (version 2022.07.1) with R (version 
4.2.1), IBM SPSS Statistics software (version 25.0), SciPy (version 1.4.1), and scikit-learn (version 0.22.2) librar-
ies for statistical analyses. Continuous variables of normal distribution were expressed as mean ± standard devia-
tion and compared by using the Student’s t-test, while continuous variables of non-normal distribution were 
listed as median (interquartile range) and compared with the Mann–Whitney U test. Categorical variables were 
expressed as numbers and percentages and compared using the Chi-squared test. Two-sided p-values < 0.05 
was considered statistically significant. The receiver operator characteristic curve (ROC) analysis was used to 
evaluate the performance of the model. Besides area under the curve (AUC), the accuracy, sensitivity, specificity, 
positive predictive value (PPV), and negative predictive value (NPV) were also calculated, using a cut-off value 
determined by maximizing Youden index over the training cohort. Furthermore, decision curve analysis was 
also used to evaluate the clinical usability of the model.

Ethics statement. The studies involving human participants were reviewed and approved by the First 
Affiliated Hospital of Fujian Medical University and the Second Affiliated Hospital of Xiamen Medical College. 
Written informed consent for participation was waived for this study due to its retrospective nature. The waiving 
committees were the First Affiliated Hospital of Fujian Medical University and the Second Affiliated Hospital of 
Xiamen Medical College.

Results
Study cohorts. After the choice, 96 patients from the FAHF (Fig.  4a) and 29 patients from the SAHX 
(Fig. 4b) were included in the study. The FAHF cohort was randomly split into a training cohort (n = 67) and an 
internal test cohort (n = 29). Random re-splitting was used to ensure that there was no signification difference 
between the distributions of major clinical characteristics in the training and internal test cohorts (Table 1).

Radiomic model. For the classic radiomic model, the average cross-validation AUC values of the 4 scout 
models were 0.623, 0.647, 0.655, and 0.601, respectively. Features retained in 4 models were 6, 3, 1, and 14, 
respectively. Details of the scout models are summarized in Table 2. All 24 retained features were combined to 
build the final model. The combination of Kruskal–Wallis (KW) for feature selection and Logistic Regression 
(LR) for classifier yielded the model with best performance. The coefficients of 7 features used in the model are 
listed in Table 3. It achieved AUC values of 0.682 (95% CI: 0.591–0.772), 0.641 (95% CI: 0.492–0.786) and 0.554 
(95% CI: 0.399–0.708) over the training, internal test and external test cohorts, respectively. See Table 4 for 
detailed metrics. The ROC curves are shown in Fig. 5a.

For the delta radiomic model, the average cross-validation AUC values of the 4 scout models were 0.651, 
0.677, 0.719, and 0.639, respectively. Features retained in the 4 models were 6, 4, 1, and 4, respectively (Table 2). 
All 15 retained features were combined to build the final delta radiomic model. The best final model used KW 
for feature selection and LR for classifier and contained 1 feature, namely LoG-sigma-3–0-mm-glcm_Difference-
Variance. It achieved AUC values of 0.730 (95% CI: 0.646–0.815), 0.704 (95% CI: 0.564–0.845), and 0.661 (95% 
CI: 0.519–0.806) over the training, internal test, and external test cohorts, respectively. The detailed metrics are 
listed in Table 5. ROC curves of the model over the training, internal test, and external test cohorts are shown 
in Fig. 5b and the decision curve is shown in Fig. 5c. The decision curve shows that when the threshold of the 
probability of the initial acquire resistance to EGFR-TKIs was between 0.3 and 0.82, the target identification adds 
more benefit than treating all patients. Waterfall plots of the combined model showing the predicted probabilities 
in training, internal and external test cohort are shown in Fig. 5d–f.

Figure 3.  The scout and final radiomic model building process.
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Discussion
Despite the success of EGFR-TKIs therapy in the treatment of lung cancer, the acquired resistance limits the 
ability to translate this method into a curative treatment. The mechanisms of acquired resistance have tradition-
ally been thought of as genetic alterations, which can be associated with tumor heterogeneity and  hypoxia26–28. 
Tumor heterogeneity and hypoxia, which can increase cellular resistance to chemotherapy, radiotherapy, and 
inhibition of immune responses, may not be perceptible to the naked eye but can be quantified by using texture 
 analysis29–31. Therefore, we applied radiomics to follow-up CT images to identify the patients with early acquired 
resistance to EGFR-TKIs before radiography advance. However, in our study, the classic radiomic model failed 
to achieve satisfactory performance in identifying the early acquired resistance. There are likely multiple mecha-
nisms responsible for this finding. First, the number of early acquired resistance cells (i.e., the secondary gene 
mutation cells) may make up only a small proportion of tumors in EAR  images32. Second, the classic radiomic 

Figure 4.  Patient selection flowcharts in (a) the First Affiliated Hospital of Fujian Medical University and (b) 
the Second Affiliated Hospital of Xiamen Medical College.
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Table 1.  Clinical characteristics in the training and internal test cohorts. # Chi-square test, *Student ’s test, 
& Mann–Whitney test. Max Diameter is the maximum diameter in the maximum transverse section of lung 
adenocarcinoma. Shrinkage Rate is calculated by subtracting the maximum diameter in the baseline image 
from maximum diameter in the FFT then divided by the maximum diameter in the baseline image. Response 
Days are the days between the baseline scan and early acquire resistance scan. Location 1 and 2 denote central 
and peripheral types of lung cancer, respectively.

Characteristics Training cohort Internal test cohort p-value

Age (year) 62.9 ± 9.5 60.3 ± 11.2 0.239*

Gender (M/F) 30/37 13/16 0.996 #

Smoking (0/1) 59/8 23/6 0.265 #

Location (1/2) 8/59 5/24 0.486#

Max Diameter 4.0 ± 1.7 3.9 ± 1.5 0.784*

Shrinkage Rate 0.327 ± 0.171 0.349 ± 0.155 0.555*

Response Days 301.1(137.0,343.0) 317.1(188.0,339.5) 0.949&

Table 2.  Details of scout models. # LoG: Laplacian of Gaussian, LR: Logistic Regression, KW: Kruskal–Wallis, 
SVM: Support Vector Machine, CV: Cross-validation.

Model Base image Feature selection
Average CV 
AUC 

Feature 
number Features

Classic

Original ANOVA LR 0.623 6 glcm_Contrast, glcm_DifferenceVariance, ngtdm_Contrast, shape_MajorAxisLength, shape_MinorAx-
isLength, shape_SurfaceVolumeRatio

LoG (σ = 1.5) KW LR 0.647 3 firstorder_10Percentile, firstorder_Mean, firstorder_Variance

LoG (σ = 3) ANOVA LR 0.655 1 glcm_DifferenceEntropy

LoG (σ = 5) Relief LR 0.601 14

glrlm_LongRunHighGrayLevelEmphasis, firstorder_RootMeanSquared, firstorder_90Percentile, 
glszm_SmallAreaLowGrayLevelEmphasis, glcm_SumEntropy, firstorder_Maximum, glcm_ClusterShade, 
gldm_LargeDependenceHighGrayLevelEmphasis, glszm_LargeAreaLowGrayLevelEmphasis, glszm_
LargeAreaEmphasis, glszm_HighGrayLevelZoneEmphasis, firstorder_InterquartileRange, glrlm_Gray-
LevelNonUniformityNormalized, glrlm_LongRunEmphasis

Delta

Original ANOVA LR 0.651 6 glcm_Contrast, glcm_DifferenceVariance, glszm_LowGrayLevelZoneEmphasis, ngtdm_Coarseness, 
ngtdm_Contrast, shape_SurfaceVolumeRatio

LoG (σ = 1.5) ANOVA SVM 0.677 4 firstorder_10Percentile, firstorder_Mean, firstorder_Median, ngtdm_Strength

LoG (σ = 3) KW LR 0.719 1 glcm_DifferenceVariance

LoG (σ = 5) KW LR 0.639 4 glcm_Idmn, glcm_Idn, glcm_InverseVariance, ngtdm_Contrast

Table 3.  Coefficients of features in the radiomic models.

Model Features Coefficients Intercept

Classic

log-sigma-3–0-mm-3D_glcm_DifferenceEntropy 0.738

0.0173

original_glcm_DifferenceVariance − 0.016

log-sigma-1–5-mm-3D_firstorder_10Percentile − 0.038

log-sigma-1–5-mm-3D_firstorder_Mean − 0.318

log-sigma-1–5-mm-3D_firstorder_Variance 0.179

log-sigma-5–0-mm-3D_glszm_LargeAreaEmphasis − 0.442

log-sigma-5–0-mm-3D_glrlm_LongRunEmphasis 0.804

Delta log-sigma-3–0-mm-3D_glcm_DifferenceVariance 0.90483 0.06478

Table 4.  Detailed performance metrics of the classic radiomic model. # Cut-off value: 0.4542.

Cohort AUC 95% CI Accuracy Sensitivity Specificity PPV NPV

Training 0.682 0.591–0.772 0.664 0.687 0.642 0.657 0.672

Internal test 0.641 0.492–0.786 0.638 0.586 0.690 0.654 0.625

External test 0.554 0.399–0.708 0.586 0.483 0.690 0.609 0.571
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Figure 5.  Comparison of different models for identifying early acquired resistance in training, internal test, and 
external test cohorts. (a) and (b) are the ROC curves of the classic radiomic model and delta radiomic model 
over different cohorts, respectively. The delta radiomic model showed better performance. (c) Decision curve 
analysis was performed for the delta radiomic model in all patients from two institutions, which indicated that 
the delta model added more benefit than treating all or none of the patients for the range of 0.3 to 0.82 threshold 
probabilities. (d-f) Waterfall plot of the combined model showing the predicted probabilities in training, 
internal and external test cohorts, respectively.

Table 5.  Detailed performance metrics of the delta radiomic model. # Cut-off value: 0.4438.

Cohort AUC 95% CI Accuracy Sensitivity Specificity PPV NPV

Training 0.730 0.646–0.815 0.701 0.731 0.672 0.690 0.730

Internal test 0.704 0.564–0.845 0.707 0.724 0.690 0.700 0.704

External test 0.661 0.519–0.806 0.672 0.724 0.621 0.656 0.692
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model did not have the capacity to distinguish the little difference in radiomic features between the FFT and 
EAR because both the FFT and EAR belong to the progression-free survival stage. Although the classic radiomic 
model barely worked, it was no worse than the naked eye, which cannot identify EAR either, because the size of 
the tumor in EAR does not increase.

Recently, there has been an increasing interest in delta-radiomics33,34, which calculates the changes of radiomic 
features extracted from the dynamic follow-up treatment images, such as pre-therapy and post-therapy images. 
Delta-radiomics can be more sensitive to changes in texture or homogeneity over the period, which was also 
demonstrated by our results. In our study, delta radiomic model achieved better performance than the classic 
radiomic model (internal test AUC: 0.704 vs 0.641, external test AUC: 0.661 vs 0.554). Our results showed that 
the difference in radiomic features between pre-therapy and post-therapy can reflect the changes of intra-tumor 
heterogeneity and hypoxia, which can be used to identify EAR.

Our final delta radiomic model only contained one feature, namely, LoG-sigma-3–0-mm-GLCM_Differ-
enceVariance. This feature was positively associated with the degree of drug resistance. According to the Image 
Biomarker Standardization Initiative (IBSI)22, GLCM is a matrix to express how combinations of discretized 
intensities (grey levels) of neighboring pixels or voxels in a 3D volume. Meanwhile, GLCM is distributed along 
one of the image directions. High GLCM might be more representative of heterogeneous, such as chaotic 
 vascularization35,36. Yu et al. investigated the association between radiomic features extracted from diagnostic 
CT images and clinical outcomes in Stage I non-small cell lung cancer in a single  institution37. They stated that 
GLCM showed a strong positive correlation with the mortality risk index (Spearman correlation coefficient 0.86, 
P < 0.001). Similarly, Tunali et al. demonstrated that GLCM inverse difference was positively associated with 
tumor hypoxia, tumor acidosis, and treatment  resistance38. Our findings were consistent with those previous 
studies, indicating that the GLCM features were correlated to heterogeneity of the tumor, which in turn was 
associated with the tumor resistance to EGFR-TKIs.

If this delta radiomic model for EAR prediction can be further refined with more data, it can potentially be 
used when the routine follow-up CT examination after EGFR-TKIs therapy is taken. It can tell the clinicians the 
risk of EAR of the patient, without any extra expenditures and radiation exposures. It can provide a convenient, 
non-invasive and personalized approach to predict whether drug resistance has happened, thus can help clini-
cians to change the drug used or make other therapeutic decisions. It is conducive to precision medicine and 
improves prognosis.

We acknowledge that our study did have its limitations. First, due to the retrospective design of our study, 
selection bias was inevitable. Second, the slice thickness of CT images was different (1–5 mm) caused by differ-
ences CT imaging parameters from the two hospitals, which might have negative influences on the stability of 
radiomic features. Third, the sample size was relatively small which would affect the robustness of the prediction 
model, which could be the major reason for the suboptimal performance of the proposed model. A multi-center 
prospective study involving a more homogenous scan protocol and relevant clinical variables could be performed 
to further validate and improve the model.

Conclusion
The delta radiomic model derived from follow-up non-enhanced CT images has the potential to provide a novel, 
reliable, real-time, and non-invasive detection of early acquired resistance to EGFR-TKI in patients with lung 
adenocarcinomas. Early detection of acquired resistance may facilitate early adjustment of treatment strategies 
and can prolong patients’ progression-free survival and improve prognosis.

Data availability
The datasets used in the present study are available from the corresponding author on reasonable request.
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