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SoyDBean: a database for SNPs 
reconciliation by multiple versions 
of soybean reference genomes
Yejin Lee 1,2, Dong U Woo 1,2 & Yang Jae Kang 1,2*

Due to the development of sequence technology and decreased cost, many whole genome sequences 
have been obtained. As a result, extensive genetic variations have been discovered from many 
populations and germplasms to understand the genetic diversity of soybean (Glycine max [L.] Merr.). 
However, assessing the quality of variation is essential because the published variants were collected 
using different bioinformatic methods and parameters. Furthermore, despite the enhanced genome 
contiguity and more efficient filling of “N” stretches in the new reference genome, there remains a 
dearth of endeavors to verify the caliber of variations present in it. The primary goal of this research 
was to discern a dependable set of SNPs that can withstand reconciliation across multiple reference 
genomes. Additionally, the investigation aimed to reconfirm the variations through the utilization 
of numerous whole genome sequencing data obtained from publicly available databases. Based on 
the result, we created datasets that comprised the thoroughly verified SNP coordinates between 
the reference assemblies. The resulting “SoyDBean” database is now publicly accessible through the 
following URL: http:// soydb ean. plant profi le. net/.

Soybean (Glycine max [L.] Merr.) is a legume that is one of the most important crops for animals and humans, 
owing to its high protein and oil content. It can also hold atmospheric nitrogen through symbiosis with 
 microorganisms1. G. max is known to have been domesticated from East Asia around 7000–9000 years  ago2. 
With the development of Mendel’s laws of heredity and the advancement of our understanding of plant genet-
ics, molecular breeding techniques became  popular3. Multi-omics breeding methods are now used in many 
experimental breeding programs, along with recent improvements in the methods of phenotypic and molecular 
observation on soybean  plants4.

The utilization of next-generation sequencing (NGS) technology has revolutionized the acquisition of com-
plete genome sequences and the generation of high-throughput sequencing data for researchers, making it a 
cost-effective and effortless process. Moreover, the availability of vast amounts of Next-Generation Sequencing 
(NGS) data enables high-depth observations for each base, ensuring the accuracy of the data, and allowing for 
the identification of sequence variations at the single base  level5. To comprehend the genetic diversity of crops, 
nucleotide variations were detected by this technology in numerous populations utilizing the reference  genome6. 
In soybean, vast amounts of single nucleotide polymorphisms (SNPs) were generated through various studies 
that aimed to compare genetic variation in wild and cultivated soybeans and identify allele diversity specific 
to wild  soybeans7, identify genetic information available for soybean  breeding8, study the genetic diversity and 
structural properties of  soybeans9,10, construct a haplotype map using whole genome sequence  data11, and etc.

The creation of these large datasets was driven by the fact that a consolidated matrix of accumulated vari-
ants encompassing a broad spectrum of genetic diversity in both wild and cultivated soybeans would provide 
immensely informative insights into understanding allelic diversity that may be linked to useful  phenotype11,12. 
However, integrating individual research variants data into these large datasets is not straightforward due to the 
differences in variant calling progress, tools, and data filtering employed.

SNP calling based on read mapping to the reference genome involves several bioinformatic steps. Typically, 
NGS reads are sequenced and then aligned to the reference genome. Subsequently, a series of quality control 
processes, including the removal of duplicated and poor-quality reads, are performed. After these steps, the reads 
are realigned, and variants are  detected13. Since there is no gold standard for this pipeline, various pipelines, and 
filtering criteria have been employed to create different published datasets (Supplemental Table 1).
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Moreover, as sequencing technologies and analytical techniques continue the improve, reference genomes 
are frequently  updated14. The first reference genome assembly for G. max was constructed in 2010 using the 
whole-genome shotgun sequencing method, and it contained 17.7 Mb in 1148 unmapped scaffolds and 950 Mb 
in 20  chromosomes15. Subsequently, a Wm82.a2.v1 assembly of G. max was published, which consisted of 20 
chromosomes totaling 949.2 Mb and 1170 unmapped scaffolds with an N50 value of 29.3 Mb. This new assembly 
was able to identify the mislinked scaffold, realign it, and fill the contig gap with the available linkage genetic 
 map16. Such advancements in reference genome assembly and annotation provide researchers with improved 
resources for analyzing genomic data. The presence of discordance in genetic variation calls between old and new 
references poses a challenge in determining the reliable version. This challenge arises from the intricate nature of 
the source and the quality of the raw data, as well as the assembly algorithm. These factors encompass numerous 
potential sources of errors, even when the raw data and algorithm are comparatively more recent than  others17.

Various remapping tools, such as  LiftOver18,  Crossmap19, and NCBI-remap [available at ncbi.nlm.nih.gov/
genome/tools/remap], have been developed to transfer physical positions across different genome versions. 
Nonetheless, the resulting variation from the recently built genome has not undergone comprehensive valida-
tion, leading to discrepancies in the number of SNPs observed between the old and new reference  genomes20. 
Therefore, it is essential to have a set of SNPs that can be commonly extracted from any reference version and 
stored in a more transferable format, making it simple to assign SNP positions related to the reference  version21. 
To address this issue, the SNP database process has been carried out with tools such as GATK, especially for 
human genome analysis. Central to this validation process is the availability of a comprehensive and validated 
reference dataset, such as  dbSNP22. A human genome SNP database was created to verify the dependability of 
SNPs, but its availability for the soybean genome remains unavailable at present.

In this study, our objective was to identify comparable and reliable SNPs by consistently detecting SNP calls 
from two different version of the G. max reference genomes. In order to establish the reliable SNPs, we employed 
a two-step process. Firstly, we used the flanking sequences of SNPs from each reference genome and compared 
them to each other’s reference genome using mapping tools. This resulted in a preliminary list of comparable 
SNP positions between the two genomes. Secondly, we re-mapped reads from various soybean accessions to 
both reference genomes and evaluated the preliminary list of comparable SNP positions. Through this process, 
we identified SNPs that were consistently and reliably called, regardless of the reference genome versions. This 
database allows for the filtration of SNPs, resulting in a reliable set of SNPs that can be integrated into the GATK 
pipeline.

Methods
Data sources and calling SNPs
The SNP datasets used in the SoyDBean database consist of subpopulations of 95 cultivated soybeans (G. max) 
and 72 wild soybeans (G. soja), collected from six countries (South Korea: 146; China: 11; Japan: 6; USA: 2; 
Canada: 1; Sweden: 1, PRJNA555366) to obtain a vast amount of variant data (Supplemental Table 3). The reads of 
167 accessions were mapped to each reference genome (Glyma 1.01 and Wm82.a2.v1) using the Burrow-Wheeler 
Aligner (BWA)23. A duplicate was removed using  samtools24 and then sorted based on coordinates using the 
sambamba  sort25. Finally, the SNPs were identified and called using  bcftools26. After SNP calling, it was filtered 
on the overall quality (QUAL) > 30, the mapping quality > 30, the minor allele frequency (MAF) > 0.02, and the 
fraction of missing genotype < 0.05 and stored in Variant Call Format (VCF). Through 183 soybean accessions 
(102 G. max and 81 G. soja), we detected 12,447,986 SNPs in Glyma 1.01 and 12,473,679 SNPs in Wm82.a2.v1. 
To determine whether a sufficient number of SNPs had been identified, we examined the increase in the number 
of SNPs with the addition of accessions cultivated soybean and wild soybean separately. We observed that the 
number of SNPs did not significantly increase beyond 90 accessions for G. max and 50 accessions for G. soja, 
indicating that an adequate number of SNPs had been discovered (Fig. 1). The process of variant calling was 
conducted by this pipeline (https:// github. com/ yeah- zin/ soydb ean- varia ntCal ling- pipel ine).

Identify the reliable SNP positions for each version
The overall workflow of reconciliation of SNPs for each version is shown in (Fig. 2). We extracted flanking 
sequences (containing 500 bp on both sides of the SNP positions, 1001 bp) of SNP positions in each reference 
genome version. A total of 12,432,846 reads based on Glyma 1.01 and 12,458,909 reads based on Wm82.a2.v1 
were stored in Fasta format. The flanking sequences of SNPs were mapped 100% identity using the BWA-mem 
algorithm to another reference genome to verify that the sequences containing SNPs are valid between the ref-
erences (Supplemental Table 3). To increase reliability, it was filtered by whether sequences were mapped 100% 
identity and whether they were mapped to multiple positions. Most flanking sequences (92.52% Glyma 1.01 to 
Wm82.a2.v1 and 92.58% Wm82.a2.v1 to Glyma 1.01) were successfully mapped to each reference genome. Other 
sequences were not matched (7.48% and 7.41%) or duplicated mapped (0.004% and 0.005%). As a result, the reli-
able SNP positions that are represented by the conservation of the flanking sequence between the references were 
11,502,261 SNPs in Glyma 1.01 to Wm82.a2.v1 and 11,534,444 SNPs in Wm82.a2.v1 to Glyma 1.01. We deter-
mined that 11,314,158 SNPs are reliable through a process of mutual confirmation between multiple references.

Comparing genotypes in VCFs across different reference versions
We used paired-end short reads from 167 soybean accessions to confirm the reliability of transferable SNPs 
identified through mutual comparison between references. We compared each genotype calls at a position that 
was assessed to be the same SNP and found that 99.4% of the genotype at the reliable 11,243,616 SNP position 
agreed between the references in more than 90% of 167 soybean accessions (Fig. 3). We found that a small por-
tion (0.6%) of SNPs were not consistently called between the references when analyzing 167 soybean accessions 

https://github.com/yeah-zin/soydbean-variantCalling-pipeline
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(Fig. 4). This may be due to unresolved duplicate mapping results or the specific base composition at these 
SNP positions, which could cause noise in the genotyping process. Utilizing a filter of 90% match rates on 167 
accessions, we successfully identified 11,243,616 reliable SNPs, which enabled us to construct a comprehensive 
database containing information on reference version-wise SNP positions.

Signature of flanking sequences
To understand the reasons for the differences in genotype calls of certain SNPs using 167 accessions, we con-
ducted a K-mer analysis on the flanking sequences of the SNPs. We utilized the 3-mer frequency, SNP position, 
and GC content as indicators to differentiate between genotype calls matching and non-matching sequences. To 
statistically compare genotype calls match rates ≧ 90% group and the others group, then performed t-test (Fig. 5). 
Our findings suggested that 3-mers containing either “C” or “G” exhibited significant discrepancies between 
the two groups when examining SNP flanking sequences. Those with a low number of such 3-mers were more 
likely to be consistent with genotype calls excluding “TAA”, whereas those with high numbers of “TCG” 3-mers 
were more likely to be inconsistent. This K-mer analysis provided insights into the factors that influence the 
consistency rate of genotype calls across reference genome versions, which can inform future studies on the topic.

Results
Web application “SoyDBean”
As a method to utilize our reliable SNP database, we developed a web application, “SoyDBean” using Django 
(version 3.25, https:// www. djang oproj ect. com/) and Bootstrap (version 5.2, https:// getbo otstr ap. com/). Users 
can upload a VCF file of versions Glyma 1.01 and Wm82.a2.v1, and the web interface will select and update 
input SNPs to the reliable SNPs contained in the database (Fig. 6). All tasks are accomplished in an asynchronous 
manner, and the result containing a download link can be sent via email. It usually takes up to 15 min for the full 
conversion of SNP positions. Additionally, the web application allows users to download the SNP set confirmed 
by pair-wise mapping methods, which can be used for base quality score recalibration.

Verification with a multi‑sample VCF accessible to the public
To ensure the reliability of our SNP dataset, which was selected through pair-wise reads mapping and genotype 
match rates, we took the approach of consolidating publicly accessible VCFs from  Soybase27 into a unified geno-
type matrix. We attempted to combine the VCFs that were based on different references, including VCF written 
in Glyma 1.01 (8, 62 wild, 130 landraces, and 110 improved cultivars; containing 9,683,313 SNPs), VCFs written 
in Wm82.a2.v1 (11, 1007 cultivated soybeans, sharing an intersection with 518 cultivated soybean accessions in 
above  VCF8; containing 12,197,920 SNPs). This enabled us to generate a matrix with 4,135,736 SNPs from 1309 
accessions (1005 cultivated soybean, 242 landraces, and 62 wild), excluding SNPs for which genotype informa-
tion was missing more than 5% of 1309 accessions in the VCFs integration process. Firstly, we grouped the SNPs 
screened from our datasets, and the remaining SNPs (which passed the mapping stage but were excluded during 
genotype match rates filtering), and examined their genotype match rates in 1309 accessions consolidated matrix 
(Fig. 7). We observed that the median genotype match rate (of 518, there are common accessions in both VCFs) 
for 4,135,735 selected SNP positions was 90.38%, while the median genotype match rate for 10,348 remaining 
SNP positions was found to be 63.7%. This implies that not only the mapping process but also the comparison of 
genotypes is necessary to identify more reliable positions. Secondly, we utilized Principal Component Analysis 
(PCA) to verify that the genotype matrix was condensed in a manner that preserved the primary features (with 
a sum of the explained variance ratio of 0.95, n_components = 833). After plotting the first two components 
of the 1309 accessions, it was determined that the cultivated and wild soybeans were still able to be accurately 
distinguished, even after the reduction of SNPs during the SNP and merge processes (Fig. 8A). To validate our 

Figure 1.  The count of SNPs identified against the reference genome versions, Wm82.a2.v1 and Glyma 1.01, 
using short read mapping with increasing numbers of accessions for each of the two groups: (A) G. max and (B) 
G. soja.

https://www.djangoproject.com/
https://getbootstrap.com/
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genotype matrix further, we used clustering method to classify each accession into a group and verified the results 
using the accession’s metadata (Fig. 8B). Our results showed that the same accessions from various datasets were 
grouped into the same cluster (Fig. 8C).

Figure 2.  Schematic overview of database construction (A) SNP flanking sequence extraction process from 
the reference genome based on the SNP positions. (B) The verification process for identifying a reliable SNP 
through stringent cut-off criteria and reconciliation of genotype using 167 accessions.
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Discussion
As sequencing technology continues to advance and costs decrease, there is a growing abundance of whole 
genome variant calls for G. max that is now accessible in public databases. However, due to the lack of a uni-
versally agreed-upon gold standard for generating variant data, there are still limitations in comparing and 
analyzing these large-scale datasets with individual data. Hence, we suggest that an effective approach for the 
selection of reliable SNPs would involve the comparison of genome sequences and genotypes across numerous 
samples, utilizing mutual reference genomes. To test this hypothesis, we employed mapping and genotype calling 
methods between reference genomes, which enabled us to identify comparable and dependable SNP positions, 
even when the reference genome changes. As a result, we utilized a reliable set of SNPs to combine Variant Call 
Format (VCF) from different reference genomes that had already been published and obtained a large and robust 
dataset that can be utilized for further molecular market-based  studies28. In addition, we ascertained that the 
composition of the reference sequence is vital for the reliability of SNPs, such as the extent to which the quan-
tity of K-mers containing "C" and "G" is high or low. It has been reported that high GC-content and repeat-rich 
regions are associated with assembly errors, especially in short  reads29, which can potentially affect the reliability 
of genotype calls. As reference genomes have improved, they cover a greater portion of the genome, but chal-
lenges still remain in SNP validation. Therefore, we adopted a conservative approach and generated a reliable 
SNP dataset through mutual comparisons with each reference genome. We conducted a comparison between 

Figure 3.  Example of comparison of genotypes for each version of VCF. (A) flanking sequences were mapped 
forward, and the concordance rate was ≧90% (87.6% of all SNPs). (B) it was mapped forward, and the 
concordance rate was < 90% (0.46% of all SNPs). (C) it was mapped reverse complement, and the concordance 
rate was ≧90% (11.8% of all SNPs). (D) it was mapped reverse complement, and the concordance rate was < 90% 
(0.13% of all SNPs).

Figure 4.  Histogram of genotype match ratios of SNPs through mutual comparison between references using 
paired-end short reads from 167 soybean accessions.
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our reliable SNP dataset and the 170,223 SNPs that had been previously selected for the creation of the 180K 
AXIOM® SoyaSNP  array30. This analysis revealed that 73% of these SNPs (132,319 SNPs) were found within our 
reliable SNP dataset. By refining the SoyaSNP array using our dataset, we can enhance the reliability of SNP 
array analyses. Furthermore, we plan to incorporate the updated soybean reference genome (Wm82.a4.v1) into 
our efforts to further update the set of reliable SNPs.

Currently, our database was created using 167 accessions of cultivated and wild soybeans. However, as we con-
tinue to add more datasets to our pipeline, the number of reliable SNPs is expected to increase. We are currently 
incorporating additional datasets and plan to update our pipeline on a quarterly basis to ensure the inclusion of 
the latest available data. The “SoyDBean” database has been created to enable researchers to filter and process 
data that has been built using different pipelines and reference genomes, into set of comparable and reliable SNPs. 
Furthermore, our database offers a G. max SNP dataset that researchers can employ in the BaseRecalibrator step 
of the GATK pipeline for SNP validation tools. This allows for the calibration of the sequencing data, improving 
the accuracy and reliability of downstream analyses. By incorporating the reliable SNPs dataset in the calibration 
process, researcher can reduce systematic errors in the data and improve the quality of our analysis results. This 

Figure 5.  Significant 3-mers in SNP flanking sequences for the validation of some SNPs (≧90%: genotype 
match rates ≧90%; the others). The y-axis represents the count values of 3-mer frequencies or the ratio of 
GC-content. A statistical analysis using a t-test was conducted to compare ≧90% and the others’ SNP positions. 
****p ≤ 0.0001.
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Figure 6.  Web application "SoyDBean". Data Flow Diagram (DFD) and Entity Relationship Diagram (ERD) of 
the application and web framework models. The data conversion process asynchronously retrieves information 
from models. When the asynchronous operation is finished, the link to receive the result file is sent to the 
entered email. If the researcher registers on SoyDBean, Django-Models include a model for screening VCF data 
and a model that records the screening process.

Figure 7.  Boxplots for genotype match rates of two groups of SNPs analyzed in our study. Selected SNPs were 
screened from our datasets, while the others included the remaining SNPs that passed the mapping stage but 
were excluded during genotype match rates filtering. ****p ≤ 0.0001.
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Figure 8.  Clustering of genotype matrix using PCA. The asterisk represents a accessions that are commonly 
shared. (A) PCA plot of the first two components for 1309 accessions (1005 Improved cultivars, 242 Landrace, 
and 62 wild soybeans). (B) Phylogenetic tree of the 1309 samples. The green area indicates G. max and the 
orange area indicates G. soja. (C) Enlarged graph of a portion of the G. max region. The area marked in blue 
includes accessions classified within the same cluster.
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dataset can be accessed at http:// soydb ean. plant profi le. net/ downl oads/. Our approach will facilitate the analysis 
and integration of published variant data, thereby providing researchers with access to a wider range of varia-
tion information from various populations. This is expected to increase the likelihood of identifying genomic 
locations that are associated with desired characteristics, thereby aiding the genome-based breeding process.

Data availability
The generated data and tools can be accessed through the web database “SoyDBean”, which is available at http:// 
soydb ean. plant profi le. net/.
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