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Natural scene reconstruction 
from fMRI signals using generative 
latent diffusion
Furkan Ozcelik 1,2* & Rufin VanRullen 1,2,3

In neural decoding research, one of the most intriguing topics is the reconstruction of perceived 
natural images based on fMRI signals. Previous studies have succeeded in re-creating different 
aspects of the visuals, such as low-level properties (shape, texture, layout) or high-level features 
(category of objects, descriptive semantics of scenes) but have typically failed to reconstruct these 
properties together for complex scene images. Generative AI has recently made a leap forward with 
latent diffusion models capable of generating high-complexity images. Here, we investigate how 
to take advantage of this innovative technology for brain decoding. We present a two-stage scene 
reconstruction framework called “Brain-Diffuser”. In the first stage, starting from fMRI signals, we 
reconstruct images that capture low-level properties and overall layout using a VDVAE (Very Deep 
Variational Autoencoder) model. In the second stage, we use the image-to-image framework of a 
latent diffusion model (Versatile Diffusion) conditioned on predicted multimodal (text and visual) 
features, to generate final reconstructed images. On the publicly available Natural Scenes Dataset 
benchmark, our method outperforms previous models both qualitatively and quantitatively. When 
applied to synthetic fMRI patterns generated from individual ROI (region-of-interest) masks, our 
trained model creates compelling “ROI-optimal” scenes consistent with neuroscientific knowledge. 
Thus, the proposed methodology can have an impact on both applied (e.g. brain–computer interface) 
and fundamental neuroscience.

Establishing neural encoding and decoding techniques is one way for researchers to discover how the brain and 
cognition work. Recent developments in modeling and computation have opened up new ways of decoding infor-
mation from brain signals. Numerous studies in the field of vision research have employed statistical techniques 
and machine learning to decode specific information from fMRI (functional magnetic resonance imaging) neural 
activity, such as  position1 or  orientation2,3, to predict categories of  images4,5, to match exemplar images from a 
candidate  set6, and to reconstruct images with low levels of complexity, such as simple shapes and  structures7.

In recent years, following the success in the development of deep learning models, many studies utilized deep 
generative models to reconstruct entire images. These deep generative models included Variational Autoencod-
ers (VAE), Generative Adversarial Networks (GAN), and recently Latent Diffusion Models (LDM). Most of 
these studies used existing deep generative models, pretrained on large-scale data, and then learned a mapping 
(with simple regression or more advanced neural network architectures) to reconstruct the corresponding latent 
variables from the brain signals. This general method was used to reconstruct images with different levels of 
complexity such as  faces8,9, single-object-centered  images10, and more complex  scenes11,12.

Most of the earlier works on natural scene reconstruction studied either the Generic Object  Decoding13 or 
the Deep Image  Reconstruction10 datasets curated by the Kamitani Lab. These datasets consist of 1200 training 
and 50 testing images from the  ImageNet14 dataset and they differ in the number of fMRI repetitions for training 
and testing images. One of the pioneer studies in this area is by Shen et al.10 who optimized input images using 
a deep generator network with a loss function provided by fMRI-decoded CNN features. Beliy et al.15 utilized 
supervised training with {fMRI, stimulus} pairs, alongside an additional consistency loss for unsupervised train-
ing with test fMRI data and additional image data. Building on this, Gaziv et al.16 further improved the method 
by incorporating a perceptual loss on reconstructed images, resulting in sharper reconstructions. Mozafari et al.17 
introduced a reconstruction model based on BigBiGAN that focused on semantics. Ren et al.18 devised a dual 
VAE-GAN model with a three-stage learning strategy that incorporates adversarial learning and knowledge 
distillation. Ozcelik et al.19 employed the Instance-Conditioned GAN model to generate reconstructions focused 
on accurate semantics (by extracting semantic information with the SwAV model) and pose information (with 
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latent optimization). Chen et al.20 utilized a sparse masked brain modeling on large-scale fMRI data and then 
trained a double-conditioned diffusion model for visual decoding.

Recently, Allen et al. curated another dataset for visual encoding and decoding studies called Natural Scenes 
 Dataset11. For this dataset, 8 subjects viewed thousands of images from the  COCO21 dataset. COCO images 
contain multiple objects and they are more complex in nature compared to ImageNet images. Because of the 
number, diversity, and complexity of images included, the NSD dataset—although very recent—is becoming the 
de facto benchmark for fMRI-based natural scene reconstruction. Thus, it is the dataset that we chose for the 
present work. There are already three studies that reconstructed images from this dataset, and we can use them 
as baselines against which to compare our model’s performance. The first one is by Lin et al.12, who utilized the 
Lafite framework that adapts the StyleGAN2 model for text-to-image generation. Takagi et al.22 devised a method 
based on Stable Diffusion, using captions for the semantic information and latent variables from images for the 
low-level information. Gu et al.23 improved upon Ozcelik et al.’s19 IC-GAN framework, by establishing a surface-
based convolutional network to process fMRI data instead of using vectorized data in the regression models; 
they also trained an encoder network to predict pose information, instead of performing latent optimization.

The above studies have fostered advances in reconstructing images with high fidelity, especially in the case of 
object-centered images (i.e., ImageNet images from the Kamitani dataset). Yet, reconstructing scenes with mul-
tiple objects and complex semantic descriptions (i.e., COCO images from the NSD dataset) remains a challenge. 
Given the remarkable recent success of latent diffusion  models24 in generative AI applications such as text-to-
image  generation24–28, we reasoned that brain decoding studies could also take advantage of such models. Thus, 
we propose here a visual reconstruction framework called “Brain-Diffuser”, relying on the powerful generation 
capabilities of Versatile  Diffusion28, a model conditioned on both vision and language representations acquired 
from the pretrained  CLIP29 model.

Our framework consists of two stages. The first stage, illustrated in Fig. 1, generates a low-level reconstruction 
of images (akin to an “initial guess”) using a Very Deep Variational Autoencoder (VDVAE)30. We generate these 
reconstructions by training a regression model to associate fMRI signals to the corresponding latent variables of 
VDVAE for the same training images. In the second stage, illustrated in Fig. 2, we train two additional regression 
models: one from fMRI patterns to CLIP-Vision features (extracted by feeding the corresponding images to the 
CLIP model); and the other one from fMRI patterns to CLIP-Text features (collected by providing to the CLIP 
model the captions of the corresponding images). Finally, we use the multimodal dual-guidance as well as the 
image-to-image abilities of the pretrained Versatile Diffusion (VD) model to generate the final reconstructions 
for test images. Using our trained regression models, for each test fMRI pattern we obtain an “initial guess” 
image (stage 1, VDVAE reconstruction) used by VD’s image-to-image pipeline, as well as predicted CLIP-Vision 
and CLIP-Text feature vectors (stage 2), jointly used for conditioning VD’s diffusion process. We used VDVAE, 
CLIP, and Versatile Diffusion with their pretrained weights, and did not apply any finetuning. We only trained 
regression models that transform fMRI patterns to latent variables of the models.

We demonstrate below that the resulting scene images reconstructed by the Brain-Diffuser model are highly 
naturalistic and retain the overall layout and semantic information of the groundtruth images while showing only 
minor variations in finer details. Compared to earlier models that exhibited proficiency in capturing certain fea-
tures of groundtruth images, Brain-Diffuser demonstrates qualitatively and quantitatively superior performance 
in terms of both high-level and low-level metrics, thus establishing itself as state-of-the-art.

Figure 1.  Reconstruction of Images via VDVAE (first stage). Training stage (left). Latent variables ( ztrain ) are 
extracted and concatenated for the first 31 layers of the hierarchy by passing training images ( Ytrain ) into the 
pretrained VDVAE Encoder. A ridge regression model (Regressor) is trained between fMRI patterns ( Xtrain ) 
and corresponding latent variables ( ztrain ). Testing Stage (right). Test fMRI data ( Xtest ) are passed through 
the trained Regressor to obtain predicted latent variables ( ̂ztest ). These predicted latent variables are fed to the 
pretrained VDVAE Decoder to get the low-level reconstruction ( ̂Ylow ) of the test images ( Ytest ), which will serve 
as a sort of “initial guess” for the second stage. Note that all VDVAE layers (encoder and decoder blocks) are 
pretrained and frozen, only the brain-to-latent regression layer (blue box) is trained.
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Materials and methods
Dataset. We used the publicly available Natural Scenes Dataset (NSD), a large-scale 7T fMRI  dataset11. The 
NSD was collected from 8 subjects viewing images from the  COCO21 dataset. Each image was viewed for 3 
seconds, while subjects were engaged in a continuous recognition task (reporting whether they had seen the 
image at any previous point in the experiment). For our study, we used the 4 subjects (sub1, sub2, sub5, sub7) 
who completed all trials. The training set that we used thus contained 8859 images and 24,980 fMRI trials (up to 
3 repetitions for each image), and 982 images and 2770 fMRI trials for the test set. We averaged fMRI trials for 
the images that had multiple repetitions. We also used the corresponding captions from the COCO dataset. Test 
images are common for all subjects, while training images are different. We used the provided single-trial beta 
weights, obtained using generalized linear models with fitted hemodynamic response functions and additional 
GLMDenoise and ridge regression procedures (‘betas_fithrf_GLMdenoise_RR’). We masked preprocessed fMRI 
signals using the provided NSDGeneral ROI (Region-of-Interest) mask in 1.8 mm resolution. The ROI consists 
of [15,724, 14,278, 13,039, 12,682] voxels for the 4 subjects respectively, and includes many visual areas from the 
early visual cortex to higher visual areas. For further details on this dataset and the corresponding fMRI preproc-
essing steps, we refer the reader to the initial paper describing the Natural Scenes  Dataset11.

Low-level reconstruction of images using VDVAE (first stage). A Variational Auto-Encoder 
(VAE)31 is a generative model trained to capture an input distribution (such as an image dataset) via a low-
dimensional latent space, constrained to follow a particular prior distribution (e.g. Gaussian). When the input 
dataset takes on a more complex distribution, training a Variational Autoencoder (VAE) can be challenging. 
Indeed, prior work has found that datasets consisting of natural scene images require many latent variables with 
complex distributions for which a simple VAE would not suffice; this is why the Very Deep Variational Autoen-
coder (VDVAE) was  introduced30. The VDVAE is a hierarchical VAE model, with several layers of conditionally 
dependent latent variables, each layer adding different details from coarse to fine when transitioning from top 
to bottom. The hierarchical dependence can be seen in Eqs. (1) and (2), where z indicates latent representations, 
x is the input variable, qφ represents the approximate posterior distribution that is learned when training the 
encoder, and pθ represents the prior distribution that is learned when training the decoder. The latent variable 
z0 is at the top of the hierarchy with the smallest dimension (low resolution, with coarse details) and zN is at the 
bottom of the hierarchy with the largest dimension (high resolution, with fine details). Equation (1) shows that 
the latent variables at the bottom of the hierarchy are dependent on those who are at the top (and on the input x). 
When there is no input (x), it is still possible to generate samples using the prior distribution described in Eq. (2). 

Figure 2.  Final reconstruction of images via versatile diffusion (second stage). Training stage: CLIP-Vision 
features ( cim ) are extracted by feeding training images ( Yim ) to the pretrained CLIP model. CLIP-text features 
( ctx ) are extracted by providing the corresponding captions ( Ytx ) to the pretrained CLIP Model. Two different 
ridge regression models (Regressors) are trained to learn the mapping between these features and fMRI patterns 
( Xtrain ). Testing stage: predicted CLIP-Vision ( ̂cim ) and CLIP-text ( ̂ctx ) features are computed by giving test 
fMRI patterns ( Xtest ) to the trained regression models. In the image-to-image pipeline of the latent diffusion 
model, VDVAE reconstructions of test images (the “initial guess” Ŷlow from the first stage) are passed through 
the AutoKL Encoder of the pretrained Versatile Diffusion model, and the obtained latent vectors undergo 37 
steps of the forward diffusion process (noise addition). The resulting noisy latent vectors are used to initialize 
the reverse diffusion process, which is also guided by predicted CLIP-Vision ( ̂cim ) and CLIP-text ( ̂ctx ) features 
jointly in a dual-guided framework. At last, the resulting denoised latent vector is passed through the AutoKL 
Decoder to generate the final reconstructed image ( ̂Ytest ). Note that all CLIP (vision and text encoders) and 
Versatile Diffusion layers (AutoKL encoder and decoder, forward and reverse diffusion blocks) are pretrained 
and frozen, only the brain-to-latent regression layers (blue boxes) are trained.
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This hierarchical structure helps the VDVAE learn sufficiently expressive latent variables to represent complex 
distributions like natural scene images.

For our study, we used the model provided  in30, trained on a 64× 64 resolution ImageNet dataset, and consist-
ing of 75 layers; we only utilized the latent variables from the first 31 layers for the sake of size in regression, since 
we observed that adding further layers did not make much difference in the reconstruction results (at test time, 
the latent variables from the remaining layers are sampled according to the prior distribution given in Eq. (2)).

In the training stage, we fed images to the encoder part of the VDVAE to extract latent variables for each 
training image (as described in Fig. 1). We concatenated the latent variables from the 31 layers, which resulted 
in 91,168-dim vectors. Then, we trained a ridge regression model between fMRI training patterns and these con-
catenated vectors. In the testing stage, we provided test fMRI patterns to the trained regression model and thus 
predicted latent values for each test image. Then, we fed those latent values to the decoder part of the VDVAE 
and obtained reconstructed images ( 64× 64 pixels) from the VDVAE. These low-level reconstructions served 
as an “initial guess” for the diffusion model (second stage).

Final reconstruction of images using versatile diffusion (second stage). Although the VDVAE 
was helpful to reconstruct the layout of the image, it is not sufficient for the high-level features, nor does it 
produce fully naturalistic pictures. For that, we use the Versatile  Diffusion28 model in the second stage of our 
reconstruction framework. Versatile Diffusion is a recently proposed latent diffusion model (LDM)24.

LDMs have become highly popular after their success in high-resolution text-to-image generation. In order 
to train an LDM, first an autoencoder (with encoder E(·) and decoder D(·) ) is trained on a large-scale image 
dataset to learn a compressed representation of images x0 , i.e. a latent space z0 = E(x0) . Then, the forward dif-
fusion process is applied to these latent variables z0 by adding Gaussian noise in successive timesteps (described 
in Eq. (3), where t represents the timestep, ᾱt indicates a coefficient derived from the standard deviation of the 
Gaussian noise, and ε represents the Gaussian noise). The reverse diffusion process is learned via a neural net-
work (Denoising U-Net in the original paper) to predict and remove noise from the noisy latent so as to retrieve 
the original latent variables. This is done by minimizing the loss function in Eq. (4), where ε is the true Gauss-
ian noise, εθ (·) represents the neural network being trained to predict the noise, zt is the latent variable, t is the 
timestep, and τθ (y) is the conditioning input for the U-Net. After the reverse diffusion process, the denoised latent 
variables are passed through the trained decoder D(·) to generate the images. The critical part of this process 
is that it is possible to condition this reverse diffusion process on different representations (e.g text captions, 
images, semantic maps). This conditioning process is done by merging conditions ( τθ (y) ) in the cross-attention 
block of the Denoising U-Net.

The Versatile Diffusion model (see Fig. 2) is a latent diffusion model with different pathways which allow us 
to condition the generation process on both text and image features to guide the reverse diffusion process. It is 
possible to provide CLIP-Vision, CLIP-Text, or both features as conditions in the reverse diffusion process. It is 
also possible to initialize the reverse diffusion with latent variables obtained from a particular image, rather than 
from a purely random distribution–this is the image-to-image pipeline that we will use to take advantage of our 
“initial guess” image from stage 1. The Versatile Diffusion model that we utilized in our framework was trained 
on the Laion2B-en32 dataset with 512× 512 resolution images and corresponding captions. CLIP (Contrastive 
Language-Image Pre-training)29 is a multimodal model designed to assist in different tasks that involve natural 
language processing and computer vision. It is trained in a contrastive learning approach, where features gathered 
from images vs. text captions are projected onto separate latent spaces of identical dimensions: CLIP-V refers to 
the latent space for images and CLIP-T for captions. Similarity scores (e.g. cosine similarity) of the latent space 
projections for matching images and captions are optimized throughout training. CLIP is widely used as a feature 
extractor, due to its high representational capabilities. The CLIP network used in Versatile Diffusion is based on 
the transformer architecture (ViT-L/14) and pretrained on a large-scale contrastive task.

In stage 2, we thus train two regression models, the first one between fMRI patterns and CLIP-Vision features 
(with 257× 768-dim extracted from the corresponding images where the first vector with 768-dim represents 
the category-related embedding and the remaining 256 embeddings represent the patches acquired from the 
images) and the second one between fMRI patterns and CLIP-Text features ( 77× 768-dim extracted from the 
COCO captions associated with the corresponding images where the 77 embeddings correspond to the num-
ber of tokens given to the model as inputs). At testing time, we use the image-to-image pipeline of the latent 
diffusion model. First, we encode the image reconstructed with the VDVAE model (stage 1) with the AutoKL 
Encoder (after upsampling the image from 64× 64 to 512× 512 ) and add noise to the latent vector for 37 steps 
of forward diffusion (corresponding to 75% of the 50 steps of full diffusion, which is a commonly used value in 
the image-to-image pipeline of LDMs). In this image-to-image pipeline, it is necessary to first add some amount 
of noise to the latent values using forward diffusion, since LDMs generate images via denoising using reverse 
diffusion (without noise on the image, the reverse diffusion step would end up with no change). Then, we feed 

(1)qφ(z | x) = qφ(z0 | x)qφ(z1 | z0, x) . . . qφ(zN | z<N , x)

(2)pθ (z) = pθ (z0)pθ (z1 | z0) . . . pθ (zN | z<N )

(3)zt =
√

ᾱt z0 +
√

1− ᾱtε

(4)LLDM =Et,z0,ε,y

[

∥

∥ε − εθ
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zt , t, τθ (y)
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this noisy latent as initialization to the diffusion model and denoise it for 37 steps while conditioning with the 
predicted CLIP-Vision and CLIP-Text features (stage 2). In every step of reverse diffusion, we use CLIP-Vision 
and CLIP-Text jointly in the double-guided diffusion pipeline of Versatile Diffusion, where the cross-attention 
matrices for both conditions are mixed through linear interpolation (with CLIP-Vision having a relative strength 
of 0.6 and CLIP-Text of 0.4). The diffusion result is passed through the AutoKL Decoder to produce our final 
512× 512 pixel reconstruction.

Results and analyses
Image reconstruction examples. We present examples of reconstructions from our model in Fig.  3. 
While we present the results of each individual subject in different columns, we also added results gathered by 
averaging the latent variables predicted by all subjects. In general, we see that reconstructed images capture most 
of the layout and semantics of the groundtruth images, while there remain differences in pixel-level details. For 
instance, looking specifically at the first four images on the left, we see that the reconstructed pose (3D orienta-
tion) of the plane (first image) is correct for every subject although there are some differences in the details of 
the plane and also in the texture of the background. Nonetheless, the fact that a commercial plane on a runway, 
facing to the right on a blue sky background was reconstructed in all instances is not a trivial feat. For the second 
example, all reconstructed images display a group of people, although layouts tend to differ. Still, a person in 
a wheelchair is visible in the bottom right corner for three of the four subjects. For the third image, the model 
reconstructed a highway with road signs correctly, although the orientation of the road is different for some of 
the subjects, and the details of the signs are not entirely matched. On the fourth sample, all reconstructed images 
show a single person facing left and holding an object in their hand, as in the groundtruth image. The person’s 
details (gender, age, clothing) are different across subjects, e.g. with glasses only reconstructed for subject 1 and 
in the average across subjects. Reconstructed image contrast also differs from the ground truth. Similar conclu-
sions can be generalized to most images of the test set: while never passing for a picture-perfect copy, with visible 
differences in especially color and contrast (due to inherent limitations of the Versatile Diffusion model in this 
respect), the reconstructed images are always naturalistic (that is, as much as diffusion models can generate) 
and plausible alternate renditions of the ground truth. Some of the remaining errors and differences may be 
caused by inherent limitations of the LDMs instead of unsuccessful predictions made by the fMRI-latent map-
ping model, as it is known that (current) diffusion models can generate unrealistic images in some occasions 
(e.g. unusual numbers of eyes on faces, fingers in hands).

We also present some examples of reconstruction failures from our model in Fig. 4. In these examples, we see 
that our model can fail due to different reasons. In the first example, although Brain-diffuser reconstructs oval 
objects around the center, the complex texture of the background seems to interfere with the object, which is 
not reconstructed as a clock. For the second example, the reconstructions show sea in the background, although 
there is no sea in the ground-truth image. On the fourth sample, the teddy bear occluding the kid’s face seems 
to confuse the model, as it generates human faces in the reconstructions. For the sixth example, Brain-Diffuser 

Figure 3.  Examples of fMRI reconstructions from our Brain-Diffuser model. The first column is the 
groundtruth image (Test Image). The second column is generated by averaging the predicted latent variables 
over all 4 subjects seeing the same picture (Sub Avg). The remaining columns are for each individual subject 
(Sub1, Sub2, Sub5, Sub7).
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reconstructs a kid instead of a monkey. These examples highlight the fact that Brain-Diffuser can fail on occasion, 
due to diverse reasons like complex stimuli, object occlusions, or confusing one object with another.

Comparison with state of the art. How do these findings compare to the state of the art? We contrast the 
qualitative results of our model with three other existing models in Figs. 5 and  6. Lin et al.12 was the first study 
that used the NSD dataset for reconstruction. They are similar to our model in terms of utilizing both image 
and text features as conditions, but they used a StyleGAN2 model instead of an LDM. Takagi et al.22 is the only 
other study (in addition to ours) to use a latent diffusion model for reconstructing images from the NSD dataset. 

Figure 4.  Failure cases of fMRI reconstructions from our Brain-Diffuser model. The first column is the 
groundtruth image (Test Image). The remaining columns are for each individual subject (Sub1, Sub2, Sub5, 
Sub7).

Figure 5.  Comparison of fMRI Reconstructions for different models on a common set of test images. The 
first column is the groundtruth image (Test Image). The second column shows reconstructions of our method 
(Brain-Diffuser). The third column reconstructions are generated by replicating Lin et al.’s method using the 
code and instructions given by the authors. The fourth and fifth columns are reconstruction results from Takagi 
et al. and Gu et al. respectively, which were shared by the original authors.
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Finally, Gu et al.23 used an Instance-Conditioned GAN model trained on ImageNet. In Fig. 5, we compared our 
results with previous studies for the same set of images as in Fig. 3. Since Lin et al. used a different train-test split 
for their model, we used a replication of their model on the same train-test split as ours. Takagi et al. and Gu 
et al. shared generated images from their models with us for comparison. From these reconstructions, we can see 
that all methods capture high-level information to a degree, but not all of them are equally good at utilizing this 
information for image reconstruction. For instance, in the first image with a plane, Brain-Diffuser reconstructed 
a plane image that looks more similar to the ground-truth image and has a more realistic structure compared to 
Lin et al. and Gu et al. (and there is no recognizable plane in the reconstruction of Takagi et al.). In the fourth 
image with a man with glasses, the face is barely recognizable for Lin et al., the reconstruction by Gu et al. does 
not contain arms or glasses, while Takagi et al. reconstruct an unnatural rendition of a face and arms; in contrast, 
Brain-Diffuser exhibits a more natural-looking reconstruction and also manages to reconstruct the glasses.

In Fig. 6, we compare our method against the same three baselines, but using image reconstructions that were 
reported by the original authors in their papers, which might be more representative of each method’s perfor-
mance. Although Lin et al. seems to be performing better than the other two prior models, in some instances the 
quality of their reconstructions still lags behind ours. For instance, in the second image, the details of the truck 
are better represented in our model, while for the third image, the shape of the toilet is better represented in Lin 
et al. In the fourth image, the color of the clothes is presented more accurately in our model, as well as the fact 
that the person is holding an item; the person’s face also looks more realistic compared to Lin et al. On the other 
hand, the color and location of the pizza in the sixth image appear more aligned with the ground-truth image 
for Lin et al. Although Takagi et al. generates easily recognizable silhouettes, they do not seem to perform as 
well as our model in any qualitative aspect including low-level details, semantics, or naturalness. Finally, when 

Figure 6.  Comparison of fMRI reconstructions for different models on images presented in the papers of the 
previous methods. Since the presented test images in all methods were different, we did comparisons separately 
for each model. On the left (first 3 columns), we present the comparison of our model with Lin et al. together 
with groundtruth test images. On the center (columns 4–6), we present the comparison of our model with 
Takagi et al. together with groundtruth test images. On the right (last 3 columns), we present the comparison of 
our model with Gu et al. together with groundtruth test images.
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we compare our results to Gu et al., we can see that, although both appear good at reconstructing images with 
similar semantics, structural aspects are less well represented in their reconstructed images (e.g. unrealistic 
warped shapes for the train, bus, and building). In contrast, the shape and texture details of our model are more 
realistic. Since their model has a BigGAN backbone, with few parameters to encode the entire layout of the 
image (including the object’s class, its pose, size, and location), and since it is trained on a single-object-centric 
dataset (ImageNet), the model seems to be limited in reconstructing complex scenes with multiple objects. On 
the other hand, since LDMs include a spatially organized map of features, it is more convenient for them to 
represent multiple objects; as an example, we see one train in the third image although there are two trains in 
the groundtruth image, and in the reconstructed image from our model.

Quantitative results. To make the comparison with other models more quantitative, we present the 
results of 8 different image quality metrics in Table 1. PixCorr is the pixel-level correlation of reconstructed 
and groundtruth images.  SSIM33 is the structural similarity index metric. AlexNet(2) and AlexNet(5) are the 
2-way comparisons of the second and fifth layers of  AlexNet34, respectively. Inception is the 2-way comparison 
of the last pooling layer of  InceptionV335. CLIP is the 2-way comparison of the output layer of the CLIP-Vision29 
model. EffNet-B and SwAV are distance metrics gathered from EfficientNet-B136 and SwAV-ResNet5037 models, 
respectively. The first four can be considered as low-level metrics, while the last four reflect higher-level proper-
ties. For PixCorr and SSIM metrics, we downsampled generated images from 512× 512 resolution to 425× 425 
resolution (i.e. the resolution of groundtruth images in NSD dataset). For the rest of the measures, generated 
images are preprocessed according to the input properties of each network. Note that not all measures are avail-
able for each previous model (depending on what they chose to report). However, each model has at least one 
point of comparison with ours. Our quantitative comparisons with Takagi et al. and Gu et al. are made according 
to the exact same test set, i.e., the 982 images that are common for all 4 subjects. Lin et al., on the other hand, 
reported their results on only Subject 1 and with a custom train-test set split. However, when measuring our 
model’s image quality on the same train-test split as Lin et al, we observed nearly identical results (Inception 
Score of 87.0%, compared to 78.2% for Lin et al). Our model is the best-performing model by a decent margin 
for all of the quantitative metrics. Overall, these results show that our model can be considered state-of-the-art 
for both low-level and high-level quantitative measures.

Ablation studies. 
In order to reveal the contribution of each component of Brain-Diffuser, we performed an ablation study (with 
fMRI data of Sub1), and report both quantitative (Table 2) and qualitative (Fig. 7) results. The quantitative results 
are given in Table 2. Our first ablation (Only-VDVAE) considers the results from stage-1 reconstruction only 
(Fig. 1) without stage-2 reconstruction (Fig. 2). This Only-VDVAE model provides the best results for all low-
level measures, but the worst (by a large margin) for all high-level measures. This pattern of results is expected 
since the VDVAE reconstruction relies on low-level information without a contribution of semantic information 

Table 1.  Quantitative analysis of fMRI reconstructions. For each measure, the best value is in bold (for 
PixCorr, SSIM, AlexNet(2), AlexNet(5), Inception and CLIP metrics, higher is better. For EffNet-B and SwAV 
distances, lower is better. This is indicated by the arrow pointing up or down, respectively).

Method

Quantitative measures

Low-level High-level

PixCorr ↑ SSIM ↑ AlexNet(2) ↑ AlexNet(5) ↑ Inception ↑ CLIP ↑ EffNet-B ↓ SwAV ↓

Lin et al.12 – – – – 78.2% – – –

Takagi et al.22 – – 83.0% 83.0% 76.0% 77.0% – –

Gu et al.23 0.150 0.325 – – – – 0.862 0.465

Brain-Diffuser (Ours) 0.254 0.356 94.2% 96.2% 87.2% 91.5% 0.775 0.423

Table 2.  Quantitative comparisons of test fMRI reconstructions of Sub1 with various ablations of the full 
model. For each measure, the best value is in bold (for PixCorr, SSIM, AlexNet(2), AlexNet(5), Inception, and 
CLIP metrics, higher is better. For EffNet-B and SwAV distances, lower is better. This is indicated by the arrow 
pointing up or down, respectively).

Method

Quantitative measures

Low-level High-level

PixCorr ↑ SSIM ↑ AlexNet(2) ↑ AlexNet(5) ↑ Inception ↑ CLIP ↑ EffNet-B ↓ SwAV ↓

Only-VDVAE 0.358 0.437 97.7% 97.6% 77.0% 71.1% 0.906 0.581

Brain-Diffuser w/o VDVAE 0.143 0.302 85.6% 93.0% 87.3% 92.6% 0.775 0.414

Brain-Diffuser w/o CLIP-Text 0.279 0.333 95.6% 97.0% 87.9% 91.2% 0.796 0.436

Brain-Diffuser w/o CLIP-Vision 0.327 0.433 93.9% 94.1% 84.7% 84.5% 0.821 0.509

Brain-Diffuser 0.305 0.367 96.7% 97.4% 87.8% 92.5% 0.768 0.415
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from stage-2. By contrast, Brain-Diffuser without the VDVAE component (i.e., stage-2 reconstruction but with 
random initialization of the autoKL latent vector) performs worst on low-level measures (by a large margin), 
while it is among the best in high-level measures. This is also reasonable since this ablated model generates the 
reconstructions from only high-level features obtained from CLIP-Text and CLIP-Vision models and does not 
have much information about low-level information such as layout. Together, these results indicate that the 
VDVAE “initial guess” (stage-1) is necessary but not sufficient for optimal reconstruction. This is evident in the 
results from the full Brain-Diffuser model (last row in Table 2), where the contribution from VDVAE (stage 1) 
brings strong improvements in low-level measures, with near-optimal high-level features. In another ablation, 
we evaluate Brain-Diffuser without CLIP-Text. Compared to the full model, there is a sizeable decrement in both 
low-level and high-level measures, except Inception. While the contribution of CLIP-Text to the reconstruction of 
high-level semantic features is expected, its improvement of low-level measures is more surprising but could be 
explained by semantic information related to the image layout itself, such as the number or orientation of objects 
(see examples in Fig. 7). Finally, Brain-Diffuser without CLIP-Vision, surprisingly, retains high performance on 
the low-level PixCorr and SSIM measures (lower than Only-VDVAE, but higher than the full model); we assume 
that this could be due to insufficient diffusion steps (as discussed further below), preventing the reconstruction 
from deviating from the VDVAE initial guess. For all other measures (including low-level AlexNet measures), 
removing CLIP-Vision guidance severely impairs the performance of Brain-Diffuser. Overall, when jointly con-
sidering low-level and high-level measures, these quantitative results show that the full Brain-Diffuser model is 
better than any other variation or ablation.

We also present qualitative results in Fig. 7 with the same set of images presented in Fig. 3 of the main manu-
script. Reconstructions from the Only-VDVAE model (i.e., stage-1 without stage-2) match the low-level details 
(e.g. shapes, layouts) of the groundtruth images, but they look like vague silhouettes rather than natural images. 
In contrast, Brain-Diffuser without VDVAE generates images that match high-level properties (semantics) of 
groundtruth images but lack positional information about the objects and their layout. This is particularly clear 
for the fourth image in the right part of the figure, where the layout of the street and buildings is properly cap-
tured by VDVAE (and thus, also by the full model), but is lacking in the VDVAE ablation. The images generated 
by Brain-Diffuser without CLIP-Text appear very close to those from the full model but with some notable dif-
ferences. One example is the ski image (Row 5 on the right part of the figure), where the full model generates a 
single person (as in the groundtruth) while the model without CLIP-Text generates two people. Another example 
is the plane image (Row 1 on the left part of the figure) where the model without CLIP-Text does not produce 
an image with the correctly positioned plane. Finally, reconstructions from Brain-Diffuser without CLIP-Vision 
appear quite blurry, and somehow in between the Only-VDVAE and the full model reconstructions. This could 
be an indication that forward and reverse diffusion steps were not sufficient for this model. Still, increasing 
the number of diffusion steps may not be a good solution since that would cause the model to lose low-level 
information provided by VDVAE. Overall, these qualitative examples corroborate the quantitative findings in 

Figure 7.  Examples of fMRI test reconstructions from Sub1 with various ablations of the full model. The first 
column is the groundtruth image (Test Image). The second column shows reconstructions from the full Brain-
Diffuser model with all of its components. The third column is for reconstructions of the Only-VDVAE model. 
The remaining columns are for Brain-Diffuser with one of its components excluded, in order: without VDVAE, 
without CLIP-Text, and without CLIP-Vision.
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Table 2 and make it clear that the Brain-Diffuser model represents the optimal compromise for both low-level 
details and high-level semantic features.

Which brain regions are used? In order to understand the relationship between brain regions and the 
various components of our model (VDVAE, CLIP-Vision, CLIP-Text), we performed a region-of-interest (ROI) 
analysis of the regression weights. We used 4 visual ROIs derived from population receptive field (pRF) experi-
ments, and 4 ROIs derived from functional localization (fLoc) experiments. All experiments were provided 
along with the NSD dataset by the original authors. These ROIs are as follows (region names following the termi-
nology adopted in Allen et al.11): V1 is the concatenation of V1 ventral (V1v) and V1 dorsal (V1d), and similarly 
for V2 and V3; V4 is the human V4 (hV4); the Face-ROI consists of the union of OFA, FFA-1, FFA-2, mTL-
faces, and aTL-faces; Word-ROI consists of OWFA, VWFA-1, VWFA-2, mfs-words, and mTL-words; Place-ROI 
consists of OPA, PPA, and RSC; Body-ROI consists of EBA, FBA-1, FBA-2, and mTL-bodies. For each voxel in 
these regions, we computed the strength of the regression weights ( L1 norm) for the CLIP features (CLIP-V and 
CLIP-T) and the VDVAE features, expressed as a percentile. Because the absolute regression weights can be 
affected by the number of voxels in each region, as well as the overall activity level and the noise level, we report 
our results as a difference in regression weights between CLIP features and VDVAE features. The results in Fig. 8 
show that early regions (V1–V4) are more informative about the VDVAE features, while category-specific higher 
brain regions (Words, Faces, Bodies, Places) carry more information about CLIP features. Another important 
observation is that the differences between CLIP-V and VDVAE are in the same direction, but much weaker than 
the differences between CLIP-T and VDVAE. This may indicate that although the Versatile Diffusion model uses 
CLIP-V features for high-level guidance, these features still contain more information about low-level properties 
than CLIP-T features.

ROI-optimal stimuli. Beyond brain decoding, we show here that our method can also be used to help 
understand the functional properties of specific regions-of-interest (ROIs) in the brain. Although we know from 
early studies in the neuroscience  literature4,38–45 what sort of visual properties would best activate neurons in 
each brain region, there are only a few  studies19,46–49 which attempted to directly visualize an “optimal” stimulus 
for a given brain region. Our method can easily be adapted for this purpose. We define “ROI-optimal” as images 
that would activate a certain ROI maximally while not activating other ROIs (or just activating them mini-
mally). We analyzed the same 8 ROIs (V1, V2, V3, V4, Face-ROI, Word-ROI, Place-ROI, and Body-ROI) that 
we discussed in the previous section. We used the intersection of these regions with NSDGeneral (the one we 
used for training our decoding system), each time creating a synthetic fMRI pattern where the ROI was active 
(signal set to 1) and the rest of the brain inactive (signal set to 0). From this synthetic pattern, our system could 
then generate predicted latent variables, and directly reconstruct an equivalent visual scene, corresponding to 
the “ROI-optimal” image. Surprisingly, this simple and deterministic approach, inspired by the analysis in Ozce-
lik et al.19, still gives plausible results. Since the synthetic fMRI patterns can be considered out-of-distribution 
(because there are no similar patterns in the training set), we re-normalized the generated latent variables to give 
them a similar euclidean norm to the training samples. This procedure helped the diffusion model to generate 
meaningful images that are shown in Fig. 9.

Upon inspecting the generated “ROI-optimal” images for visual ROIs, we see that V1 produces high-contrast 
scenes with very detailed textures extending to the visual periphery, such as trees and foliage in a park with 
numerous small human or animal figures. V2 is similar (especially for Sub1 and Sub5, which also display humans 
in a luxuriant garden environment), but with slightly broader elements and less peripheral detail (e.g. trays filled 
with various foods in Sub2, Sub7, and in the subject-average). Continuing along the same trend, V3 and V4 

Figure 8.  Difference between the percentiles of the regression weights ( L1 norm) for the CLIP features 
(CLIP-V and CLIP-T) vs. the VDVAE features, averaged over voxels in each ROI and normalized by the average 
percentile of VDVAE features for the same ROI. Positive values indicate relatively higher regression weight for 
CLIP features compared to the VDVAE features, and vice versa. Error bars represent the standard error of the 
mean across 4 subjects.
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produce larger objects compared to the earlier regions, with repeating patterns and global structure. V4 especially 
generates colorful, high-contrast objects resembling toys on a bright background.

The ROI-optimal images for functionally defined high-level ROIs are even easier to interpret, as they tend to 
coincide with each region’s known category preference. For instance, the model generated multiple face images 
for the Face-ROI, including humans and sometimes even animal faces (e.g. dogs in Sub5 and in the subject-
average). For the Word-ROI, the model generated characters and pseudo-words on objects or signs (except for 
Sub7). Architecturally plausible indoor scene layouts were produced for the Place-ROI. Finally, for the Body-
ROI, the reconstructed images show both human and animal body parts like arms and legs engaged in active 
behavior like sports or running.

In another exploratory experiment aiming to understand the effects of combining ROIs, we repeated the 
analysis of Fig. 9, this time using combinations of activations for different ROIs (Fig. 10). In the first column 
where we activated all the low-level visual regions together (V1–V4), we see scrambled and regular patterns 
in different parts of the images as well as some identifiable objects for some of the subjects—but there are no 
apparent objects that are commonly identifiable across all subjects. In the next columns, we combined activations 
across all low-level visual regions (V1–V4) and one of the functionally defined high-level ROIs. In the second 
column where we combined the visual regions (V1–V4) with Face-ROI, we see human and animal faces in all 
images, although some scrambled high-contrast patterns also continue to exist in different parts of images. In 
the third column where we combined the visual regions with Word-ROI, letter-like patterns or pseudo-words 
can be seen in the upper part of the image for subject 1 and middle and lower regions for subject 5, but they are 
less visible than in the analysis of Fig. 9. In the fourth column where we combined the visual regions with Place-
ROI, the model generates architectural interior and exterior parts, and the scrambled patterns cease to exist for 
these images. Finally, in the fifth and last column where we combined the visual regions with Body-ROI, we see 
vaguely identifiable human and animal body parts like arms and legs. This proof-of-concept experiment reveals 
what happens when we combine the activations of different regions instead of activating one ROI in isolation. 
Although there are visual differences between generated images from Figs. 9 and  10, we continue to observe 
similar semantic relationships between the functional ROIs and the corresponding images.

While these results mainly confirm decades of converging knowledge from the neuroscience literature on 
neuronal selectivity in the ventral visual pathway, this method allowed us to directly visualize functional prop-
erties in vivid detail and high-resolution images. Furthermore, the technique introduced here could easily be 
extended to study retinotopic or eccentricity-based cortical organization. As a proof of concept, we also applied 
our ROI analysis to visual regions defined by different eccentricity preferences. Similar to hierarchical regions 

Figure 9.  Images reconstructed from synthetic fMRI patterns created by activating specific regions-of-interests 
(ROIs). The first 4 rows present individual subjects: Sub1, Sub2, Sub5, and Sub7. The last row is generated by 
averaging the latent vectors predicted from all 4 subjects. The columns present ROIs: First four are ROIs from 
the visual cortex (V1–V4) gathered by population receptive field experiments, and the last four are ROIs that 
are specified with functional localization experiments (Face-ROI, Word-ROI, Place-ROI, Body-ROI). Since our 
synthetic fMRI patterns produce distribution shifts in the latent variables, which in turn can affect the contrast 
of the reconstructed images, histogram stretching and equalization are applied on color histograms of generated 
images for visualization purposes.
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in the visual cortex (V1, V2, V3, and hV4) these eccentricity-based regions (0° < e < 0.5°, 0.5° < e < 1°, 1° < e 
<  2°, 2° < e < 4° and 4° < e, where e stands for “eccentricity”) were also extracted by population receptive field 
(pRF) experiments. These regions thus reflect the eccentricity preference of the retinotopic cortex, where degrees 
close to 0° indicate central vision (closer to the fovea) and higher degrees indicate peripheral vision. The cor-
responding results are shown in Fig. 11. It is difficult to see a clear pattern for eccentricities between 0° and 0.5° 
(0° < e < 0.5°), as the corresponding portion of the image might be too small to be considered meaningful for the 
model. A noticeable aspect, however, is that all images for that ROI have detailed and high-contrast objects in 
the center (though there are also objects in the periphery). For eccentricities between 0.5° and 1° (0.5° <  e < 1°), 
and between 1° and 2° (1° < e < 2°), we begin to see larger objects (e.g. humans, animals, blobs) at the center of 
the images. When we reach eccentricities between 2 and 4° (2° < e < 4°) and beyond (4° < e), we start to see these 
objects (or animals, humans, and blobs) move towards the periphery, while the center of the images is mostly 
empty. These results highlight two important findings: first, the latent representations used by Brain-Diffuser 
(combining latent features from VDVAE, CLIP-Vision, and CLIP-Text) are precise enough to convey informa-
tion about the spatial localization of objects in the image; second, we see that Brain-Diffuser managed to learn 
the eccentricity-based retinotopic organization of the cortex from these representations.

Discussion
In this study, we designed a two-stage framework (Brain-Diffuser) that reconstructs images from fMRI patterns 
using generative models based on latent diffusion. In the first stage, we used the VDVAE model to generate “ini-
tial guess” reconstructions focusing on low-level details. Then in the second stage, we used the image-to-image 
pipeline of the Versatile Diffusion model, starting from this initial guess, to generate final reconstructions via 
diffusion, guided by both predicted CLIP-Vision and CLIP-Text features. As we relied on pre-trained and publicly 
available models for image generation (VDVAE, Versatile Diffusion) and multimodal feature extraction (CLIP), 
our method only required training ridge regression models from multivoxel brain activity to the relevant model 
latent spaces (Figs. 1,  2).

We analyzed the results both qualitatively (Fig. 3) and quantitatively (Table 1) We observed that reconstructed 
scene images generated by Brain-Diffuser, although not perfectly identical to groundtruth images, preserve most 
of the layout and semantic information. They also appear more naturalistic compared to reconstructions from 
earlier studies (Fig. 6). When evaluated quantitatively, we saw that Brain-Diffuser outperforms previous models in 
both high-level and low-level metrics. After advancing the state-of-the-art in image generation  applications24–28, 
it appears that latent diffusion models can also be used to improve the state-of-the-art in fMRI-based image 
reconstruction.

Although latent diffusion models are very  recent24, we noted at least two competing studies that used LDMs 
for fMRI-based image reconstruction. Chen et al.20 proposed MinD-Vis, a method based on an LDM condi-
tioned on image category labels (rather than text captions) to reconstruct images from the Kamitani dataset. As 

Figure 10.  Images reconstructed from synthetic fMRI patterns created by activating combinations of different 
regions-of-interests (ROIs). The first 4 rows present individual subjects: Sub1, Sub2, Sub5, and Sub7. The last 
row is generated by averaging the latent vectors predicted from all 4 subjects. The columns present different 
combinations of ROIs: The first column is where all four regions in the visual cortex are activated at once (V1, 
V2, V3, and V4). The remaining columns are combinations of activations of these visual ROIs with one of the 
functional ROIs: Face-ROI, Word-ROI, Place-ROI, and Body-ROI, respectively.
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mentioned above, this is a less challenging, single-object-centered dataset; thus, their results cannot be directly 
compared with ours, obtained using the richer and more complex NSD dataset. Takagi et al.22, on the other 
hand, used NSD and were thus included in our quantitative comparisons. There are multiple possible reasons 
why our model performed better than theirs, on both low-level and high-level metrics. Beyond the use of dis-
tinct pretrained LDMs (Stable  Diffusion24 for Takagi et al. vs. Versatile  Diffusion28 in our study), our framework 
contains several improvements such as the use of VDVAE reconstructions for low-level details (Fig. 1) and the 
dual conditioning on CLIP-Vision and CLIP-Text features (Fig. 2), which together resulted in better qualitative 
and quantitative results.

There are several ways in which this work may be pursued in the future. First of all, it will be important to 
test and validate our method on other image-fMRI datasets. As deep generative models will likely continue to 
improve at a breakneck pace, it is probable that there will soon come models better suited for complex scene 
reconstruction from fMRI signals. Of course, among a pool of many generative models, it may not be a trivial task 
to select the most appropriate ones and to experiment on them, and adapt them for brain decoding and image 
reconstruction. If future generative models reach a ceiling in their ability to linearly explain brain activity, we may 
need to look for better alternatives than just doing ridge regression between fMRI patterns and latent variables. 
These alternatives (non-linear regressions, deep hierarchical networks), however, may require larger training 
datasets to learn the correspondence between fMRI patterns and visual features than ridge regression. It is pos-
sible that our reconstructions would benefit from including larger brain regions (or even the whole-brain) in our 
analysis. However, this is not guaranteed due to the possibility of overfitting in the presence of high-dimensional 
inputs. Also, expanding the region of fMRI inputs would dramatically raise the computational cost (in time and/
or memory) of the training process of regression models. This is why the NSDGeneral ROI appears as an ideal 
compromise used in most studies (including ours). Using a common ROI also facilitates comparisons between 
studies. In the future, we may also see more accurate movie reconstruction studies that process temporal patterns 
together with spatial ones on movie-fMRI  datasets50,51. Besides improving the reconstruction quality, future work 
could also design novel experiments and analyses on the NSD dataset using generative models. For instance, in 
this study, we have shown that we can use generative models to reveal the “optimal” stimulus for anatomically, 
functionally, or retinotopically-defined ROIs, by analyzing the reconstructions of synthetic fMRI patterns created 
from the corresponding ROI masks. This approach could easily be extended to probe less well-known regions 
of the visual cortex, to help settle theoretical arguments about distinct sub-regions of (e.g.) the face processing 
network, or to render images for arbitrary combinations of ROIs (e.g., what image would optimally activate 
V1, V4, and the face-ROI, but not V2 or the Body-ROI; see also Fig. 10). Important advances in this direction 
were made using an iterative optimization method by Gu et al.48 Directly passing synthetic fMRI patterns to the 
image reconstruction pipeline, however, is computationally advantageous, which may prove important when 
there are numerous combinations of sub-regions to be tried. Similar “virtual experiments” in this framework 
could help us address outstanding questions in neuroscience, and understand the organization of sensory and 
semantic knowledge in the brain.

Figure 11.  Images reconstructed from synthetic fMRI patterns created by activating regions-of-
interests (ROIs) in the visual cortex with different eccentricities. The first 4 rows present individual 
subjects: Sub1, Sub2, Sub5, and Sub7. The last row is generated by averaging the latent vectors predicted 
from all 4 subjects. The columns present concentric regions with increasing eccentricity coverage 
( 0◦ < e < 0.5◦, 0.5◦ < e < 1◦, 1◦ < e < 2◦, 2◦ < e < 4◦, and4◦ < e , where “e” stands for eccentricity). 
Histogram stretching and equalization is applied for visualization purposes.
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Data availability
The information on accessing the NSD dataset that is analyzed during the current study is available in the Natural 
Scenes Dataset repository, http:// natur alsce nesda taset. org/.

Code availability
The code for our project, including scripts to train regression models, pretrained weights, and scripts to produce 
reconstructions for test images and for ROI-based synthetic patterns, is publicly available at http:// github. com/ 
ozcel ikfu/ brain- diffu ser.
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