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Screening obstructive sleep 
apnea patients via deep learning 
of knowledge distillation 
in the lateral cephalogram
Min‑Jung Kim 1,6, Jiheon Jeong 1,2,6, Jung‑Wook Lee 1,6, In‑Hwan Kim 2,6, Jae‑Woo Park 2,6, 
Jae‑Yon Roh 3, Namkug Kim 1,4* & Su‑Jung Kim 2,5*

The lateral cephalogram in orthodontics is a valuable screening tool on undetected obstructive sleep 
apnea (OSA), which can lead to consequences of severe systematic disease. We hypothesized that 
a deep learning‑based classifier might be able to differentiate OSA as anatomical features in lateral 
cephalogram. Moreover, since the imaging devices used by each hospital could be different, there 
is a need to overcome modality difference of radiography. Therefore, we proposed a deep learning 
model with knowledge distillation to classify patients into OSA and non‑OSA groups using the lateral 
cephalogram and to overcome modality differences simultaneously. Lateral cephalograms of 500 
OSA patients and 498 non‑OSA patients from two different devices were included. ResNet‑50 and 
ResNet‑50 with a feature‑based knowledge distillation models were trained and their performances 
of classification were compared. Through the knowledge distillation, area under receiver operating 
characteristic curve analysis and gradient‑weighted class activation mapping of knowledge distillation 
model exhibits high performance without being deceived by features caused by modality differences. 
By checking the probability values predicting OSA, an improvement in overcoming the modality 
differences was observed, which could be applied in the actual clinical situation.

Obstructive sleep apnea (OSA) is a complex and heterogeneous disorder that draws attention worldwide, 
because undetected OSA can lead to consequences of severe systematic  disease1,2, heart  disease3, cardiovascular 
 dysfunction4,  stroke5, and even sudden  death6. Therefore, diagnosing OSA as early as possible takes precedence 
for the proper management of  OSA7. Polysomnography (PSG) is regarded as the gold standard method used 
for OSA  diagnosis8. Nevertheless, PSG is an overnight examination that is expensive and requires high patient 
compliance; additionally, it has a high risk of invalid study  results9,10.

One of the major phenotypic causes of OSA is craniofacial structural  abnormality11,12. The predisposing char-
acteristics of OSA on the craniofacial structures are a narrowed posterior airway space, a long, elongated pharynx, 
thicker soft palate, a long and large tongue, a lower position of the hyoid bone, increased anterior lower facial 
height, and decreased sagittal dimension of the cranial base. The lateral cephalogram has been acknowledged as 
the tool confirming the potential relevance of OSA in patients with suspected  symptoms13–15.

Deep learning is a subset of artificial intelligence (AI) technique that can learn from special features and make 
predictions about image data with or without  supervision11. Amongst the various deep learning approaches, 
convolutional neural networks (CNNs) have been highlighted in image recognition to recognize anatomical 
structures in medical images  automatically12. Savoldi et al.13 applied lateral cephalograms to evaluate the ana-
tomical structures associated with OSA in children. They reported a limited reliability in the assessment of the 
tongue and soft palate area using lateral cephalograms. Tsuiki et al.14 included groups of patients with severe 
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OSA and non-OSA according to the craniofacial morphology. They employed the deep learning approach to 
perform lateral cephalogram-based image classification, with successful identification of individuals with severe 
OSA by deep CNNs using lateral cephalogram.

Various modalities in cephalograms have become vital in the actual clinical  setting15. Therefore, robust 
training in multimodal imaging has drawn attention in the computer science  field16. Some previous studies 
have attempted deep learning algorithms with knowledge distillation to overcome the modality differences 
in  images17,18. Knowledge distillation was introduced by Geoffrey Hinton et al. in Google  Inc19. Distilling the 
knowledge is to compress the knowledge into a single model. This comprises first training the cumbersome model 
called “teacher model” and subsequently using another type of training to transfer knowledge from the cumber-
some model to a small model called the “student model”. Since deep learning is outstanding for training multiple 
levels of feature representation, feature-based knowledge distillation used both the output of the last layer and 
the output of feature maps in intermediate layers as the knowledge to supervise the student model  training20.

Based on that craniofacial phenotypes of OSA patients have observable anatomical intrinsic features in the 
lateral cephalogram, we attempted to develop a fully automated cephalometric screening tool of OSA presence 
in a simple manner. We aimed to propose a reinforced CNNs algorithm to perform an OSA-classification task 
in different cephalometric modalities, and to detect the region of interests (ROIs) which indicate the anatomical 
risk areas contributing to OSA.

Materials and methods
Data acquisition with lateral cephalogram protocol
Five hundred lateral cephalograms of adult OSA patients, who had been diagnosed by apnea-hypopnea index 
(AHI) from PSG record, were randomly collected from picture archiving and communication system (PACS) in 
Kyung Hee University Medical Center and Dental Hospital. This study samples comprised 100 images (Lateral 
A) taken with CX-90SP machine (Asahi Roentgen, Kyoto, Japan) and 400 images (Lateral B) taken with DP80P 
machine (Dentsply Sirona, Bensheim, Germany). The lateral cephalograms were taken in a strictly standardized 
head and jaw postures at the end of expiration during the respiratory cycle to obtain the most relaxed pharyngeal 
soft tissue images. The OSA group were subdivided into mild (5 < AHI ≤ 15, n = 100), moderate (15 < AHI ≤ 30, 
n = 154), and severe (AHI > 30, n = 246) groups according to the disease  severity21.

For the control group (non-OSA group), 498 cephalograms of healthy orthodontic patients taken with CX-
90SP machine (Lateral A) were recruited. Non-OSA samples were defined as the patients without any OSA 
signs or symptoms in the clinical examination using sleep questionnaire, instead of AHI number. Finally, a total 
of 998 cephalograms were included in the present study. All patients provided with informed consents for the 
anonymous use of their cephalograms and PSG. This retrospective study was performed under the institutional 
review board for the protection of human subject (IRB Number: KH-DT19006).

Image pre‑processing
The modality differences between Lateral A and Lateral B images existed in the image magnification and resolu-
tion as well as the standardization format of image acquisition, which were contrasted by a histogram (Fig. 1). 
To unify the field of view (FOV) of two image modalities, all images were cropped to include all the potential 
critical regions of interests (ROIs) predisposing to OSA. Three cephalometric landmarks were automatically 
extracted with the previously developed landmark-detection algorithm to generate the consistent cropping 
boundaries: Basion, Glabella, and Pronasale points (Fig. 2)22. The accuracy of each landmark selected by algo-
rithm is 0.76 ± 1.06, 1.36 ± 1.08, and 0.60 ± 0.46 mm,  respectively22. The landmark position selected by algorithm 
was not modified for cropping. In addition, when resizing to the input shape, the aspect ratio of the original image 
was maintained to minimize the distortion of the actual image information. For data augmentation, image rota-
tion was applied in a range of − 15° to 15°, and horizontal flip, CLAHE (Contrast Limited Adaptive Histogram 
Equalization) were applied randomly with a probability of 50%.

Figure 1.  The modality differences between the two lateral cephalograms: (a) Lateral A image, (b) Lateral B 
image, and (c) histogram distribution of the two images.
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Knowledge distillation
Since an image of each modality exists predominantly for each group, the regular method is highly likely to cre-
ate a model that classifies by recognizing the difference in the modality rather than classifying based on rational 
grounds. Therefore, to overcome this problem, we used a feature-based knowledge distillation deep learning 
model. Simultaneously, we used ResNet-50 to train the data in order to compare with the proposed model. 
By applying this method, we (1) first extracted only the modality images common to both groups to create a 
teacher model, and (2) built a model architecture that ultimately created a student model that additionally learns 
other modality images while maintaining the performance of this teacher model (Fig. 3). Both models used the 
ResNet-50 architecture as a backbone, and used pre-trained weights with the ImageNet dataset. Moreover, a 
comparative experiment was conducted with additional information such as age, and BMI. After global aver-
age pooling (GAP) of the ResNet-50 architecture, sex encoded to one-hot vector was added and the combined 
information passed through the fully connected layers to derive the final OSA prediction values.

Model training
333 (67%) OSA patient images and 333 (67%) non-OSA patient images were used for training; additionally, 84 
(17%) images each from OSA and non-OSA patients were used for validation. For testing, 83 (17%) OSA patient 
images and 81 (16%) non-OSA patient images were used.

Evaluation
The performances of the deep neural network models were analyzed for accuracy, area under receiver operating 
characteristic curve (AUROC), sensitivity, and specificity in classification using Python scikit-learn (version 
0.24.2). Unpaired t tests were used to compare baseline characteristics between the OSA and non-OSA groups. 
In addition, paired t tests were also performed to compare the results of the model with and without sex. Statisti-
cal analysis was performed by Python SciPy (version 1.7.1) in the present study with a two-sided P value < 0.05 
defined as statistically significant. To verify and visualize the critical ROIs that the proposed deep learning model 
has seen in prediction the OSA patients from the lateral cephalograms, we performed gradient-weighted class 
activation mapping (Grad-CAM).

Figure 2.  Image cropped based on Landmark. (Yellow: “Basion”, Blue: “Glabella”, Green: “Pronasale”).
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Figure 3.  Diagrams of the model architecture.
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Results
Unpaired t test between OSA and non‑OSA groups
As shown Table 1, the OSA group revealed significantly greater age and higher body mass index (BMI) than non-
OSA group. The mean AHI of OSA group was 34.4 ± 22.2 events/h. Unpaired t test of the OSA and the non-OSA 
groups showed significant differences in sex (p < 0.01), age (p < 0.01), and BMI (p < 0.01) between the two groups.

Analysis through OSA predicted probability values (Fig. 4)
In order to check whether the problem of classification by the features appearing in the difference in modality 
was effectively solved, the OSA prediction probability values of the ResNet-50 and our knowledge distillation 
models were checked. As shown Fig. 4, the y-axis is the predicted probability value of OSA and the x-axis cor-
responds to the index number of the data. And the red dot represents the Lateral A image of the non-OSA 
group, the blue dot is the Lateral A image of the OSA group, and the green dot is the Lateral B image of the OSA 
group. Through the results of ResNet-50 model (Fig. 4a), it can be confirmed that the red and green dots are 
predicted with strong certainty as non-OSA and OSA, respectively. On the other hand, the blue dots are evenly 
distributed over the total probability values. Looking at the result of our model (Fig. 4b), it was observed that red 
and green dots are generally found to be located on the non-OSA and OSA side, respectively, as they are more 
evenly distributed than in ResNet-50 model (Fig. 4a), which shows an extreme pattern. Moreover, the blue dot 
is mostly located on the OSA side.

Accuracy, AUROC, sensitivity, and specificity of the test set
With respect to the result of the entire dataset, the basic model had the highest values of accuracy, AUROC, and 
specificity (0.927, 0.982, and 0.988) as shown Table 2. On the other hand, sensitivity had the highest value when 
cropped in the student model (0.940). In addition, the student model had higher values of accuracy, AUROC, 
and sensitivity than the teacher model although the specificity was slightly lower.

Analysis of results of our model according to OSA severity
To compare the results according to the OSA severity in our model, we checked the performance of each OSA 
group in the test set. The severe group (n = 40) showed the highest AUROC (0.990), followed by the mild group 
(n = 18) and the moderate group (n = 25) (Table 3 and Fig. 5). The results of confusion matrix in each OSA group 
are shown Fig. 6, respectively.

Table 1.  Baseline demographics of the two groups (OSA, Non-OSA).

Patient characteristics OSA non-OSA

n 500 498

Age (years) 45.3 ± 12.5 27.2 ± 8.9

BMI (kg/m2) 25.6 ± 3.2 22.2 ± 4.0

AHI (events /h sleep) 34.4 ± 22.2

Male:female 400:100 205:293

Figure 4.  Probability predicted as OSA according to the modality. (a) ResNet-50 Model, (b) Our Model.

Table 2.  The accuracy, AUROC, sensitivity, and specificity of the test set in the binary receiver operating 
characteristic (ROC) analysis according to the model type.

Accuracy AUROC Sensitivity Specificity

Base model 0.927 0.982 0.867 0.988

Teacher model 0.841 0.932 0.771 0.914

Student model 0.921 0.965 0.940 0.901
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Grad‑CAM for diagnosis OSA
To confirm the results of Grad-CAM in a more objective and universal manner, the results were derived as 
the average value of all the test sets Table 4. Before applying the average value, registration was applied to all 
datasets based on landmarks. The results showed different patterns between the OSA and non-OSA groups in 
Fig. 7. First, in the case of the non-OSA group, our model tends to classify by focusing on the airway and the 
submental area. On the other hand, our model focused on a wider area, including not only the submental, but 
also the tip of the chin.

Comparison of the performance of a classification model with additional information
To confirm the performance change of the model when additional information is included, the performance 
of the entire test set was compared. The accuracy was higher when learning using only sex than when learning 

Table 3.  Predicted values of our model according to severity of OSA.

Severity Accuracy AUROC Sensitivity Specificity

Our model

 Mild 0.909 0.964 0.944 0.901

 Moderate 0.887 0.926 0.840 0.901

 Severe 0.934 0.990 1.000 0.901

Figure 5.  Receiver operating characteristics curves of our model to classify the OSA (a) Classifying the OSA 
and non-OSA. (b) Analysis result of OSA according to the severity.

Figure 6.  Confusion matrix results of binary classification according to the OSA severity (a) all OSA, (b) mild, 
(c) moderate and (d) severe.
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BMI or age together. This might be due to differences in gender differences between the normal group and the 
OSA group. When Age and BMI were additionally learned, the accuracy was similar to that of the teacher model.

Discussion
In our study, we proposed a knowledge distillation-based deep learning model to classify the patients into the 
OSA and non-OSA groups using the lateral cephalogram. Lateral cephalograms have been used as a tool to 
evaluate the craniofacial morphology in patients with malocclusion in the Department of Orthodontics. Since 
patients with OSA exhibit anatomical features, which are observable in lateral cephalograms, it is useful to 
examine whether deep learning can be a screening tool for lateral cephalograms to classify OSA and non-OSA. 
Tsuiki et al.14 attempted to develop a deep learning-based OSA screening tool using the lateral cephalogram 
for the first time. However, their study did not analyse all OSA severity and included only patients with severe 
OSA. In the real world, since the imaging device used by each hospital is different, the inevitable differences of 
image modality should be considered. Therefore, we tried to overcome this problem and developed a robust 
deep learning model. During the first training using ResNet-50, even though all the images were processed to 
overcome modality differences, the problem of seeing and classifying OSA with modality still existed because 
most lateral cephalograms of OSA patients were scanned by a specific imaging modality, DP80P, from the 
Department of Otolaryngology.

The non-OSA group includes all Lateral A images, whereas the OSA group includes mostly Lateral B images; 
however, there are also a few Lateral A images. Therefore, by checking the result value of the Lateral A image 
among the OSA groups, it is possible to evaluate whether the problem caused by the difference in modality has 
been overcome (corresponding to the blue dot in Fig. 3). Based on the results of the base ResNet-50 model, in 
the case of blue dots, it was confirmed that they were spread throughout the entire probability values and were 
particularly biased toward non-OSA. This can be interpreted as the result of the model being classified by rec-
ognizing only the same modality information, since the majority of the “Lateral A” corresponds to non-OSA. 
In contrast, in our model, most of the blue dots are in the OSA group and the green and red dots are also not 
extremely biased to one side, but rather spread more naturally at a classifiable level; therefore, it can be said that 
learning was accomplished by overcoming the differences in the modality.

Compared to the model of Tsuiki et al.14, our model has slightly higher scores for AUROC, sensitivity, and 
specificity (Table 3). Although our data are small in number and the difference in modality has significant 
disadvantages, knowledge distillation overcomes these  problems23, and the final result is stable and excellent 

Table 4.  Comparison of the accuracy, AUROC, sensitivity, specificity of the test set between the models with 
additional information.

Accuracy AUROC Sensitivity Specificity

Teacher model 0.841 0.932 0.771 0.914

Student model + sex 0.909 0.962 0.952 0.864

Student model + sex + BMI 0.804 0.792 0.682 0.830

Student model + sex + age 0.822 0.816 0.712 0.860

Student model + sex + BMI + age 0.839 0.828 0.721 0.881

Figure 7.  Average result of test set Grad-CAM (a) non-OSA group and (b) OSA group.
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performance is not biased against a specific class compared to the previous study (n = 1389 lateral cephalogram 
images).

In order to make a more accurate and rational classification model, it is right to learn by adding clinical 
information other than the images necessary for diagnosing OSA. Therefore, we trained a model with sex infor-
mation; however, the difference in the performance was insignificant. This is because, first, there is a difference 
in sex between the two groups, and information about sex could be recognized by itself only through image 
during training. Therefore, in providing additional information, it is important to select which information to 
choose, and it is necessary to think about how to provide that information harmoniously with the information 
of the image.

When discussing the OSA potential, there were four major OSA-related anatomical characteristics that often 
pay attention which are narrowed pharynx, submental, chin, and nasomaxillary complex. Considering average 
result of Grad-CAM in Fig. 7, our model focuses on the area around the tip of the chin and the submental area 
both in the non-OSA and OSA groups. It means that our AI model classified OSA in a way similar to what 
humans see attentively. In addition, the airway is also an important area in diagnosing OSA. However, unlike the 
non-OSA group, it is not an area of interest in the OSA group. Normal anatomical features with wide airways can 
be recognized and classified as normal; however, irregular features of the OSA group, such as narrow or those 
blurred by the edges of the bones, are considered to be relatively unnoticed in the classification.

There are several limitations in this study. According to Table 1 and the results of the unpaired t test, it can 
be seen that the BMI of the OSA group and the non-OSA group are significantly different, which could lead to 
classifying by focusing only on the degree of obesity. In fact, it was confirmed that Grad-CAM also focused more 
on the submandibular fat layer. Moreover, unlike the study by Tsuiki et al.14, where only the severe OSA group 
showing the characteristics of a more crowded oropharynx was tested, we included all the OSA groups in the 
experiment. Therefore, data with ambiguous characteristics may exist and non-anatomical OSA patients may 
exist, so it is thought that it was difficult to create an ideal model that can classify by considering all four areas 
(narrowed pharynx, submental, chin, and nasomaxillary complex) as the OSA areas of interest. For further study, 
additional clinical information should be considered to train a model with larger sample size. Second, there is no 
external validation in this study. It is very difficult to acquire an additional external dataset. In the near future, 
this model should be tested for external validation for evaluation of overfitting and robustness of this model.

Conclusion
A suitable deep CNN successfully classified the patients with OSA and non-OSA using a 2-dimensional lateral 
cephalogram. These excellent results were obtained regardless of the severity of the OSA. Even in cephalograms 
obtained from different X-ray modalities, OSA patients could be accurately identified through appropriate knowl-
edge distillation.

Data availability
This retrospective study was conducted according to the principles of the Declaration of Helsinki, and was per-
formed in accordance with current scientific guidelines. The study protocol was approved by the Institutional 
Review Board Committee of Kyung Hee University Medical Center and Dental Hospital, Korea. (KH-DT19006). 
The requirement for informed patient consent was waived by the Institutional Review Board Committee of Kyung 
Hee University Medical Center and Dental Hospital.
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