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Integrating single‑cell and bulk 
RNA sequencing to predict 
prognosis and immunotherapy 
response in prostate cancer
Xiao Yan Wen 1, Ru Yi Wang 1, Bei Yu 1, Yue Yang 1, Jin Yang 1 & Han Chao Zhang 1,2*

Prostate cancer (PCa) stands as a prominent contributor to morbidity and mortality among males 
on a global scale. Cancer‑associated fibroblasts (CAFs) are considered to be closely connected to 
tumour growth, invasion, and metastasis. We explored the role and characteristics of CAFs in PCa 
through bioinformatics analysis and built a CAFs‑based risk model to predict prognostic treatment 
and treatment response in PCa patients. First, we downloaded the scRNA‑seq data for PCa from the 
GEO. We extracted bulk RNA‑seq data for PCa from the TCGA and GEO and adopted “ComBat” to 
remove batch effects. Then, we created a Seurat object for the scRNA‑seq data using the package 
“Seurat” in R and identified CAF clusters based on the CAF‑related genes (CAFRGs). Based on CAFRGs, 
a prognostic model was constructed by univariate Cox, LASSO, and multivariate Cox analyses. And 
the model was validated internally and externally by Kaplan–Meier analysis, respectively. We further 
performed GO and KEGG analyses of DEGs between risk groups. Besides, we investigated differences 
in somatic mutations between different risk groups. We explored differences in the immune 
microenvironment landscape and ICG expression levels in the different groups. Finally, we predicted 
the response to immunotherapy and the sensitivity of antitumour drugs between the different groups. 
We screened 4 CAF clusters and identified 463 CAFRGs in PCa scRNA‑seq. We constructed a model 
containing 10 prognostic CAFRGs by univariate Cox, LASSO, and multivariate Cox analysis. Somatic 
mutation analysis revealed that TTN and TP53 were significantly more mutated in the high‑risk 
group. Finally, we screened 31 chemotherapeutic drugs and targeted therapeutic drugs for PCa. In 
conclusion, we identified four clusters based on CAFs and constructed a new CAFs‑based prognostic 
signature that could predict PCa patient prognosis and response to immunotherapy and might 
suggest meaningful clinical options for the treatment of PCa.

Prostate cancer (PCa) is primarily an epithelial malignancy that occurs in the prostate gland and is one of the 
most common cancers among men worldwide. Although the cause of PCa is not known, studies have shown that 
factors such as age, family history, ethnicity, and gene regulation are all involved in its  development1. PCa exhibits 
geographical variability in its incidence, being more prevalent in developed nations, especially in North America 
and Europe, when compared to their developing counterparts. Age is a significant risk factor, with the incidence 
increasing substantially after the age of  502. Several racial and ethnic disparities have been observed in PCa epi-
demiology. It is more common in African-American men compared to Caucasian men, and African-American 
men also tend to have a higher mortality rate associated with  PCa3. As a consequence of the indiscernible clini-
cal manifestations of early-stage prostate cancer, an approximate majority of patients are diagnosed belatedly, 
at an intermediate or advanced stage, or when distant metastases have already occurred, resulting in elevated 
rates of patient  mortality4. Therefore, early screening and diagnosis of PCa are essential to reducing its mortal-
ity rate. With the rapid development of genetic analysis techniques, we have achieved a deeper understanding 
of the molecular pathogenesis of PCa, which in turn can be used for early diagnosis and treatment in  clinics5,6.

The tumour microenvironment (TME) is a dynamic environment made up of multiple cells and is considered 
one of the most important factors influencing tumourigenesis, invasion, and  metastasis7. Cancer-associated 
fibroblasts (CAFs), a major component of the TME, contribute to cancer progression by interacting with other 
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cells to influence tumour angiogenesis and immunity  evasion8. CAFs could induce abnormal proliferation and 
invasion of tumour cells by secreting large amounts of growth factors, cytokines, and chemokines and degrading 
extracellular matrix  proteins9. It has been shown that CAFs are highly heterogeneous in esophageal squamous 
cell carcinoma and can be used as a valid predictive target for esophageal squamous cell carcinoma  prognosis10. 
Studies have reported that aberrant molecular crosstalk between cancer cells and CAF is extremely important 
for tumour progression and metastasis, leading to poor prognosis in  cancers11,12. In addition, a foreign study 
found that CAFs promoted the aggressiveness of PCa cells through mitochondrial  transfer13. Collectively, CAFs 
are closely related to the development of tumours.

Despite the voluminous body of research on CAFs carried out by a plethora of scholars, a comparatively 
insufficient comprehension of the properties of CAFs persists, including their correlation with prostate cancer 
prognosis and immunotherapy. With advances in sequencing technology, increasing numbers of scholars are 
turning their attention to single-cell RNA-sequencing (scRNA-seq). The scRNA-seq technology could focus on 
detecting the expression of single cell subpopulations in tissues, bridge the shortage of traditional sequencing 
technologies, and help us further explore and construct the gene expression profiles of various cells to better 
understand the pathological processes of  diseases14. The scRNA-seq can analyze the composition and gene 
expression of thousands of individual cells at high resolution, making it better suited for exploring tumour 
 heterogeneity15. More and more researches are combining RNA-seq and scRNA-seq data to analyze tumor het-
erogeneity and construct models and nomograms to predict cancer patient prognostic outcomes, thus providing 
new approaches to tumor clinical  treatment16,17. A study demonstrated that significant heterogeneity within CAFs 
was found in human PCa tissue and revealed that CAF subpopulations stimulate the growth and development of 
PCa by aberrant recruitment of immune  cells18. However, at present, there are relatively few scRNA-seq analy-
ses focused on exploring the correlation between CAFs and PCa. Therefore, we have explored the relationship 
between PCa and CAFs by combining bulk RNA-seq and scRNA-seq techniques to provide new ideas for the 
clinical diagnosis and treatment of PCa.

In the study, we acquired the scRNA-seq and RNA-seq data for PCa from the GEO and TCGA datasets and 
conducted batch correction to merge the two datasets. Then we analyzed the scRNA-seq data, constructed a 
prognostic model associated with PCa, and validated the model. We further identified differentially expressed 
genes (DEGs) between risk groups and performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) analyses. We also explored differences in somatic mutations between different risk groups. 
Finally, we filtered 31 chemotherapeutic agents and targeted therapeutics that are closely related to PCa. Overall, 
our study may provide novel thinking on the pathogenesis of PCa and new perspectives for the personalized 
treatment of PCa patients.

Methods
Data download and organization. The scRNA-seq data for PCa were acquired from the GEO-
GSE141445, including 36,424 cells from 13 PCa  samples19. The RNA-seq data and clinical information for PCa 
were acquired from the TCGA-PRAD, GEO-GSE46602, GEO-GSE70769, and GEO-GSE11691820–22. After 
removing data with missing or less than 30 days of follow-up, missing outcome time occurrence status, and 
duplicates, the TCGA-PRAD set remained at 494 PCa samples, the GEO-GSE46602 set remained at 36 PCa 
samples, the GEO-GSE70769 set remained at 92 PCa samples, and the GSE116918 set remained at 248 PCa 
samples. As only the TCGA-PRAD and GSE116918 datasets retained the complete clinical data, we merged the 
two datasets into a whole set and used the function "ComBat" to remove the batch  effect23,24.

Analytical process for scRNA‑seq data. Firstly, we created a Seurat object for the scRNA-seq data using 
the R package “Seurat” (4.3.0)25. The quality control criteria we added according to the previous threshold only 
excluded cells with a hemoglobin ratio greater than  119. Then, we performed cell cycle effects removal, normaliza-
tion, dimensionality reduction (1:30), clustering (resolution = 0.5) and cell annotation on the Seurat  objects19,26. 
To overcome the extensive technical noise in any single feature for scRNA-seq data, Seurat clusters cells based 
on their PCA scores, with each PC essentially representing a ‘metafeature’ that combines information across a 
correlated feature set. Generally we selected the cumulative variance contribution to be just over 85% of the total 
variance, so we selected the top 30 PCs. Finally, we extracted the fibroblasts and repeated the previous analysis, 
using the function "FindAllMarkers" to find the high variant genes in each cluster (logFC > = 0.5, min.pct = 0.3, 
and diff.pct > = 0.2), and using the R package "clusterProfiler" to perform enrichment analysis of the high variant 
genes in each cluster (p < 0.05)27. These highly variable genes were identified as CAF-related genes (CAFRGs).

Construction of prognostic model. We randomly split the samples from the whole set into a train set 
and a test set according to a 7:3 ratio using the R package "caret". To identify CAFRGs that have significant 
prognostic value, we conducted a univariate Cox analysis on these genes. This statistical analysis allowed us 
to explore the correlation between the expression of CAFRGs and patient outcomes, which in turn enabled us 
to identify specific genes that were associated with a higher risk of disease progression or mortality. In order 
to refine our selection of prognostically significant CAFRGs, we conducted a LASSO analysis. This approach 
involves a regularization technique that seeks to reduce the number of variables used in a model while maintain-
ing its predictive power by shrinking the coefficients of less relevant genes towards zero. In addition, we used 
tenfold cross-validation to assess the performance of our LASSO model and ensure that it was not overfitting our 
dataset. By employing this method, we were able to further compress the list of CAFRGs to a smaller set of genes 
that exhibited the strongest prognostic value in our  study28. To develop a robust prognostic model for cancer 
patients, we employed a stepwise multivariate Cox analysis. This analysis allowed us to examine the impact of 
multiple prognostic factors on survival outcomes, taking into account the potential interactions between these 
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factors. The scores for each sample were computed in accordance with the subsequent equation: risk score = coef-
ficient1 * gene1 expression + … + coefficientN * geneN expression, and the samples were stratified into high-risk 
and low-risk groups using the median score as the cutoff point..

Validation of prognostic signature. Kaplan–Meier analysis with a chi-squared test was applied to 
estimate survival differences between risk groups in the model. The test set, whole set, TCGA-PRAD set, and 
GSE116918 set were applied to validate the internal stability of the model. Although the GSE46602 set and 
GSE70769 set lacked survival status and time, the GSE46602 set, GSE70769 set, and GSE116918 set contained 
the status and time of biochemical recurrence (BCR). Therefore, we exploited the model to predict the BCR 
probability of the GSE46602 set, GSE70769 set, and GSE116918 set. The time-dependent receiver operating 
characteristic (ROC) curves were employed to analyze the predictive performance of the model and clinical 
characteristics through the R package “timeROC”29. To assess whether the model was an independent predictor 
for predicting patient prognosis, we performed univariate and multivariate Cox analyses, including risk scores 
and clinical characteristics. To better apply the model to clinical work, we constructed a nomogram combining 
the model and clinical features to predict the 3-, 5-, and 7-year survival probabilities of patients.

Enrichment analysis and somatic mutations. To find differences in molecular mechanisms and rel-
evant pathways between risk groups, we recognized DEGs between risk groups (|logFC > 1| and FDR < 0.05) 
and conducted GO and KEGG analyses (p < 0.05)24,27,30,31. To investigate the dissimilarities of somatic mutations 
among divergent risk strata, we carried out comprehensive computational and graphical exploration utilizing the 
R software library "maftools"32.

Immune microenvironment and immunotherapy. To explore the landscape of the immune microen-
vironment in the different groups, we used the single-sample Gene Set Enrichment Analysis (ssGSEA) algorithm 
to score the immune cells and immune function in each sample and tested both groups using the Wilcoxon 
 test33,34. We also explored the differences in immune checkpoint gene (ICG) expression levels between groups 
using the Wilcox test. To predict the response to immunotherapy in each risk group, we calculated the tumor 
mutation burden (TMB) scores for each group and compared  them35.

Development of individualized anti‑tumor treatment protocols. In order to customize treatment 
regimens for patients belonging to distinct risk categories, we computed the half inhibitory concentration (IC50) 
values of the drugs employing the R software package "pRRophetic"36. We further analyzed and compared the 
differences in the IC50 values between the different risk cohorts via the Wilcoxon rank-sum test, yielding a sta-
tistically significant p-value of < 0.001.

Result
Identification of CAF. The workflow of this study is summarized in Fig. 1. We performed cell cycle effect 
removal, normalization, dimensionality reduction, and clustering on the scRNA-seq data, and the tSNE plot 
showed the distribution of different clusters (Fig. 2A). The bubble plots showed the expression levels of marker 
genes in each cluster (Fig. 2B) and we performed cell annotations for these clusters (Fig. 2C). We extracted 

Figure 1.  The overall workflow.
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fibroblasts and repeated the above analysis on them, and the tSNE plot showed the distribution of the four 
clusters (Fig. 2D). We identified a total of 463 CAFRGs using the function "FindAllMarkers" for the high vari-
ant genes in each cluster (logFC >= 0.5, min.pct = 0.3 and diff.pct >= 0.2) (Supplementary Table S1). Finally, the 

Figure 2.  (A) The tSNE plot showed the distribution of different clusters. (B) The bubble plots showed the 
expression levels of marker genes in each cluster. (C) Cell annotations for these clusters. (D) The tSNE plot 
showed the distribution of the four clusters for CAF. (E and F) The GO and KEGG analyses for 463 CAFRGs in 
different CAF clusters.
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enrichment analysis showed that cluster 0 artery morphogenesis, nitric oxide mediated signal transduction, reg-
ulation of Rho protein signal transduction, PI3K-Akt signaling pathway, and ECM-receptor interaction, cluster 
1 is mainly enriched in muscle system process, muscle contraction, muscle cell differentiation, vascular smooth 
muscle contraction, and cGMP-PKG signaling pathway, cluster 2 is mainly enriched in extracellular matrix 
organization, extracellular structure organization, external encapsulating structure organization, complement 
and coagulation cascades, and staphylococcus aureus infection, and cluster 3 is mainly enriched in regulation of 
apoptotic signaling pathway, intrinsic apoptotic signaling pathway, rhythmic process, cellular senescence, and 
amyotrophic lateral sclerosis (Fig. 2E and F), as detailed in Supplementary Tables S2 and S3.

Development of prognostic model. We randomly split the PCa samples from the whole set into a train 
set and a test set according to a 7:3 ratio; the train set contained 522 PCa samples, and the test set contained 220 
PCa samples. The univariate Cox analysis screened 29 prognostic CAFRGs (Fig. 3A), the LASSO analysis further 
screened 18 candidate CAFRGs (Fig. 3B), and the multivariate Cox analysis constructed a model containing 10 
prognostic CAFRGs (Fig. 3C).

Validation of prognostic signature. Figure  4A showed that the survival rates of PCa patients in the 
low-risk group were significantly higher for different internal sets (the train, test, overall, TCGA and GSE116918 
sets) and the differences were statistically different, indicating that the stability of the model was high internally. 
Figure 4B showed that PCa patients in the high-risk group are more likely to have a higher BCR under different 

Figure 3.  (A) The univariate Cox analysis screened 29 prognostic CAFRGs. (B) The LASSO analysis further 
screened 18 candidate CAFRGs. (C) The multivariate Cox analysis constructed a model containing 10 
prognostic CAFRGs.
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external groups (the GSE46602, GSE70769 and GSE116918 sets), and the differences were statistically different, 
indicating that the model is able to predict not only the prognosis but also the BCR for PCa patients. All area 
under curve (AUC) values for the signature were higher than 0.8 and greater than the AUC values for clinical 
features (Fig. 5). The model was an independent predictor for predicting PCa patient prognosis (Fig. 6A). To bet-
ter apply the model in clinical work, we constructed a nomogram combining the model and clinical character-
istics to predict the 3-, 5-, and 7-year survival probabilities of PCa patients, indicating that the high- or low-risk 
groups had the greatest impact on prognosis (Fig. 6B).

Enrichment analysis and somatic mutations. 183 DEGs were identified between different groups with 
thresholds of |logFC > 1| and FDR < 0.05 (Supplementary Table S4). GO and KEGG analyses were employed to 
explore the role and molecular pathways of these DEGs in PCa. Biological process (BP) terminology is asso-
ciated with mitotic nuclear division (GO:0140014), sister chromatid segregation (GO:0000819), and mitotic 
sister chromatid segregation (GO:0000070); cellular component (CC) terminology is associated with sarcomere 
(GO:0030017), myofibril (GO:0030016), and contractile fiber (GO:0043292); molecular function (MF) terms 
is associated with receptor ligand activity (GO:0048018), signaling receptor activator activity (GO:0,030,546), 
CXCR chemokine receptor binding (GO:0045236) (Fig. 7A and Supplementary Table S5). KEGG analysis showed 

Figure 4.  (A) The survival rates of PCa patients in the low-risk group were significantly higher than those 
in the high-risk group for different internal sets (the train, test, overall, TCGA, and GSE116918 sets). (B) 
PCa patients in the high-risk group are more likely to had a higher BCR under different external groups (the 
GSE46602, GSE70769, and GSE116918 sets).



7

Vol.:(0123456789)

Scientific Reports |        (2023) 13:15597  | https://doi.org/10.1038/s41598-023-42858-9

www.nature.com/scientificreports/

that DEGs were highly enriched in the IL-17 signaling pathway (hsa04657), amoebiasis (hsa05146), ECM-recep-
tor interaction (hsa04512), rheumatoid arthritis (hsa05323), staphylococcus aureus infection (hsa05150), and 
viral protein interaction with cytokine and cytokine receptor (hsa04061) (Fig. 7B and Supplementary Table S6). 
Figures 7C and D showed the gene mutations in different risk groups, indicating that the high-risk group has 
significantly more mutations than the low-risk group, which may be related to the poor prognosis in the high-
risk group.

Immune microenvironment and immunotherapy. Figure 8A indicated that most immune cell infil-
tration levels were higher in the low-risk group. Figure 8B indicated that immune function scores were higher 
in the low-risk group, except for inflammation promoting, major histocompatibility complex class I and T cell 
co-stimulation. The expression of ICGs such as CD274, LAG3, and PDCD1 also differed between the different 
risk groups (Fig. 8C). Theoretically, the higher the TMB score, the more neoantigens can be recognized by T cells 
and, therefore, the better the immunotherapy effect. The higher TMB scores in the high-risk group indicated that 
patients in the high-risk group are more suitable for immunotherapy (Fig. 8D). And the TMB score combined 
with the risk score was also a strong predictor of patient prognosis (Fig. 8E and F).

Finding anti‑tumor drugs for patients in different risk groups. In addition to immunotherapy, 
chemotherapy and targeted therapy are also the main strategies for the treatment of PCa. In this study, we calcu-
lated the IC50 of different groups using the R package "pRRophetic", and finally screened 31 chemotherapeutic 
drugs and targeted therapeutic drugs (p < 0.001; Fig. 9).

Figure 5.  All AUC values for the signature were higher than 0.8 and greater than the AUC values for clinical 
features.
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Discussion
PCa is one of the leading diseases affecting men’s health around the world, and its incidence has been increasing 
in recent  years37. The current treatment of PCa is mainly based on hormonal therapy, radiotherapy, and chemo-
therapy, but the majority of patients have a worse prognosis and mortality remains  high38. As a consequence, 
there is a pressing demand in clinical practice to seek novel therapeutic strategies to develop individualized 
treatments for PCa patients in order to improve their prognosis. Numerous studies have confirmed that dynamic 
communication between tumour cells and CAFs accelerates the growth and progression of  tumours39,40. With 
the development of biotechnology, single-cell sequencing analysis can help us gain comprehension the mecha-
nism of the role of CAFs in the pathological progression of PCa and more accurately search for potential new 
biomarkers, thus effectively improving therapeutic outcomes.

As tumour heterogeneity is quite pronounced, the response of the same stage patients to the same treatment 
methods has a strongly variable individual outcome and affects the prognosis of the  patients41. Research on 
PCa has found significant differences in outcomes for patients with similar clinical stages who receive the same 
therapeutic  approach42. Therefore, a more extensive investigation into the association between the diversity of 
tumour characteristics in PCa and its corresponding implications on treatment response and patient prognoses 

Figure 6.  (A) The model was an independent predictor for predicting PCa patient prognosis by univariate and 
multivariate Cox analyses. (B) A nomogram combining the model and clinical characteristics to predict the 3-, 
5-, and 7-year survival probabilities of PCa patients.
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is warranted. In our study, based on scRNA-seq data, we divided the PCa cells into 4 clusters, screened 463 
CAFRGs, and performed functional enrichment analysis of CAFRGs. On the basis of the screening above, we 
constructed a prognostic model for PCa incorporating 10 CAFRGs by using multivariate Cox analysis. Next, 
we validated the reliability and stability of the prognostic model using multiple datasets for internal and exter-
nal validation, respectively. We investigated differences in somatic mutations between high-risk and low-risk 
groups. We also explored differences in the immune microenvironment landscape and ICG expression levels in 
the different groups. Lastly, we predicted the therapeutic response of PCa and searched for anti-tumour drugs 
by calculating the IC50 in different groups.

For our constructed prognostic model, we found that most of the 10 CAFRGs were involved in the pathogen-
esis of PCa. THBS1 could accelerate malignant cancer cell invasion in PCa and promote melanoma  metastasis43,44. 
LDHA is highly expressed in PCa, and inhibition of LDHA can delay the progression of  PCa45. A study found 
that MIR-138-5P could inhibit the development of PCa by targeting  FOXC146. The expression level of NR4A1 
in PCa tissue is significantly elevated in comparison to that in the normal surrounding  tissue47. MYC promoted 
PCa oncogenic signaling via the PI3K/AKT/mTOR pathway, thereby stimulating massive cancer cell  growth48. 
The most recent investigation has established that UBE2S, an E2 ubiquitin-conjugating enzyme, plays a critical 
role in stabilizing β-linked proteins via K16-linked ubiquitination, which is known to trigger enhanced migration 
and invasion of tumor cells in the context of prostate cancer bone metastases and promote oncogenic activities. 
Furthermore, it has been suggested that UBE2S-mediated ubiquitination of β-linked proteins may contribute to 
tumorigenesis and the progression of PCa bone metastases by facilitating alterations in key signaling pathways 
that promote tumor cell survival and  proliferation49. Although there is no direct evidence linking HOPX, LY6E, 
SAMD4A, and CRISPLD2 to the development of PCa, numerous studies have shown their close relationship 

Figure 7.  (A and B) The GO and KEGG analyses for different CAF clusters. (C and D) More mutations in the 
high-risk group.
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with the growth and invasion of other  tumours50–53. The aforementioned findings have the potential to serve 
as novel biomarkers that can aid in the development of new therapeutic approaches for the treatment of PCa.

Figure 8.  (A) Most immune cell infiltration levels were higher in the low-risk group. (B) Immune function 
scores were higher in the low-risk group, except for inflammation promoting, major histocompatibility complex 
class I and T cell co-stimulation. (C) The expression of ICGs such as CD274, LAG3, and PDCD1 differed 
between the different risk groups. (D) The higher TMB scores in the high-risk group. (E and F) The TMB score 
combined with the risk score was also a strong predictor of patient prognosis.
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TP53 is a tumour suppressor gene that normally acts as a guardian to protect the  organism54. When TP53 
is mutated, the body loses its protection, which may lead to uncontrolled tumour growth. Growing evidence 
has demonstrated the prevalence of mutated TP53 in cancer and its association with cancer susceptibility and 
drug  resistance55. The risk of aggressive PCa may be higher in men who have mutations in the TP53  gene56. Our 
analysis results are generally consistent with previous studies. TTN is a commonly mutated gene in cancer and 
has a prominent role in predicting immune checkpoints and prognosis in solid  tumours57. TTN mutations have 
been shown to be an independent risk factor for thyroid cancer and to predict a poorer prognosis for  patients58. 

Figure 9.  The IC50 of different groups by the R package "pRRophetic", and 31 chemotherapeutic drugs and 
targeted therapeutic drugs.
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The sequencing data of lung adenocarcinoma patients showed that patients with TTN gene mutations had higher 
immunogenicity, immune scores, and inflammatory TME, which stimulates tumour  growth59. Nevertheless, the 
current number of studies on TTN in PCa is limited. Our study elucidates some references for the role of TTN 
in PCa.

The TME is a complex structure that provides the environment for tumor cell proliferation, invasion, and 
metastasis based on the presence of a large number of immune cells and immunomodulatory molecules in the 
tumor  microenvironment60. Our results revealed that the majority of immune cell infiltration levels were higher 
in the low-risk group. Significant increases in Treg cells have been found in many malignant  cancers61. NK cells 
are core cells of the natural immune system that have been found to be abnormally expressed in prostate tumours, 
resulting in more rapid tumour  development62. Breakthroughs have been made in NK cell-based cancer treat-
ment, but there are still relatively few treatment strategies for  PCa63. Our findings may provide new inspiration 
for the utilization of NK cells in the treatment of PCa. And we found that ICGs such as CD274, LAG3, and 
PDCD1 expression differed between high- and low-risk groups. A study revealed that the CD274 (PD-L1) gene 
could stimulate the immune escape of tumor  cells64. High expression of LAG3 in peripheral blood T cells and 
lymphocytes is strongly correlated with a worse prognosis in  PCa65. The above studies are broadly consistent 
with our findings, demonstrating the reliability of our outcomes.

Despite the notable findings reported in this study, it is important to acknowledge certain limitations that may 
impact the interpretation of the results. Firstly, our analysis data is drawn from public datasets, and the results 
may be influenced by the datasets themselves, resulting in some possible bias in the results. Thus, we adopted 
several datasets for multiple validations from internal and external validation datasets, respectively, to support 
the reliability of the prognostic model we built. Secondly, we included a relatively smaller sample size of PCa, 
which may lead to analyses with some bias. Thirdly, due to the difficulty of collecting PCa tissue samples, we 
have not conducted experimental validation for the moment. In the future, we will endeavor to experimentally 
validate the results of our analyses, which will be the main direction of our future work.

Conclusion
Herein, we analyzed CAFs from PCa single-cell sequencing data, grouped them into four clusters, and identified 
CAFRGs. We also constructed a nomogram of PCa prognosis based on CAFRGs to predict patient prognosis 
and response to immunotherapy. In summary, our study will provide a novel clinical perspective on the targeted 
treatment of PCa and better predict the prognostic outcome of patients.

Data availability
The datasets used and/or analysed during the current study are available from the corresponding author on 
reasonable request.
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