
1

Vol.:(0123456789)

Scientific Reports |        (2023) 13:15651  | https://doi.org/10.1038/s41598-023-42856-x

www.nature.com/scientificreports

Exploring GWAS and genomic 
prediction to improve Septoria 
tritici blotch resistance in wheat
Mustafa Zakieh 1,5, Admas Alemu 1,5, Tina Henriksson 2, Nidhi Pareek 3, Pawan K. Singh 4 & 
Aakash Chawade 1*

Septoria tritici blotch (STB) is a destructive foliar diseases threatening wheat grain yield. Wheat 
breeding for STB disease resistance has been identified as the most sustainable and environment-
friendly approach. In this work, a panel of 316 winter wheat breeding lines from a commercial 
breeding program were evaluated for STB resistance at the seedling stage under controlled conditions 
followed by genome-wide association study (GWAS) and genomic prediction (GP). The study revealed 
a significant genotypic variation for STB seedling resistance, while disease severity scores exhibited 
a normal frequency distribution. Moreover, we calculated a broad-sense heritability of 0.62 for the 
trait. Nine single- and multi-locus GWAS models identified 24 marker-trait associations grouped 
into 20 quantitative trait loci (QTLs) for STB seedling-stage resistance. The seven QTLs located on 
chromosomes 1B, 2A, 2B, 5B (two), 7A, and 7D are reported for the first time and could potentially 
be novel. The GP cross-validation analysis in the RR-BLUP model estimated the genomic-estimated 
breeding values (GEBVs) of STB resistance with a prediction accuracy of 0.49. Meanwhile, the GWAS 
assisted wRR-BLUP model improved the accuracy to 0.58. The identified QTLs can be used for marker-
assisted backcrossing against STB in winter wheat. Moreover, the higher prediction accuracy recorded 
from the GWAS-assisted GP analysis implies its power to successfully select superior candidate lines 
based on their GEBVs for STB resistance.

Hexaploid winter wheat (Triticum aestivum, 2n = 6×  = 42, AABBDD) occupies the largest arable land in 
Northwest  Europe1. An estimated 21% of world’s wheat production is lost due to diseases caused by pests 
and  pathogens2. Septoria tritici blotch (STB) caused by the fungal species Zymoseptoria tritici (teleomorph 
Mycosphaerella graminicola)3 is the second leading disease for yield loss after stripe rust in Northwest  Europe4. 
The disease causes an estimated yield loss of 5.51% in Northwest Europe that is two folds higher than its global 
average with 2.44%2. Yield losses up to 50% have been reported in epidemic years of the STB  disease5,6. Most 
applied management strategies may still be as effective to overcome the disease outbreaks where wheat fields are 
subject to STB epidemics as a result of the airborne Z. tritici  ascospores7. Moreover, STB management practices 
negatively affect the environment due to the intensive application of fungicides to control the disease accounting 
70% of all fungicides used in wheat fungal disease  management8. Besides, fungicide application costs up to $1.2 
billion USD annually to manage the disease incidences in  Europe9.

An integrated approach consisting of breeding for host resistance combined with other management prac-
tices is a sustainable strategy to mitigate STB impact. Wheat resistance breeding plays a major role in develop-
ing varieties with enhanced resistance lowering the environmental impact of fungicides application. So far, 22 
qualitatively inherited major genes (Stb genes) have been identified for STB resistance in  wheat10,11. However, the 
rapidly evolving Z. tritici populations as a result of sexual reproduction under field conditions caused the selec-
tion to be in favor of emerging new virulent strains that can overcome the identified major gene  resistance12. In 
contrast, the higher number of minor to moderate effect minor genes inherited quantitatively are advantageous 
to that of major qualitatively inherited genes. Compared to qualitative resistance, quantitative resistance to STB 
is long acting against the range of diverse Z. tritici isolates. That is due to the cumulative effect of many genes 
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adding minor to moderate resistance effects in non-isolate-specific resistance contrasting the short-lived and 
isolate–specific resistance triggered by major  genes10.

To determine genetic resistance of hosts, phenotypic evaluation can be assessed from the development rate of 
disease symptoms on the leaf area. In other pathosystems, such as rusts, wheat genotypes conferring resistance 
to the disease show remarkably longer period for the appearance of infection symptoms (latency) where plants 
are able to slow down disease symptom  development13. Similarly, STB latent phase (LP) from incubation to the 
appearance of disease symptoms can be used as an indicator for genotypic resistance evaluation under field and 
greenhouse  conditions14. Under field conditions, factors such as sowing date, pycnidia concentration, environ-
mental conditions and growth stage contribute to the length of STB latent  period15–17. However, seedling-stage 
artificially inoculated plants under climate-controlled conditions overcome these factors to a large extent. In field 
conditions, the lower leaves tend to be more prone to STB as compared to younger  ones18 and except for airborne 
conidia from neighboring fields, the lower leaves are the primary source for fresh inoculum production under 
conducive conditions. Hence, investigating genotypes with delayed symptom appearance of STB on seedling 
stage by exhibiting slower development of symptoms (prolonged or extended latent phase) is of great benefit for 
restricting STB infection spread. The mechanisms for such reduction of disease spread could be explained by 
the association of prolonged pre-symptomatic LP with reduced blotch size that is observed on infected wheat 
 leaves16. By limiting size of the blotch, the capacity for producing larger amounts of the pathogen is restricted 
similar to other  pathosystems16,19. Additionally, the delay in developing the necrotic phase during early growth 
stages of the plant renders the polycyclic nature of infection to be less efficient towards infecting new upper 
leaves. Genotypes with extended LP at seedling stage can express the quantitative seedling-stage  resistance20.

The quantitatively inherited QTLs can be either seedling stage, adult-stage or all growth stage resistant to 
STB  pathogen21. Linkage-based QTL mapping and genome-wide association studies have been instrumental to 
identify QTLs linked to either seedling-, adult- or all-stage STB  resistance10,22–24. Several marker-trait associations 
have been detected via GWAS for STB resistance in  wheat25–31.

The vast number of involved QTLs across the entire genome of wheat makes application of marker-assisted 
selection (MAS) for STB resistance a challenging task. Hence, evaluating plant materials with their overall 
genetic merit towards resistance to the disease through genomic prediction models is a more efficient and feasi-
ble  approach32. Genomic prediction models estimate the breeding values of individual wheat plants from their 
overall SNP markers information. Regression models are trained with individuals called training population 
having the SNP markers and phenotypic data information. These models are then used to predict the genomic 
estimated breeding values (GEBVs) of individuals called the breeding or candidate population based on marker 
 profile33,34. Then, selection of individuals in the breeding population is done exclusively from their predicted 
genetic information without the need to test on field or controlled conditions for phenotypic evaluation. The 
accuracy and usefulness of GS can be hampered by elements including low genetic diversity, insufficient training 
population size, and complex trait-genotype interactions, making it less suitable in some breeding  situations35.

The current study was performed with 316 advanced breeding lines to identify QTLs linked to seedling-stage 
resistance against STB via GWAS analysis with various single- and multi-locus models. Additionally, the study 
aimed to estimate GEBVs of breeding lines for STB seedling-stage resistance through genomic prediction cross-
validation analysis. To achieve these objectives, winter wheat lines were artificially inoculated and screened for 
seedling stage STB resistance in controlled condition by evaluating the spatio-temporal progression of the disease 
until the necrotic lesion development. Genotypes were sequenced with 25 K SNP array to discover genome-wide 
SNP markers.

Materials and methods
Plant material and experimental design. A set of 316 winter wheat advanced breeding lines provided 
by Lantmännen, Svalöv, Sweden, were evaluated for their resistance for STB at seedling-stage under controlled 
growth conditions. Four known varieties having three levels of resistance against the applied STB isolates were 
included as checks on the current experiment. These checks were Julius (resistant), KWS Kerrin and Stigg (mod-
erate resistant) and Nimbus (susceptible).

The experiment was conducted in a randomized augmented block design with two replicates. Each replicate 
included 15 blocks and a single block comprised 23 breeding lines and 4 checks. Randomization of genotypes 
was done using the design.dau function in Agricolae  package36 using R  environment37.

Plant growth condition and inoculation. Winter wheat seeds were stratified for 48 h in dark conditions 
at 3 °C on wetted filter paper followed by germination for 24 h at room temperature. Six to eight healthy germi-
nated seeds were transferred to 8 × 8 × 9 cm plastic pots filled with potting peat soil (Gröna linjen, SW HORTO 
AB, Sweden) and kept for 4 days followed by thinning to two seedlings per pot. One gram of  KH2PO4 per block 
was applied to promote root development and enhance seedlings recovery after thinning. The plants continued 
growing at 23/22  °C with 16/8 h of day/night cycle with relative atmospheric humidity (RH) of 60%. Plants 
were weekly fertilized with nitrogen and potassium fertilizer (SW-BOUYANT 7-1-5+MIKRO) added with equal 
amounts to individual blocks.

The inoculum was prepared by growing two single spore isolates collected from Alnarp and Svalöv, Sweden, 
following the protocol described  by18. The inoculum concentration was adjusted to 10 ×  105 conidial spores/ml 
followed by adding the surfactant  Tween®20 with 0.002% v/v. Three-leaf-stage 19-days-old winter wheat seedlings 
were spray-inoculated three times after marking the second and the third leaves. The leaves were left to dry after 
each spray for 20–30 min. On the third time spraying, plants were moved into a high humidity chamber with 
90% RH at 23 °C for 48 h (16 and 8 h of light and dark conditions). After incubation, RH was lowered to 65% 
and continued until completion of the experiment.
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In a small separate test, the virulence of the two isolates used in this study was initially examined by 
inoculating the four varieties with known resistance background to STB at seedling-stage including Kranich 
and Julius (resistant), Stigg (moderately resistant), and Nimbus (susceptible). Previous studies have identified 
cultivar Stigg as resistant to STB in different field conditions by extended latent phase before switching to 
the necrotrophic  phase14,38,39. Odilbekov et al.18 identified cultivars Kranich and Nimbus as STB resistant and 
susceptible, respectively. Other studies showed that the cultivar Julius has high level of resistance to several 
diseases of wheat including  STB28,40. For this purpose, 25 advanced breeding lines and 41 official trial lines were 
tested in an unreplicated augmented block design. The four cultivars (Kranich, Julius, Stigg and Nimbus) were 
used as checks dispersed across the 66 genotypes and replicated for a total of 19 times.

STB disease evaluation. Unlike natural infection (Fig. 1A), plants in greenhouse condition starts with 
general chlorosis that continues to spread across the whole leaf or partially from the leaf tip (Fig. 1B). Subse-
quently, reddish necrosis develops in place of chlorosis leading to collapse of the tissues in the infected area 
(Fig. 1C–E).

In the current study, the visual assessment of the disease was carried out 15 days post inoculation (DPI) on 
the second and third leaves of plants at seedling-stage under greenhouse conditions. Genotypes reaction to the 
disease was visually assessed every third day for four consecutive time points. An adjusted visual scaling scheme 
for disease severity was followed where reddish necrotic areas were estimated as percentage of disease severity 
ratio relative to the total leaf area following the procedure recently applied by Odilbekov et al.18.

Phenotypic analysis. The phenotypic data analysis from the STB disease scoring was conducted in two 
steps. First, the four checks repeated in each block were used to adjust the means recorded from four consecutive 
scoring time points within each replicate using the Agricolae  package41 following the model:

where  Yij is the adjusted mean of the ith genotype in the jth block, u is the overall mean,  Gij is the effect of the 
ith genotype in the jth block,  Bj is the effect form jth block and ɛij the overall residual. An area under diseases 
progression curve (AUDPC) was estimated from the adjusted means using the following model:

where  yi = disease score at time  ti;  t(i+1) −  ti = time (days) between two STB scoring time points; n = total number 
of scoring time points.

The second step was estimating the best linear unbiased prediction (BLUPs) across the two replicates from 
the adjusted mean AUDPC values of genotypes using META-R 6.0442 following the model:

Yij = u+ Gij + Bj + εij

AUDPC =

n−1∑

i=1

Yi + Y(i + 1)

2
X(t(i + 1)− ti)

Yik = u+ Gik + RK + εik

Figure 1.  The Septoria tritici blotch (STB) disease lesions filled with pycnidia on infected winter wheat leaves 
under natural conditions (A), compared to STB symptoms observed in greenhouse artificially inoculated plants 
(B–E). Evaluating STB resistance in greenhouse-inoculated plants was carried out by scoring reddening necrotic 
leaf area that may be demonstrated partially (B) and (C) or fully (D) on the leaf. Scoring seedling stage infected 
leaves was done from the second and third leaves 15 days post inoculation (DPI), where they become the lower 
infected leaves (E).
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where  Yik is the BLUPs of ith genotype in the kth replicate, u is the overall mean,  Gik is the ith genotype effect in 
the kth replicate,  RK is the effect of Kth replicate and ɛik the overall residual. Analysis of variance (ANOVA) and 
broad-sense heritability (H2) was retrieved in this step along with the adjusted mean values of AUDPC scores. 
Frequency distribution of AUDPC BLUPs was performed in the Minitab software package (Version 18).

Genome-wide association analysis. The current winter wheat panel was previously genotyped using 
25K SNP array by TraitGenetics GmbH, Germany that produced 24,145 SNP  markers43. Finally, 10,120 SNP 
markers were selected for the GWAS analysis after excluding markers with minor allele frequency (MAF) ≤ 0.05 
and with ≥ 0.2 missing values per individual. Nine GWAS models including 2 single and 7 multi-locus based 
models available in the Genome Association and Integrated Prediction Tool (GAPIT) 3.044 and multi-locus 
random-SNP-effect mixed linear model (mrMLM) v4.0.245 were employed to spot marker-trait associations. 
The fixed and random model circulating probability unification (FarmCPU)46, Bayesian-information and link-
age-disequilibrium iteratively nested keyway (BLINK)47, multi-locus random SNP-effect mixed linear model 
(mrMLM)48, fast multi-locus random-SNP-effect efficient mixed model association (FASTmrEMMA)49, FAST 
multi-locus random-SNP-effect Mixed Linear Model (FASTmrMLM)50, polygene-background-control-based 
least angle regression plus empirical Bayes (pLARmEB)51 and integration of Kruskal–Wallis test with empirical 
Bayes under polygenic background control (pKWmEB)52 were the seven multi-locus models applied in the cur-
rent analysis. Settlement of MLM under progressively exclusive relationship (SUPER)53 and general linear model 
(GLM)54 were the two single-locus models included in the GWAS analysis. Population structure as principal 
components (PCs) and pair-wise kinship similarity matrix were included with some of the statistical models 
required to overcome the false-positive marker-trait associations.

The Quantile–quantile (Q–Q) plots generated from the observed against expected −  log10 p-values were 
used to evaluate the performance of the statistical models. Furthermore, the Bonferroni corrected threshold, 
applied to report major-QTLs, was calculated as, Bonferroni threshold =  −  log10 (0.5/n), where n = number of 
total SNP markers applied to explore markers linked to STB resistance. Hence, Bonferroni threshold =  −  log10 
(0.5/10,120) = 4.3. Several previous GWAS studied with Bonferroni corrected threshold (P ≤ 0.05) have reported as 
major  QTLs20,55,56.

Depending on the model, either −  log10 p-value ≥ 4 (P ≤ 0.0001) or the logarithm of odds (LOD) scoring ≥ 4 
were used as the exploratory significance thresholds to report the nominal-QTLs identified from the current 
marker-trait associations. Manhattan plots were generated for figurative visualization of the associated SNP 
markers across the wheat chromosomes. The SNP markers genetic positions were retrieved from the 90K SNPs 
consensus  map57 while their physical position from the International Wheat Genome Sequence Consortium 
(IWGSC) v1.158 and markers within 5 cM were considered as a single QTL.

Genomic prediction analysis. The genomic prediction analysis was conducted with the ridge regression 
BLUP (RR-BLUP) model using the “rrBLUP”  package59 in R environment following the mixed model formula:

where y is the vector of adjusted AUDPC mean score for STB resistance; x and β represents the designed matrix 
and vector of fixed effects, respectively; Z is the designed matrix for random effect SNP markers and μ is a vector 
of estimated random effect with μ ~ N(0, Gσ2μ), where G is a genomic relationship matrix calculated from all 
SNPs; and ε is the residual error.

The weighted RR-BLUP (wRR-BLUP) model was tested after fitting the five topmost significant GWAS-SNP 
markers (based on their P values) and fitted as fixed  effects60. To avoid model overfitting, GWAS-SNPs were 
discovered from the training population (four-folds) excluding the validation population (one-fold) following 
the five-fold cross-validation scheme using FarmCPU model. The random sampling of genotypes into folds was 
done using the sample() function in R environment.

The prediction accuracy of models was assessed through cross-validation analysis. For the RR-BLUP model, 
individual genotypes were randomly split into training and validation sets with 80 and 20% ratio, respectively, 
and repeated for 500 iterations. However, in the wRR-BLUP model, the panel was first randomly divided in 
to five folds followed by GWAS analysis with only the four folds, which later used as training set. Then, the 
five topmost significant SNPs were identified and fitted as fixed effects in the prediction model. The genomic 
estimated breeding values of the remaining one fold was estimated with the trained model. The GWAS followed 
by genomic prediction analysis was repeated for 20 times.

Predictive ability was estimated as the correlation coefficient between the observed AUDPC adjusted mean 
values of genotypes and genomic estimated breeding values predicted for the test set based on the effect estimates 
of genotypes in the training set. Prediction accuracy was then calculated from prediction ability divided by the 
square root of traits’ broad sense  heritability61,62.

Ethics approval. All plant experiments were conducted according to relevant institutional, national, and 
international guidelines and legislation.

Results
Phenotypic analysis for STB resistance. The four known varieties, Kranich, Julius, Stigg and Nim-
bus having a varied degree of STB resistance was initially tested for any possible genotype-isolate/strain spe-
cific resistance via inoculating with the two isolates. The inoculation with the two mixed isolates elicited STB 
responses corresponding to the degree of resistance relative to their reported resistance backgrounds (Fig. 2). 

y = xβ+ Zµ+ ε
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The four cultivars performed differently according to their resistance to the pathogen with an AUDPC score 
from below 10–900 for the most resistant and susceptible genotypes, respectively. The resistant cultivars Kranich 
and Julius scored low AUDPC values with means of 178.2 and 200.9, respectively, while the susceptible cultivar 
Nimbus had a mean AUDPC score of 754.2. Stigg exhibited moderate resistance with mean AUDPC score of 
478.3 falling between the resistant and the susceptible cultivars (Fig. 2).

Analysis of variance indicated a highly significant phenotypic differences among evaluated winter wheat lines 
for STB resistance (Supplementary Table S1). The AUDPC-BLUPs scores of the 316 breeding lines followed a 
normal distribution (Fig. 3) ranging from 193.6 to 666.2 with average and standard deviation values of 434.2 
and 91.58, respectively. High broad-sense heritability (0.62) was recorded from the evaluated breeding lines.

GWAS results. The multi-locus GWAS models discovered 24 marker-trait associations (MTA) signifi-
cantly linked to STB resistance (Supplementary Table S2). From these MTAs, 14 were detected with − logP ≥ 4 
(P ≤ 0.0001) while the remaining 10 with − logP ≥ 3 (P ≤ 0.001) with atleast one tested model. These markers 
were located within 20 different QTLs identified on 14 chromosomes including 1B, 2A, 2B, 2D, 3A, 3B, 4A, 4B, 
5A, 5B, 6D, 7A, 7B and 7D (Table 1). The AUDPC_BLUP distribution of genotypes based on the alleles of nine 
significantly linked markers with MAF > 0.35 is given in Supplementary Fig. 1. The SNP marker AX-158596603, 
under the major-QTL SLUSTB_4, on chromosome 2A (64 cM) had a highly significant association (P < 0.00001) 
and LOD score > 5 for STB resistance. Several models including Blink, pLARmEB and FASTmrEMMA identified 
this SNP marker highly significantly linked to host resistance to the pathogen. The other nearby SNP marker 
AX-158573239 (63.8 cM) also exhibited a multi-model based highly significant association with the trait. The 
SLUSTB_7 comprising two co-localized SNPs Kukri_c17_1246 and BS00083329_51 (135.5 cM) on chromosome 
2B was the other major-QTL with a highly significant multi-model based association with STB resistance. The 

Figure 2.  Frequency distribution for the area under diseases progression curve (AUDPC) score with the four 
winter wheat varieties having three known levels of resistance with the two applied Zymoseptoria tritici isolates.

Figure 3.  Distribution of the adjusted mean (BLUPs) AUDPC values of STB resistance recorded from the 316 
winter wheat breeding lines. StDev, standard deviation; N, the number of tested genotypes.
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SNP marker wsnp_Ex_c12220_19528388 (SLUSTB_10) on chromosome 3B (60.5 cM) has shown a highly sig-
nificant association with the trait via several models including GLM, SUPER, BLINK, mrMLM, pLARmEB and 
pKWmEB (Table 1). The SLUSTB_12 QTL comprised the marker wsnp_CAP12_c1101_569783 on chromosome 
4B (66.4 cM) which was detected with several models such as FarmCPU, mrMLM and pKWmEB with a highly 
significant threshold P < 0.00001 (Fig.  4). Four different models including FarmCPU, Blink, FASTmrEMMA 
and FASTmrMLM identified the SNP marker Kukri_c51101_3510 (SLUSTB_19) on chromosome 7B (79.8 cM) 
highly significantly (P < 0.00001) linked to STB resistance. Four multi-locus models, pLARmEB, mrMLM, pKW-
mEB and FASTmrMLM identified the SNP AX-158537280 (SLUSTB_17) on chromosome 7A (51.2 cM) sig-
nificantly linked to STB resistance with the current panel. Moreover, several QTLs were identified with either 
at least with two multi-locus or both with the single- and multi-locus models. For instance, the SNPs on QTL 
SLUSTB_5 (Tdurum_contig54634_815, 51.9 cM) and SLUSTB_6 (AX_158557660, 81.4 cM) on chromosome 2B 
were detected by pLARmEB and pKWmEB models with a high significance threshold.

Genomic prediction analysis. The RR-BLUP model with 80 and 20% of genotypes as training and valida-
tion sets, respectively, estimated the GEBVs for STB resistance with a prediction accuracy of 0.49 averaged from 
500 iterations. The prediction accuracy with this model ranged from 0.21 to 0.84 (Fig. 5A). Genomic prediction 
of STB resistance with the current panel was further evaluated with the wRR-BLUP model. In this model, the 
five top-most significantly linked SNP markers identified only from the training set were fitted as fixed effects. 
Following the five-fold cross-validation scheme, GWAS was conducted with the training set (four-folds) with 
FarmCPU model masking a fold that was used as validation set and analysis was repeated for 20 times. The 
five-top-most GWAS-identified SNP markers can be find in the supplementary file (Supplementary Table S3).
The wRR-BLUP model estimated the GEBVs of validation individuals for STB with a mean genomic prediction 

Table 1.  List of QTLs, SNP markers and their effect, and models applied for the current GWAS analysis. 
Chr chromosome, MAF minor allele frequency, QTN quantitative trait nucleotide, LOD logarithms of odds; 
*markers detected by the model(s) at P ≤ 0.001; ** markers detected by the model(s) at P ≤ 0.0001; *** markers 
detected by the model at P ≤ 0.00001; NA not applicable. QTN effect and LOD scores are estimated only in the 
multi-locus based mrMLM models.

QTL SNP Chr Pos (cM) MAF QTN effect LOD score Model

SLUSTB_1 AX-89326139 1B 40.3 0.21 NA NA FarmCPU***

SLUSTB_2 BS00066305_51 1B 110.1 0.3 14.9 4.68 pKWmEB***

SLUSTB_3 AX-158572447 2A 20.1 0.46 NA NA FarmCPU***

SLUSTB_4 AX-158573239 2A 63.8 0.44 NA NA Blink***, FarmCPU*, GLM*

AX-158596603 2A 64 0.43 14.1–43.4 5.43 Blink**, pLARmEB*, FASTm-
rEMMA***

SLUSTB_5 Tdurum_con-
tig54634_815 2B 31.2 0.40  − 17.7 to − 16.0 4.51 pLARmEB***, pKWmEB***

SLUSTB_6 AX_158557660 2B 81.4 0.19 17.8 5.21 pLARmEB***, pKWmEB***

SLUSTB_7 BS00083329_51 2B 135.5 0.37 15 4.01 pKWmEB**

Kukri_c17_1246 2B 135.5 0.23 20.5–34 4.22 Blink***, FASTmrEMMA*, 
FASTmrMLM**

SLUSTB_8 AX-111036153 2D 2.6 0.37 14.9 4.32 pLARmEB***

SLUSTB_9 wsnp_Ex_
c8517_14315660 3A 82.4 0.11 NA NA FarmCPU**

SLUSTB_10 wsnp_Ex_
c12220_19528388 3B 60.5 0.12  − 18.4 4.98 SUPER***, GLM**, Blink*, 

pLARmEB**, pKWmEB***

SLUSTB_11 Excalibur_
c4325_1150 4A 120.4 0.19 NA NA FarmCPU**

SLUSTB_12 wsnp_CAP12_
c1101_569783 4B 66.4 0.45  − 20.3 4.81 FarmCPU***, mrMLM**, 

pKWmEB***

SLUSTB_13 AX-158558835 5A 44.7 0.48 NA NA Blink**

SLUSTB_14 AX-158585919 5B 73.6 0.25 NA NA GLM**, SUPER*

AX-158534098 5B 73.6 0.25 NA NA GLM**, SUPER*

SLUSTB_15 IACX7841 5B 134.4 0.25 NA NA GLM**, SUPER*

wsnp_RFL_Con-
tig3238_3265410 5B 134.4 0.24 NA NA GLM**, SUPER*

SLUSTB_16 IAAV64 6D 121.5 0.08 58.6 4.87 mrMLM***

SLUSTB_17 AX-158537280 7A 51.2 0.28 -11.7 4.53 pLARmEB*, mrMLM***, pKW-
mEB**, FASTmrMLM***

SLUSTB_18 AX-108934671 7B 28.1 0.42 NA NA SUPER**

SLUSTB_19 Kukri_
c51101_351 7B 79.8 0.04 35.4 5.66 FarmCPU***, Blink***, FASTm-

rEMMA*, FASTmrMLM**

SLUSTB_20 IAAV4542 7D 142 0.13 NA NA FarmCPU**
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accuracy of 0.58 averaged from 20 runs (Fig. 5B). Similarly, the 20 training-validation set iterations were con-
ducted with the RR-BLUP model excluding the five-fixed effect SNPs and the average prediction accuracy was 
0.53. The genomic prediction accuracy of the wRR-BLUP and RR-BLUP models with the 20 iterations was in a 
range of 0.31–0.85 and 0.26–0.70, respectively.

Figure 4.  Manhattan (left) and Q-Q (right) plots of marker-trait associations identified for seedling-stage 
resistance to STB. (A) Manhattan (left) and Q-Q plots generated from the three multi-locus models (mrMLM, 
FASTmrMLM and FASTmrEMMA) with pink dots represents the SNP markers discovered by more than one 
model while dark blue dots represent the markers discovered by a single model. The dashed horizontal line on 
the diagram represents LOD score of 2.0. The other plots are for FarmCPU (B) and Blink (C) with green solid 
line representing the Bonferroni corrected thresholds at P = 0.05. The red solid line and green dash line represent 
the exploratory and false-discovery (FDR)-based thresholds at P = 0.0001 and 0.05, respectively.

Figure 5.  Genomic prediction for STB resistance using 316 winter wheat genotypes with two different 
statistical models. (A) Genomic prediction analysis with 80–20% training-validation sets cross-validation 
analysis conducted for 500 iterations with the RR-BLUP model. (B) The wRR-BLUP model with the five top-
most significantly linked SNPs fitted as fixed effects. GWAS was conducted only in the training population and 
analysis was done for 20 times. Similarly, the 20 training-validation set splits were tested with the RR-BLUP 
model after excluding the fixed effect SNPs. N, number of iterations; μ, average values of iterations.
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Discussion
Phenotypic characterization and GWAS analysis for STB. Genetic improvement of winter wheat for 
resistance against STB is an indispensable approach to minimize the disease impact on wheat grain yield. The 
deployment of breeding lines with a wide genetic base can accelerate the development of wheat varieties resistant 
to wheat diseases, while keeping other important traits, such as yield optimized to a particular environment. The 
potential source of variation observed in the current studied breeding lines enabled the identification of genetic 
factors underpinning resistance to STB in juvenile plants under controlled conditions. Selection at seedling-
stage is an essential step before testing in multi-environment trials hence an increased number of seedling-
stage markers has been spotted that overlaps with known APR genes to STB resistance. This method minimizes 
the sheer number of susceptible individual lines from being tested in field conditions saving high amount of 
resources while increasing the selection accuracy.

Previous studies reported Stigg as a resistant variety for STB. However, in the current study, the variety fell 
below the most resistant variety Kranich and followed by Julius, while Nimbus was susceptible. Variations in 
seedling-stage resistance attributed to the spatio-temporal appearance in the latent phase leading to necrotic 
symptoms can aid in explaining the quantitative nature of resistance to STB of the tested genotypes. By using 
an AUDPC approach in association with the genomic markers of the tested genotypes, seedling-stage markers 
were detected that can potentially serve as a source of resistant novel QTLs. Additionally, the analysis showed a 
number of identified seedling-stage markers that co-localized with QTL identified as either seedling or adult-
stage resistance.

In this study, 14 SNPs identified as significantly linked to STB- seedling-stage resistance were from six 
chromosomes located on the B sub-genome while the other 7 and 3 SNPs were on the chromosomes from the 
A and D sub-genomes, respectively. Several studies have similarly reported the B and A sub-genomes with 
highest number of STB major resistance genes where 16 out of 21 Stb genes were also identified from these two 
sub-genomes10.

The current GWAS analysis discovered twenty STB resistance QTLs out of which seven could potentially be 
novel. The identified novel markers were located on seven chromosomes including 1B, 2A, 2B, 5B (two), 7A, 
and 7D. The remaining 13 QTLs overlapped with previous reports either as seedling-stage (three), adult-stage 
(four) or all plant stage (six) QTLs for STB resistance. The majority of the identified MTAs were discovered 
from the multi-locus GWAS models even though few were exclusively discovered with single locus models 
such as the markers on 5B and 7B (Table 1). This could be due to the strong statistical power of the multi-locus 
models considering that they could manage detecting associations utilizing information from multiple markers 
simultaneously. Even though being able to detect lower number of  MATs63, single-locus models are still an 
invaluable tool for marker discovery mainly for the discovery of markers with strong  effect64,65 and can indicate 
to the robustness of the associations when MTAs are detected together with multi-locus models such as that on 
3B (Table 1).

As to our knowledge, the seven identified QTLs in this study including SLUSTB_2, SLUSTB_3, SLUSTB_6, 
SLUSTB_14, and SLUSTB_20 on chromosomes 1B, 2A, 2B, 7A and 7D, respectively, and SLUSTB_14 & 
SLUSTB_15 on chromosome 5B have not been reported in previous studies and could potentially be novel QTL 
sources to seedling-stage STB resistance in wheat.

Using the same isolates and under similar growth conditions, Odilbekov, et al.18 identified 10 MTAs associated 
with seedling-stage resistance located within 5 QTLs using plant materials comprised landraces and cultivars 
widely grown in the Nordic region for the last 100 years. Out of these, the two overlapped exactly with the 
currently identified QTLs. The marker BS00066305_51 in SLUSTB_2 QTL was identified on the short arm of 
1B distally located from the centromere at 110.1 cM. Generally, 1BS is a major source for Stb resistance genes 
including the Stb266, and Stb1110,67. An earlier study has shown the presence of a QTL associated with several 
markers spanning a distance of 1.71 cM between 97.36 and 99.07 cM on 1BS identified from a panel of 175 winter 
wheat landraces and old cultivars at seedling-stage18. However, no previous QTL has been reported in close 
proximity to the current identified marker on the chromosome 1BS that leads us to report as a possible novel 
QTL for seedling-stage STB resistance in wheat. The SLUSTB_3 associated with the marker AX-158572447 at 20.1 
cM on chromosome 2A appears as another potential novel marker associated with seedling-stage STB resistance. 
The marker Tdurum_contig54634_815 from the SLUSTB_5 QTL identified on the short arm of chromosome 2B 
(51.9 cM) was exactly overlapped with a previous report by Gerard et al. (2017) with a DArT marker wPt2106 
located at 51.86 cM. Another reported QTL on this chromosome region associated with adult-plant stage STB 
resistance was located on 65  cM20. On chromosome 2B, the marker AX_158557660 (81.4 cM) from SLUSTB_6 
QTL could possibly be the other potential novel marker identified in the current study for seedling-stage STB 
resistance. Odilbekov, et al.18 identified a marker on chromosome 2B linked to seedling-stage STB resistance 
located at 96.99 cM, which is far from the currently detected marker by more than 15 cM. The SLUSTB_14 and 
SLUSTB_15 were the other two possibly novel QTL identified in the current analysis on chromosome 5B. The 
two significantly linked SNPs on SLUSTB_14 (73.6 cM) identified in the current study were 13 cM far from 
the previously reported marker Excalibur_c17489_804 identified with major effect QTL explaining 28% of the 
total phenotypic  variation23. The markers AX_158537280 on chromosomes 7A (51.2 cM) and IAAV4542 on 
chromosome 7D on SLUSTB_17 and SLUSTB_20, respectively, are the other two candidate novel QTLs spotted 
on the current study. Both Stb4 and Stb5 have been mapped on the short arm of 7DS chromosome  arm68,69 while 
the currently identified marker IAAV4542 was found on the long arm of chromosome 7DL located at 142  cM70. 
Therefore, it is not likely that this marker is associated with either of these genes.

The SNP marker AX_89326139 (40.3 cM) on chromosome 1B appeared to overlap with the previously 
identified marker IAAV3905 (41.3 cM) as APR QTL for  STB29. Kidane et al.71 identified a QTL qSTB.04 physically 
located at 587.28 Mbp identified in diverse panel of Ethiopian durum wheat landraces close to the currently 
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detected marker AX_89326139 at the physical distance of 544.5 Mbp. However, it is noteworthy to mention that 
these studies identified the respective markers on adult plants and the region could be a potential source of all-
stage STB resistance in wheat. The two closely located markers AX_158573239 (63.8 cM) and AX_158596603 
(64 cM) in SLUSTB_4 overlapped with the recently identified QTL linked to seedling-stage STB resistance in 
a diverse germplasm of 185 genotypes associated with three Z. tritici  isolates72. The two SNP markers of QTL 
SLUSTB_7, BS00083329_51 and Kukri_c17_1246 (135.5 cM) were only distant by 7.5 cM from the previously 
reported seedling-stage QTL SRT_71-R3_2 on the long arm of chromosome  2B73. Similarly another nearby SNP 
marker AX_94734086 (145 cM) was identified for APR to STB and claimed that this QTL could be part of the 
Stb9 resistance gene involved in all stage STB resistance in  wheat29.

The SLUSTB_9 QTL with the SNP marker wsnp_Ex_c8517_14315660 (82.4 cM) identified on chromosome 
arm 3AL was nearby to the marker wsnp_Ex_c5929_10402147 (86.2 cM) previously spotted MTA for seedling-
stage STB  resistance18. Nearby to this QTL, a meta-QTL analysis for several biotic stresses reported four QTL 
situated between 80.4–87.1  cM74. This chromosome region has been identified as a source of several MTAs 
for STB resistance in previous  investigations71,75–77. The QTL SLUSTB_10 on chromosome 3B comprised the 
marker wsnp_Ex_c12220_19528388 (60.5 cM) was detected by five different single- and multi-locus models. 
Other previous studies reported multiple MTAs for STB resistance with different Z. tritici isolate adjacent to this 
 marker72. Alemu et al.20 reported a multi-environment stable MTA for APR to STB on chromosome 3B but far by 
10 cM from the MTA identified in this study. These findings could lead us to speculate a potential QTL possibly 
existing on this chromosome region linked to all-stage STB resistance in wheat. Hence, further investigations 
on the validation of this candidate QTL region could enhance marker-assisted selection against the pathogen.

Excalibur_c4325_1150 marker (SLUSTB_11 QTL) was identified on chromosome arm 4AL located at 
120.4 cM. Two nearby SNPs on the long arm of chromosome 4A, located on 121.4 cM and 122.5 cM, were 
previously reported significantly linked to STB resistance inoculated by a single Z. tritici isolate at seedling-
stage72 and naturally infected winter wheat adult-plants20. Muqaddasi, et al.29 reported the SNP marker wsnp_
JD_c27162_22206547 that exactly overlapped with the currently identified marker on chromosome arm 4AL 
at 120.4 cM associated with STB APR detected from 371 artificially field-inoculated winter wheat genotypes.

It is yet unknown whether 4B chromosome is comprised major genes for STB  resistance10. However, the 
currently identified marker wsnp_CAP12_c1101_569783 (66.4 cM) on 4B had a highly significant association with 
STB resistance discovered by the multi-locus model FarmCPU with –log10 P > 9 (Fig. 4) and other two multi-
locus models with LOD score > 4.8. Louriki et al.73reported two SNP markers located on the same chromosome 
arm identified from a panel of 377 advanced breeding lines of spring wheat associated with seedling-stage STB 
resistance each detected by one of the two tested isolates. The marker RAC875_c24515_602 located at 76.8 
 cM73 could possibly from the same QTL with the marker identified in the current study. Using eight-founder 
MAGIC winter wheat population, Riaz et al. (2020) discovered several QTLs for adult-plant STB resistance 
on chromosome 4B including the marker RAC875_c87897_333 (655.94 Mbp) which is found in nearby to the 
currently identified MTA. Hence, this region could be another source for QTLs of all-stage STB resistance.

SLUSTB_8, SLUSTB_16 and SLUSTB_20 were the three QTLs identified from the D sub-genome on 
chromosomes 2D, 6D and 7D, respectively. The SNP marker AX_111036153 (2.6 cM) on chromosome 2D was 
identified in the current study that could be linked to a potential QTL identified for adult-plant STB resistance 
with strong association explaining a high portion of  variation23. The marker IAAV64 in the QTL SLUSTB_16 
discovered on chromosome 6D found at 466.55 Mbp. Similarly, Riaz et al.23 detected a very closely SNP marker 
wsnp_Ex_c13188_20825019 (464.72 Mbp) linked to adult-stage STB resistance.

In general, 13 of the currently identified marker-trait associations have exactly overlapped with QTL regions 
previously reported by several studies. This could validate applied research protocols and procedures in the 
current study and increase the search and validation of valuable chromosome regions with resistance sources 
for the STB wheat pathogen. Furthermore, seven potentially novel QTLs identified in this study could also be 
used as a first brick in searching additional sources of resistance QTLs for the newly evolved pathogen strains.

Genomic prediction for STB resistance. In addition to the well characterized stb genes, various minor- 
to major-effect QTLs are involved in host resistance against the STB pathogen in  wheat10. Because of this, STB 
resistant wheat variety development through pyramiding of identified QTLs via marker-assisted selection has 
been a challenging task. Genomic prediction is a powerful method to accelerate the genetic gain of several quan-
titatively inherited traits in plant  breeding78. Unlike the GWAS or linkage mapping methods, genomic prediction 
estimates the breeding values of individuals for traits of interest accounting all contributing QTLs based on their 
overall marker  information79. This method is particularly an invaluable genomic tool for variety development 
with STB resistance and other similar traits controlled by several QTLs. The current study estimated the GEBVs 
of the 20% of 316 genotypes with two genomic prediction models trained with the remaining 80% of the panel. 
The RR-BLUP model estimated the GEBVs of STB resistance with prediction accuracy of 0.49 and 0.53 averaged 
from 500 and 20 iterations, respectively. A previous study reported a genomic prediction accuracy of 0.47 for 
STB resistance at seedling-stage with a 175 winter wheat panel comprising old cultivars and  landraces18. With 
this panel, a low to moderate genomic prediction accuracy (0.15–0.35) was recorded for adult-stage STB resist-
ance from multi-environmental field trials conducted in Denmark, Estonia, Lithuania, and  Sweden20. Muqad-
dasi et al.29 reported a genomic prediction accuracy of 0.43 for adult-stage STB in 371 European winter wheat 
varieties. Juliana et al.80 reported a mean genomic prediction accuracy of 0.45 for STB adult plants resistance 
from CIMMYT International Bread Wheat Screening Nurseries (IBWSNs) with more than 600 lines evaluated 
at CIMMYT’s research station, Toluca, Mexico for 3 years. However, several factors could affect the genomic 
prediction accuracy including the size of the training population, marker density, population structure, level of 
linkage disequilibrium and quality of the phenotypic data applied to train the  model78. This RR-BLUP model 
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assumes all markers share a common variance and similarly shrunk towards zero which leads to underestima-
tion of major-effect  QTLs81. To circumvent this drawback, the five top-most significantly linked SNPs identified 
via GWAS from training sets were fitted as fixed effects with the wRR-BLUP model. The model has shown an 
improved prediction accuracy by 5.1% compared to the RR-BLUP model tested in a similar training-validation 
population split. Previous studies reported beneficial genomic prediction accuracy improvements with the RR-
BLUP model supplemented with QTL linked markers as fixed-effect18,20,82.

Conclusion
The current study identified 24 marker-trait associations from nine single and multi-locus employed GWAS 
models. These marker-trait associations were found in 20 QTLs spread on 14 wheat chromosomes. We report 
seven as potentially novel QTLs spotted across seven chromosomes while the other 11 were overlapped with 
previously reported studies. The overlapped QTLs could help in the validation and application of marker-assisted 
backcrossing process while the newly spotted ones can assist on the searching of new resistant sources to the 
pathogen. Involving higher number of QTLs for STB resistance makes marker-assisted backcrossing a very 
challenging task. Hence, genomic prediction could play an immense role in accelerating the genetic gain of 
wheat breeding against the pathogen. The current genomic prediction analysis has shown a moderate to higher 
prediction accuracy to estimate the GEBVs of individual wheat genotypes for STB resistance. Furthermore, we 
report an improved prediction accuracy via QTL-assisted genomic prediction where the five topmost QTLs were 
used as fixed effect in the genomic prediction model.

Data availability
The original data contributions of the current study are included in the article/Supplementary Files.
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