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Recovery of the gut microbiome 
following enteric infection 
and persistence of antimicrobial 
resistance genes in specific 
microbial hosts
Zoe A. Hansen 1, Karla Vasco 1, James T. Rudrik 2, Kim T. Scribner 3, Lixin Zhang 1,4 & 
Shannon D. Manning 1*

Enteric pathogens cause widespread foodborne illness and are increasingly resistant to important 
antibiotics yet their ecological impact on the gut microbiome and resistome is not fully understood. 
Herein, shotgun metagenome sequencing was applied to stool DNA from 60 patients (cases) during 
an enteric bacterial infection and after recovery (follow-ups). Overall, the case samples harbored 
more antimicrobial resistance genes (ARGs) with greater resistome diversity than the follow-up 
samples (p < 0.001), while follow-ups had more diverse gut microbiota (p < 0.001). Although cases 
were primarily defined by genera Escherichia, Salmonella, and Shigella along with ARGs for 
multi-compound and multidrug resistance, follow-ups had a greater abundance of Bacteroidetes 
and Firmicutes phyla and resistance genes for tetracyclines, macrolides, lincosamides, and 
streptogramins, and aminoglycosides. A host-tracking analysis revealed that Escherichia was the 
primary bacterial host of ARGs in both cases and follow-ups, with a greater abundance occurring 
during infection. Eleven distinct extended spectrum beta-lactamase (ESBL) genes were identified 
during infection, with some detectable upon recovery, highlighting the potential for gene transfer 
within the community. Because of the increasing incidence of disease caused by foodborne pathogens 
and their role in harboring and transferring resistance determinants, this study enhances our 
understanding of how enteric infections impact human gut ecology.

Foodborne illness caused by enteric pathogens impacts ~ 9.4 million people in the United States each year, with 
over one-third being attributed to bacterial  pathogens1. In 2019, the Centers for Disease Control and Preven-
tion (CDC) documented a marked increase in the incidence of foodborne infection caused by Campylobacter 
and Shiga toxin-producing Escherichia coli (STEC)2. Salmonella and Shigella also contribute to a high incidence 
of infections, though case numbers remained unchanged relative to previous  years2. In addition to their role in 
enteric disease, Campylobacter, non-Typhoidal Salmonella, Shigella, and members of Enterobacteriaceae (e.g., 
Escherichia) have been classified by the CDC as serious threats for harboring and transmitting antimicrobial 
 resistance2. Indeed, each of these pathogens have been shown to transfer ARGs horizontally within and between 
microbial species residing in a  niche3. Such resistance determinants can cross environmental boundaries, thereby 
increasing frequencies of ARGs or mobile elements within different hosts and environments and enhancing the 
likelihood of horizontal gene transfer (HGT).

The consequences of enteric infection on the health of the human gut microbiome are not fully understood. 
A prior study conducted in our lab showed a marked decrease in gut microbiota diversity attributed to enteric 
infection as determined using 16S rRNA  sequencing4. This lack of diversity was suggested to reduce beneficial 
microbially-mediated metabolism and exacerbate gut  inflammation5. Similarly, other studies have demonstrated 
an increase in the proportion of Proteobacteria upon infection with Salmonella¸ Campylobacter, Shigella, and 
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other pathogens in multiple host  organisms6. More recently, we documented differences in the gut resistome, or 
compilation of antimicrobial resistance genes (ARGs), in patients with Campylobacter infections when compared 
to their healthy family  members7. The potential ecological repercussions relevant to recovery from enteric infec-
tion, however, have yet to be explored using shotgun metagenome sequencing. If the microbiome demonstrates 
a certain degree of resilience, then the magnitude of the perturbations should not be large, and microbiota com-
position should recover over  time8. In the context of pathogen invasion, various ecological interactions such as 
direct antagonism from commensal microbes, resource competition and competitive exclusion, and secondary 
metabolite production, must be  considered9,10. Each of these factors may influence the success of an enteric 
pathogen in the gut environment as well as the time it takes to restore the affected microbiome to a healthy state, 
allowing the patient to recover from the acute infection.

Consideration must also be given to the invading pathogen, which can potentially introduce virulence and 
antimicrobial resistance determinants into the gut community. Indeed, pathogens harboring ARGs can transfer 
these to other gut microbes during infection or vice versa, thereby transforming the gut into a resistance gene 
 reservoir11. This reservoir is particularly concerning given that pathobionts residing in the community can 
acquire genetic factors that encode for virulence properties as well as resistance to clinically important antibiotics.

To understand how infection by and recovery from enteric pathogens influences the human gut resistome and 
microbiome, we applied shotgun metagenome sequencing to stool-derived DNA from 60 patients collected dur-
ing their infection and again after they recovered from the infection. Because our prior 16S sequencing analysis 
showed that infection with enteric pathogens altered the relative abundance of specific microbial populations 
in the  gut4, we hypothesized that ARGs harbored by microbes that “bloom” during infection will also increase 
in abundance. Use of a novel sequence-based approach enabled the identification of bacterial hosts harboring 
specific  ARGs12. This approach has yet to be applied to enteric infections and can advance understanding of how 
drug resistance spreads and is maintained within a dysbiotic gut microbiome and is maintained in a healthy 
gut microbiome. Further defining the impacts of these infections on the composition and function of the gut 
microbiome is necessary to counteract the dissemination of drug resistance and guide the discovery of novel 
therapeutic solutions such as fecal microbiome transplantation or bacteriophage therapies.

Methods
Sample collection and sequencing. Sixty stools were obtained from patients with enteric infections 
(cases) caused by Campylobacter (n = 24), Salmonella (n = 29) Shigella (n = 4), and Shiga toxin-producing E. coli 
(STEC) (n = 3) from 2011–2015. Stools were preserved in Cary-Blair transport media and submitted to the Mich-
igan Department of Health and Human Services (MDHHS) in collaboration with four hospitals as  described4. 
Patient demographics, exposures, and symptoms were reported through the Michigan Disease Surveillance Sys-
tem (MDSS). Counties were classified as ‘rural’ or ‘urban’ as was done in our prior  analysis7. Each patient submit-
ted a follow-up sample 1 week to 29 weeks after their acute infection, yielding 120 paired samples for analysis; 
these are referred to as “follow-ups” for simplicity. Moreover, 91 stools from household members were included 
as controls and 38 of these controls were from the same household as the 60 patients sampled during and after 
infection. Control samples were submitted 5–29 weeks after the cases’ infection. Resistome data from Campy-
lobacter patients were examined  previously7, though no prior metagenome analyses were performed on the 
post-recovery samples. Study protocols and consent procedures were performed in accordance with the relevant 
guidelines and regulations set by the Declaration of Helsinki. Informed consent was obtained from participants 
and/or their legal guardians prior to enrollment. All data were stripped of personal identifying information. 
Final approval to conduct the study was granted by the Institutional Review Boards at MSU (IRB #10-736SM), 
the MDHHS (842-PHALAB), and the four participating hospital laboratories as described in our prior  study4.

Metagenomic DNA was extracted, sheared, and normalized as described  previously4. Libraries were con-
structed using the TruSeq Nano library kit (Illumina, Inc., San Diego, CA, USA) and shotgun sequencing was 
conducted in four runs (batches) using an Illumina HiSeq 2500; the samples were not selected for each batch in a 
specific order. Base calling was performed using Real Time Analysis (RTA) v1.18.66 (Illumina) software, while the 
output was demultiplexed to separate the reads from each sample and converted to FastQ files with Bcl2fastq v2 + .

Reads-based identification of antimicrobial resistance genes (ARGs). The AmrPlusPlus v2.0 
pipeline was used for quality control checking, aligning, and annotating metagenomic fragments with the MEG-
ARes 2.0  database13 using previously described  parameters7. Reads were mapped to the human genome, GRCh38 
(GRCh38_latest_genomic.fna.gz, downloaded December 2020), in RefSeq using the Burrows-Wheeler Aligner 
(BWA)14 and removed using  SAMTools15 and  BEDTools16. The non-host FASTQ files were stored and aligned 
to MEGARes 2.013 to identify ARGs using default values. These aligned non-host reads were deduplicated and 
annotated with the ResistomeAnalyzer tool (identity threshold of ≥ 80%) in AmrPlusPlus v2.0 to quantify ARG 
abundance per sample; the RarefactionAnalzyer  tool estimated sequencing depth. Following annotation and 
quantification of ARG abundances,  MicrobeCensus17 was used to determine the average genome size (AGS) and 
number of genome equivalents (GE) for normalizing ARG and taxonomic abundances. Because we were most 
interested in identifying differences in gene occurrence between samples, we used GE for normalization. These 
were determined by dividing the total library size (i.e., number of base pairs) by the AGS within a sample as 
described in our studies of the gut microbiome in Campylobacter cases and their healthy family  members7 and 
cattle following antibiotic  treatment18.

Reads-based classification of microbial taxa. Non-host paired-end reads were taxonomically anno-
tated with Kaiju (version 1.7.4), a protein-based classifier that translates reads to amino acid sequences while 
searching for maximum exact matches (MEMs) among microbial reference  genomes19. The National Center 
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for Biotechnology Information (NCBI) BLAST nr reference database was used with previously published 
 parameters7. Raw abundances of reads assigned to taxa were normalized by the estimated number of GEs. 
Those sequencing reads without enough resolution were categorized as “unassigned”, which comprised on aver-
age ≥ 50% of annotated reads at the genus and species levels and 15% at the phylum level. Variation in the per-
centage of unassigned read was observed across samples and is dependent on the sequencing depth and annota-
tion quality. Consequently, analyses were performed at the phylum and genus levels and composition analysis 
was restricted to assigned reads.

Assembly-based identification of ARGs. Non-host FASTQ files were also used for metagenome assem-
bly after employing BBTools for paired end read merging using the ‘bbmerge-auto.sh’ script (https:// sourc eforge. 
net/ proje cts/ bbmap/); reads that failed merging were error-corrected using Tadpole and reexamined. If merging 
continued to fail, reads were extended 20 bp and merging was iterated up to five additional times or unmerged 
reads were included. Assembly was performed with  MEGAHIT20 using the merged and paired-end reads. The 
Quality Assessment Tool for Genome Assemblies (QUAST)21 evaluated assembly quality and coverage.

In addition, anvi’o was used to analyze microbial genomes from metagenomes as  described22. Briefly, assem-
bled contigs were reformatted using ‘anvi-script-reformat-fasta’ to generate a contigs database per sample with 
‘anvi-gen-contigs-database’. The script ‘anvi-run-hmms’ was used to populate the contigs database with hits 
detected using Hidden Markov Models, which improves assembly annotation.  Prodigal23 was used in the script 
‘anvi-get-sequences-for-gene-calls’ to obtain amino acid sequences of genes present in the assemblies; these gene 
calls were then used in the ARG-carrying contigs (ACC) analysis.

Identifying bacterial hosts harboring ARGs. Gene calls from anvi’o were used to identify ARG-carry-
ing contigs (ACCs) by aligning amino acid sequences to the HMD-ARG  database24 using  DIAMOND25 with a 
modified pipeline that was described  previously12,26. Significantly more contigs were found in the follow-up sam-
ples relative to the case samples; the former samples also had a greater total length of contigs (Figure S3). SAM 
files were filtered to identify contigs with ARG hits, and Seqtk (https:// github. com/ lh3/ seqtk) was used to select 
these ACCs for subsequent alignment to the BLAST database v5.0 using blastp. To reduce spurious annotations, 
an E-value of 0.00001 cutoff was used with a maximum of 50 target sequences (i.e., 50 matches per contig). 
This value indicates that there is only a 1 in 100,000 chance that a sequence alignment would occur by chance; 
only the top-50 taxonomic matches (as sorted by E-value) were used. One Campylobacter sample could not be 
annotated and was excluded along with the paired follow-up sample leaving 59 pairs (118 samples) for analysis.

Alignment output was used to identify taxa associated with each ARG on a contig. Since 50 matches were 
allowed per contig, a custom Python script (‘ERIN_ACCpipeline_blastp_ merge’) was used to quantify the aver-
age proportion of each genus per sample on the ACCs and the average percentage of different ARGs per genus 
within all ACCs in a sample. Taxa with the most hits per contig were considered the most likely to harbor a given 
ARG. The average percent identity for taxonomic annotations across all ACCs in each sample ranged from 86.6% 
to 99.8% per sample with an overall average of 93.6%.

Abundance and diversity analyses. The identity and diversity of ARGs and taxa were determined for 
all samples. For the resistome analyses, the gene, group, mechanism, class, and type levels were  used13. Actual 
estimated abundance of ARGs and taxa was determined by normalizing raw abundance counts to the number 
of GEs per sample. Relative abundance was calculated by dividing the number of GE-normalized reads assigned 
to a specific feature by the total number of GE-normalized reads for that sample. Alpha diversity metrics such as 
richness, Shannon diversity, and Pielou’s evenness score were estimated using the vegan  package27 in R (https:// 
www.R- proje ct. org/). Nonparametric tests evaluated differences between groups and the Shapiro–Wilk test indi-
cated that both the resistome and microbiota data were not normally distributed (Table S1).

The Wilcoxon signed-rank test was used to detect significant differences between paired samples, whereas 
the Wilcoxon rank-sum test was applied to unpaired samples. Beta diversity metrics and ordination plots (e.g., 
Principal Coordinate Analysis (PCoA)) based on Bray–Curtis dissimilarity at the gene and group (ARGs) or 
species and genus (taxa) levels were also estimated with  vegan27. The overall mean dissimilarity among cases and 
follow-ups was compared to the mean dissimilarity between paired samples using a Welch’s t-test (Figure S1). 
A Permutational Analysis of Variance (PERMANOVA) was calculated using the Bray–Curtis dissimilarities in 
R to assess differences in centroids (mean) between cases and follow-ups for both the resistome and microbiota 
composition; Permutational Analysis of Multivariate Dispersion (PERMDISP) detected differences in dispersion 
(degree of spread) of these groups.

Differential abundance and continuous structure analysis of taxa and ARGs. To assess repre-
sentative features in cases and follow-ups, MMUPHin was used to construct general linear models relating sam-
ple features to relative  abundances28. Batch adjustment of relative abundance data was performed by sequencing 
run, which significantly influenced the distribution of points in the microbiota ordination (Figure S2). To identify 
differentially abundant ARGs and taxa, a linear model was constructed with follow-ups serving as the reference 
for the fixed effect. Age in years, average genome size, number of GEs, year of collection, and use of antibiotics 
were included as covariates. Significance values were adjusted using the Benjamini–Hochberg method of correc-
tion for multiple hypothesis testing (q-value representing False Discovery Rate). The Analysis of Compositions 
of Microbiomes with Bias Correction (ANCOM-BC)  method29, which considers absolute abundances from the 
GE-normalized counts as input but cannot implement a mixed model with fixed and random effects, was used 
for differential abundance testing. Results produced by ANCOM-BC were concordant with those generated by 
MMUPHin at each comparison level, though differences in rank of correlation were observed for some features.

https://sourceforge.net/projects/bbmap/
https://sourceforge.net/projects/bbmap/
https://github.com/lh3/seqtk
https://www.R-project.org/
https://www.R-project.org/
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MMUPHin28 was subsequently used to identify taxonomic or resistance gene tradeoffs that impact data 
structure in ordination. The ‘continuous_discover()’ function was applied to relative abundance data, which 
performs unsupervised continuous structure discovery using Principal Components Analysis (PCA). Continu-
ous structure scores (“loadings”) comprising the top components were compared across batches to identify 
“consensus” loadings assigned to microbial features. The ‘var_perc_cutoff()’ parameter, which filters out the top 
components accounting for a set proportion of the variability within the samples, was set to 0.75 for phylum 
and ARG class levels, 0.50 for genus and ARG groups, and 0.40 for species. Plots were constructed to visualize 
drivers of continuous data structure and to overlay data onto ordination plots based on Bray–Curtis dissimilarity 
of microbiota or resistome relative abundances.

Results
Study population. Among the 60 cases, 28 were male (46.7%) and 32 were female (53.3%) ranging between 
1.5 and 90 years of age; most patients were between 19 and 64 years (n = 26; 43.3%) or less than 9 years (n = 16; 
26.7%). No difference in the proportion of stool submissions was observed by year, though the fewest (n = 13.3%) 
were recovered in 2011 and the most (36.7%) in 2013. Among the 59 patients reporting symptoms, 50 (84.8%) 
had abdominal pain, 57 (96.6%) had diarrhea, and 22 (37.3%) reported blood in the stool. Seventeen (28.3%) 
cases required hospitalization and 33 (55.0%) resided in a rural area. Most cases did not take antibiotics within 
two weeks of sampling, though five (8.3%) reported use of amoxicillin (n = 2), azithromycin (n = 1), ciprofloxacin 
(n = 1), or an unknown antibiotic (n = 1) before submitting the follow-up sample.

Most follow-up samples were collected 51–100 days (n = 20; 33.9%) or 101–150 days (n = 28; 47.5%) post-
infection, however, a small number was submitted ≤ 50 (n = 4; 6.78%) or > 150 (n = 7; 11.9%) days after the initial 
sample was collected; the date was missing for one patient. The range of follow-up submissions was 8 to 205 days 
post-recovery with an average of 107.9 days. Similar to the cases, five controls reported antibiotic use within 
2 weeks prior to sample collection for unknown reasons. Antibiotics taken included amoxicillin (n = 2), azithro-
mycin (n = 1), and ciprofloxacin (n = 1); one respondent did not report the drug class.

Metagenome sequencing and assembly metrics. Sequencing of the stool DNA from 60 patients dur-
ing and after infection (cases = 60; follow-ups = 60) and 91 household controls (total = 211) resulted in a total 
yield of 285.4 Gbp and 678.7 million paired reads (PF) across samples (Table 1). Each sample yielded an aver-
age of 1.4 Gbp of data with an average Q-score of 34.81 across both forward and reverse reads; a score of Q30 
designates a 99.9% accuracy in sequencing calls. Quality trimming with Trimmomatic resulted in an average 
of 3.18 million 150 bp surviving paired-end reads; on average, 14,978 reads were dropped from samples due 
to poor quality. There were no significant differences for surviving paired-end reads between cases and follow-
ups  (ncase = 3.15e6 vs.  nfollow-up = 3.04e6; p = 0.53), cases and controls  (ncontrol = 3.29e6; p = 0.11) and controls and 
follow-ups (p = 0.061) (Figure S3).

On average, there were 4.6 million non-human paired-end reads per sample; however, this metric ranged from 
195, 929 to 13.9 million. The prevalence of non-host reads was somewhat sample-specific and the number of host 
and non-host reads differed significantly between case, follow-up, and control samples (Figure S4). Controls had 
more non-host reads than cases  (ncontrol = 5.14e6 vs.  ncase = 3.95e6; p = 2.4e−6) and follow-ups  (nfollow-up = 4.43e6; 
p = 0.0039), while follow-ups had more non-host reads than cases (p = 0.04). All non-host reads were used to 
estimate metagenomic coverage with  Nonpareil30. Mean coverage across cases, follow-ups and controls was 
84.2%; among cases and follow-ups alone, coverage was 86.3% (Figure S5).

The AGS across all samples was 4.09 million bp with cases having significantly larger sizes than controls 
 (AGScase = 4,309,526 vs.  AGScontrol = 3,912,608; p = 2.2e−4). There was no significant difference in AGS between 
cases and follow-ups  (AGSfollow-ups = 4,155,749; p = 0.086) or follow-ups and controls (p = 0.086). The average num-
ber of GE among all samples was 248.29, with controls registering significantly more than cases  (GEcontrol = 282 
vs. GE case = 205; p = 2.4e−4) and follow-ups  (GEfollow-up = 240; p = 0.035). Follow-ups had significantly more GE 
than cases as well (p = 0.029) (Figure S6).

Metagenome assembly was used to assess ARG-carrying contigs (ACCs) among microbiota members within 
the samples (Figure S7). Cases had significantly fewer assembled contigs than the follow-up  (Ncase = 30,654 vs. 
 Nfollow-up = 47,900; p = 4.9e−5) and control samples  (Ncontrol = 57,031; p = 1.0e−7) and registered shorter contig 
lengths overall  (Lcase = 57.96 Mbp vs.  Lfollow-up = 85.36 Mbp, p = 2.2e−4;  Lcontrol = 94.71 Mb, p = 1.5e−5). Control 
and follow-up samples did not differ in the number of contigs (p = 0.069) or contig length (p = 0.28). The N50 
value, which designates the length at which half of the total assembly length is contained in contigs of that size or 
larger, registered an average of 9485 bp in cases, 4267 in follow-ups, and 3248 in controls  (N50case vs.  N50follow-up, 
p = 0.0363;  N50case vs.  N50control, p = 1.5e−5;  N50control vs.  N50follow-up, p = 0.0042). The average coverage depth for 
assemblies was significantly greater among cases than follow-ups  (Dcase = 17.6 vs.  Dfollow-up = 10.9; p = 0.011) and 
controls  (Dcontrol = 10.1; p = 6.3e−4), which may be due to cases having both smaller and fewer contigs overall. 
Coverage depth did not differ between follow-up and control samples (p = 0.38).

Changes in resistome composition and diversity post-recovery. Among the 120 stool samples 
from cases and follow-ups, 1,338 ARGs were identified encoding resistance to biocides, antibiotic drugs, metals, 
and multi-compound substrates comprising 474 distinct gene groups or operons. These genes represented 120 
distinct mechanisms conferring resistance to 44 classes of compounds. In all, the case samples had a significantly 
greater mean ARG richness than follow-up or control samples  (Scases = 274 vs.  Sfollow-ups = 111; p = 1.9e−12;  Scases 
vs.  Scontrols = 90.2; p = 2.9e−18) (Fig. 1A). The Shannon Diversity Index for ARGs was also greater in cases than 
follow-ups  (Hcases = 4.79 vs.  Hfollow-ups = 3.36; p = 1.9e−13) and controls  (Hcontrols = 3.34; p = 6.4e−19). The Pielou’s 
evenness index followed a similar trend in which cases were significantly greater than follow-ups (J’cases = 0.87 
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vs. J’follow-ups = 0.80; p = 3.5e−10) and controls (J’controls = 0.805; p = 3.5e−14). Notably, follow-up samples did not 
significantly differ from their family member controls in ARG diversity, suggesting recovery to a “normal” ARG 
level of post-infection.

The resistome composition among cases, follow-ups, and controls also differed as was demonstrated in a 
PCoA based on the Bray–Curtis dissimilarity (PERMANOVA p = 0.000999; F = 32.40) (Fig. 1B), though no dif-
ference was observed in the level of dispersion between groups (PERMDISP p = 0.511; F = 0.732). The samples 
from cases reporting antibiotic use did not cluster separately from those without antibiotics. In the subset of data 
representing only the case-follow-up pairs, residence type, antibiotic use, gender, age, hospital, county of origin, 
stool type, sequencing run, and number of days between samplings were fit to the corresponding ordination; 
age in years (p = 0.013) and year of collection (p = 0.043) independently influenced the distribution of points. 
Residence location, hospital, and the number of days since infection, however, only trended toward significance. 
Moreover, antibiotic use and the pathogen responsible for the acute infections did not have significant effects on 
alpha or beta diversity trends, at least for patients with Campylobacter and Salmonella infections (Figure S8). Too 
few patients had Shigella and STEC infections, thereby preventing comparisons with these samples.

Changes in gut microbiota composition and diversity post-recovery. The gut microbiota were 
more diverse in the follow-up and control samples than the case samples (Fig. 2A) with a significantly greater 
mean species richness  (Scases = 3,426,  Sfollow-ups = 5,789; p = 3.5e−08;  Scases vs.  Scontrols = 6,872; p = 5.1e−14), mean 
evenness (J’case = 0.150, J’follow-up = 0.190; p = 9.8e−06; J’case vs. J’control = 0.205; p = 4.7e−10), and Shannon Diversity 
 (Hcases = 1.21,  Hfollow-ups = 1.65; p = 1.3e−06;  Hcases vs.  Hcontrols = 1.81; p = 1.9e−11). When compared to healthy (con-
trol) samples from members of the same household, the follow-up samples were similar for Shannon Diversity 

Table 1.  Metagenomic sequencing metrics from fecal DNA collected from patients during (Case) and after 
(Follow-up) acute enteric infection, and household controls (Control).

Metric Sample Value

Average yield (Gbp)

Case 1.388153

Follow-up 1.347647

Control 1.438958

PF reads

Case 3,166,668

Follow-up 3,048,540

Control 3,360,604

Average Q score

Case 35.17488

Follow-up 35.57133

Control 34.09067

Surviving reads (after trimming)

Case 3,152,079

Follow-up 3,037,234

Control 3,293,993

Non-host reads

Case 3,946,049

Follow-up 4,428,700

Control 5,143,197

Average genome size (AGS)

Case 4,309,526

Follow-up 4,155,749

Control 3,912,608

Genome equivalents

Case 204.7146

Follow-up 240.2219

Control 282.3293

Number of contigs

Case 30,654

Follow-up 47,900

Control 57,031

Total contig length

Case 57,957,505

Follow-up 85,358,266

Control 94,713,414

N50

Case 9485

Follow-up 4267

Control 3248

Average coverage depth

Case 17.6

Follow-up 10.9

Control 10.1
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Figure 1.  Resistome diversity and composition differ significantly during infection and after recovery. 
(A) Three alpha diversity measures (Richness, Shannon’s Diversity Index, and Pielou’s Evenness Index) are 
presented. Case samples (Case) are indicated with green dots and follow-up samples (FollowUp) are purple 
squares; household control samples (Control) are shown as orange triangles. Points are slightly offset from the 
vertical to allow interpretation of all samples. The median of each measure is indicated by the thick bar within 
each box and the first and third quartiles are indicated at the bottom and top of the box, respectively. Adjusted 
P-values were calculated using the Wilcoxon signed-rank test for paired samples and are shown above the 
comparison bar within each plot. (B) A Principal Coordinates Analysis (PCoA) plot of case (green circles), 
follow-up (purple squares), and control (orange triangles) resistomes based on Bray–Curtis dissimilarity 
calculated from gene-level abundances. The first and second coordinates include the corresponding percentage 
of similarity explained. Patients that used antibiotics two weeks prior to sample collection are indicated by black 
asterisks.
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Figure 2.  Gut microbiota diversity is greater after recovery and compositional differences between samples 
are nuanced. (A) Box plots show the microbiome alpha diversity measures (Pielou’s Evenness Index, Richness, 
Shannon Diversity Index). Separate points represent case (Case, green), follow-up (FollowUp, purple), and 
control (Control, orange) samples and are offset from the vertical for clarity. The median is indicated by the 
thick black bar, while the first and third quartiles are represented by lines at the bottom and top of the box, 
respectively.  Adjusted P-values were calculated using the Wilcoxon signed-rank test for paired samples and 
are shown above the comparison bars. (B) A Principal Coordinates Analysis plot is shown for case (Case, 
green circles), follow-up (FollowUp, purple squares), and control (Control, orange triangles) microbiota based 
on Bray–Curtis dissimilarity at the species level. The first and second coordinate are shown and include the 
corresponding percentage of similarity explained. Samples from individuals self-reporting use of antibiotics two 
weeks prior to sample collection are indicated by black asterisks.
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and evenness despite showing differences in microbiota richness  (Sfollow-ups = 5789,  Scontrols = 6872; p = 0.012, Wil-
coxon rank-sum test (two-sided, unpaired)).

The microbiota composition was significantly different between the case, follow-up, and control samples 
(PERMANOVA p = 0.000999, F = 6.75; Fig. 2B). However, a difference in the dispersion of points between groups 
(PERMDISP p = 0.025; F = 3.42) was also observed, which was driven by a discrepancy in spread between cases 
and controls (p = 0.027; Tukey’s Honest Significant Difference Test). Age (p = 0.008), sequencing run (p = 0.001), 
average genome size (p = 0.001), number of genome equivalents (p = 0.001), year of sampling (p = 0.005), days 
to follow-up (p = 0.013), hospital (p = 0.030), and antibiotic use (p = 0.008) significantly impacted the point dis-
tribution of paired cases and follow-ups (Figure S9). No differences were observed by the causative agent, at 
least for those cases with Campylobacter and Salmonella infections that had adequate sample sizes for analysis 
(Figure S10).

ARG composition and abundance varied during and after infection. The relative abundance of 
ARGs differed between groups (Figure S11). However, because the ARG profiles did not differ between house-
hold controls and follow-ups, we limited the in-depth ARG analyses to the case and follow-up pairs. Among 
these samples, the top-three resistance classes in cases accounted for 39.8% of the total resistance genes relative 
to 71.0% for follow-ups, supporting the observation of greater resistome diversity during infection. Classes for 
drugs and biocides (15.1%), MLS  (macrolides, lincosamides, and streptogramins) (13.3%), and multi-metals 
(11.3%) were most abundant in cases compared to MLS (33.5%), tetracyclines (22.0%), and aminoglycosides 
(15.5%) in the follow-ups (Fig. 3). Differential abundance analysis revealed that classes for multi-metal resist-
ance (coef = − 0.243; q-value = 1.04e−04), drug and biocide resistance genes (coef = − 0.243; q-value = 1.46e−03), 
drug, metal, biocide resistance (coef = − 0.212; q-value = 7.86e−09), and fluoroquinolone resistance genes 
(coef = -0.168; q-value = 8.19e−10) were more abundant in cases (Figure S12). Comparatively, tetracycline resist-
ance genes (coef = 0.352; q-value = 2.26e−05) were more abundant in the follow-up samples followed by MLS 
(coef = 0.251; q-value = 1.49e−25) and aminoglycoside (coef = 0.118; q-value = 7.86e−09) genes, a result that is 
concordant with the resistomes of healthy controls analyzed in our prior  study7.

Figure 3.  Relative abundance of the top-10 resistance gene classes differs between case and follow-up samples. 
The relative abundance of resistance genes assigned to the top-10 most abundant compound classes is shown 
for cases (Case, top panel) and follow-ups (FollowUp, bottom panel). Each column represents the resistome 
from one individual and columns are ordered by the paired samples, meaning that each set of two columns 
refers to the same individual during or after infection. Relative abundances were determined using raw gene 
abundances normalized by the approximate number of genome equivalents in the sample as determined using 
MicrobeCensus 17. CAP = cationic antimicrobial peptides; MLS = Macrolide, Lincosamide, Streptogramin; 
MDR = Multidrug resistance; QACs = Quaternary Ammonium Compounds.
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At the group level, specific ARGs were identified for the predominant classes. In the cases, the most abun-
dant groups were MLS23S (11.9%) conferring MLS resistance, rpoB (2.8%), a rifampin resistance gene, and 
A16S (3.8%), which is important for aminoglycoside resistance (Figure S13). Moreover, the differential abun-
dance analysis detected the MDR genes rpoB (coef = − 0.123; q-value = 6.30e−05) and mdtC (coef = − 0.103; 
q-value = 4.97e−09) to be the most differentiating ARG groups for cases (Figure S14). Genes such as parC 
(coef = − 0.102; q-value = 3.90e−11) and gyrA (coef = − 0.101; q-value = 7.38e−08), which encode resistance to 
fluoroquinolones, were also more abundant in cases.

In the follow-ups, the most abundant groups were for MLS, tetracycline, and aminoglycoside resistance, 
with MLS23S (n = 6.6; 24.3%), tetQ (n = 4.0; 17.0%), A16S (n = 2.4; 9.5%), and cfx (n = 0.84; 3.8%) predominat-
ing, respectively (Figure S13). tetQ had the greatest differential abundance in favor of follow-ups (coef = 0.30; 
q-value = 6.56e−05), a finding confirmed by continuous structure analysis (Figure S15). Despite its noted 
prevalence among cases, MLS23S was also a defining group for follow-ups since it comprised a greater pro-
portion of ARGs (coef = 0.172; q-value = 5.54e−06) (Figure S14). The cfx (coef = 0.124; q-value = 0.0078) and 
other genes important for MLS resistance such as mefE (coef = 0.08; q-value = 3.54e−07) and ermF (coef = 0.07; 
q-value = 3.68e−08), were also more abundant in the follow-ups as were aminoglycoside resistance genes ant(6) 
(coef = 0.103; q-value = 5.23e−04) and A16S (coef = 0.092; q-value = 5.14e−04). Notably, both tetQ and cfx were 
also highly abundant among healthy controls in a hierarchical clustering analysis that we performed previously 
when exploring the impacts of Campylobacter infection on the gut  resistome7.

Taxa composition and abundance differ markedly during and after infection. Similar to our 
ARG analysis, controls were excluded due to notable overlap with the follow-ups and our desire to better under-
stand the trajectory of microbiome recovery following infection. Both cases and follow-ups were dominated by 
Bacteria (relative abundance = 82.0% and 84.4%, respectively) with fewer Archaea or Eukarya, a disparity that 
may be due to less successful extraction of DNA from these groups. During infection, cases had a high propor-
tion of Proteobacteria (37.1%), which was also confirmed in the differential abundance analysis (coef = − 0.461; 
q-value = 9.35e−28), and a decreased abundance of Bacteroidetes (29.6%) and Firmicutes (13.7%) (Figure S16). 
Indeed, continuous structure analysis revealed a tradeoff between the case dominant Proteobacteria phyla and 
Bacteroides and Firmicutes, which were only abundant in a subset of cases (Figure S15). A proportion of reads, 
however, could not be assigned at the Phylum level for both the case (16.4%) and follow-up (13.5%) samples.

At the genus level, cases and follow-ups both had a high proportion of unclassifiable reads (case = 50.1%; 
follow-up = 46.9%). Beyond this, Bacteroides was, on average, the most prevalent across both cases and fol-
low-ups (14.5% and 18.7%, respectively) (Fig. 4). In cases, patterns of relative abundance differed by infecting 
pathogen. Among individuals with Campylobacter and Shigella infections, the genus Escherichia comprised a 
high relative abundance (5.0% and 10.6%, respectively). Salmonella displayed the greatest proportion of reads 
(14.5%) in cases with Salmonella infection (n = 29), followed by Bacteroides (13.3%) and Escherichia (4.5%). 
Among the three individuals with STEC infections, Bacteroides (9.3%) and Roseburia (5.8%) species comprised 
the greatest proportion of genera, with Escherichia totaling just 1.9% of all reads. Across all cases, it was evi-
dent that members of the Enterobacteriaceae family had elevated relative abundance, which was confirmed in 
the differential abundance (Figure S17) and continuous structure analyses (Figure S15). Specifically, Escheri-
chia (coef = − 0.156; q-value = 0.0021) was a predominant genus among cases regardless of infectious agent and 
was mainly represented by Escherichia coli (coef = -0.146; q-value = 0.0082). The Shigella genus (coef = -0.057; 
q-value = 0.0059) comprising three species (S. sonnei, S. flexneri, and S. dysenteriae) was also overrepresented 
across cases (Figure S18) as was Enterobacter (coef = − 0.020; q-value = 1.10e−08) and Citrobacter (coef = − 0.017; 
q-value = 8.07e−06). Interestingly, Campylobacter was not notably abundant among the 24 individuals with 
Campylobacter infections (0.59%). This lack of detection could be due to the cases rapidly clearing the infection 
prior to stool collection, which would not be surprising given the transient nature of this pathogen in the  gut31.

In follow-ups, both the Bacteroidetes and Firmicutes populations rebounded and predominated during recov-
ery (49.3% and 26.9%, respectively), as was confirmed in the differential abundance analysis (Bacteroidetes 
(coef = 0.305; q-value = 1.87e−05); Firmicutes (coef = 0.199; q-value = 4.61e−07)). Across follow-ups, notable sig-
natures of Bacteroidetes genera such as Bacteroides (18.7%), Alistipes (5.0%) and Prevotella (2.5%) were observed 
as well as the genus Akkermansia (2.8%) of Verrucomicrobia, and the Firmicutes genus Faecalibacterium (2.4%). 
These taxonomic patterns among follow-ups closely mirror the microbiota composition of healthy controls 
assessed in our prior  study7. Similarly, the relative abundance of these genera varied slightly depending on which 
infection follow-ups had recovered from. Both Bacteroides and Alistipes, however, were consistently in the top-
three most proportionally abundant genera among follow-ups regardless of the infectious agent. In addition, 
Akkermansia was more abundant among individuals who had recovered from STEC infections (15.7%) relative 
to those who were infected with Campylobacter (0.74%), Salmonella (3.3%), or Shigella (1.7%). Importantly, 
relative abundances of genera corresponding to the infecting pathogens were nearly negligible in follow-ups.

Different ARG-harboring microbial hosts were detected in case and follow-up samples. In 
cases, ACCs, on average, were primarily attributed to Escherichia (38.0%) followed by Salmonella (18.3%) and 
Klebsiella (9.9%) (Fig. 5). Of the Escherichia-associated ARGs, 27.4% were assigned to MDR on average, though 
ARGs relevant to drug and biocide resistance (8.1%), fluoroquinolone resistance (7.1%), and aminoglycoside 
resistance (6.2%) were also identified. Comparatively, the Salmonella-associated ACCs mostly contained genes 
for MDR and drug and biocide resistance (16.5% and 11.7%, respectively), while the Klebsiella ACCs harbored 
an array of fosfomycin resistance genes (13.3%) followed by transposase genes in the IS5 family (12.6%). Kleb-
siella ACCs also contained ARGs for elfamycin resistance (10.4%) and MDR (9.08%).
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Although the most prominent genus in follow-up ACCs was also Escherichia (19.8%), the next most prevalent 
genera were classified as Bacteroides (15.1%) and Faecalibacterium (6.0%) (Fig. 6). Notably, the array of ARGs 
harbored in the Escherichia-associated ACCs was nearly identical to cases, with MDR genes predominating 
(25.1%) followed by resistance to drugs and biocides (4.7%), fluoroquinolones (4.7%), and aminoglycosides 
(3.8%). Of the Bacteroidetes-associated ACCs, genes for MLS, beta-lactam, and tetracycline resistance were 
the most common. The 5.2% of the ACCs that could not be classified and represented an “Uncultured” taxon 
harbored ARGs for tetracyclines, beta-lactams and phenicols.

Microbes linked to case infections harbor ARGs during and after recovery. Differences in ACCs 
were also identified after stratifying by the bacterium linked to each infection. Among the 23 cases with Campy-
lobacter (n = 23) infections, for instance, the genera comprising the greatest proportion of ACCs were Escherichia 
(42.8%), Klebsiella (10.0%), and Salmonella (7.1%). Upon recovery, however, cases with Campylobacter infec-
tions most often had ACCs representing Bacteroides (18.3%), followed by Escherichia (17.3%) and Faecalibac-
terium (6.8%). It is also notable that Campylobacter was in the top-20 genera represented on ACCs, comprising 
1.2% and 3.8% of all genera assigned to ACCs in cases and follow-ups, respectively. Nonetheless, Campylobacter-
associated ARGs in case samples conferred resistance to tetracyclines (27.6%), aminoglycosides (9.9%), and 
rifampin (8.3%), whereas the Campylobacter ACCs in follow-ups conferred resistance to tetracycline (29.0%), 
aminoglycoside (27.0%) and MLS (10.3%) antibiotics. Genes encoding resistance to aminoglycosides were 2.7 
times more prevalent among Campylobacter ACCs in the follow-up samples relative to the case samples.

In the 29 cases with Salmonella infections, most ACCs were taxonomically assigned to Escherichia (32.4%), 
Salmonella (31.0%), and Klebsiella (7.9%) as opposed to the follow-ups in which Escherichia (20.7%), Bacteroides 
(14.2%), and Faecalibacterium (6.3%) predominated. The most common ARGs detected in Salmonella ACCs are 
important for multi-compound resistance, including drug and biocide resistance (14.1%), and MFS transporters 
(13.1%), which can have MDR effects or high specificity to certain classes. ARGs for drug, biocide, and metal 
resistance (7.6%) were also identified. Among the follow-up samples, the most prevalent class within Salmonella-
associated ACCs was RND efflux transporters (9.3%), followed by MFS transporters (6.8%) and fluoroquinolone 
resistance genes (6.3%).

Figure 4.  Relative abundance of microbial genera differ between cases and follow-ups. The top-10 microbial 
genera with the greatest average relative abundance among cases or follow-ups is shown with each column 
representing the microbiome from one individual. Columns are ordered by their sample pairing, meaning that 
the column position for each facet of the plot refers to the same individual either during (Case; Top) or after 
(FollowUp; Bottom) enteric infection. Relative abundances were determined using raw gene abundances that 
had been normalized by the approximate number of genome equivalents in the sample as determined using 
 MicrobeCensus17.
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Figure 5.  The top-10 genera assigned to antibiotic resistance gene (ARG)-carrying contigs (ACCs) in case 
samples. The percentages associated with each genus indicate the percent of ACCs assigned to that genus. Each 
bar chart associated with a genus displays the top-5 or top-3 ARG classes affiliated with that particular genus on 
the ACCs.

Figure 6.  The top-10 genera assigned to antibiotic resistance gene (ARG)-carrying contigs (ACCs) in follow-up 
samples. The percentages associated with each genus indicate the percent of ACCs assigned to that genus. Each 
bar chart associated with a genus displays the top-5 or top-3 ARG classes affiliated with that particular genus on 
the ACCs.



12

Vol:.(1234567890)

Scientific Reports |        (2023) 13:15524  | https://doi.org/10.1038/s41598-023-42822-7

www.nature.com/scientificreports/

Clinically important ESBLs are present after recovery from enteric infections. In all, 49 dis-
tinct genes conferring beta-lactam resistance were identified; these encode class A, C, and D beta-lactamases 
(Table S2). Moreover, 11 (22.4%) distinct genes encoding ESBL production were detected conferring resistance 
to multiple beta-lactam antibiotics. Among these ESBL genes, those belonging to the CepA family of class A 
beta-lactamases were most prevalent, occurring in 19 case and 13 follow-up samples; each gene was taxonomi-
cally assigned to Bacteroides. ESBL genes of the OXA family, which included OXA-1, OXA-50, OXA-51, and 
OXA-61, were also detected; however, each gene was attributed to a different microbial host in the ACC analysis 
and was only found in 2–3 individuals. Although the OXA-61 family of class D beta-lactamases was found in 
Campylobacter, it was only detected in two of the 23 cases with Campylobacter infections. Klebsiella was associ-
ated with OXY genes in two cases as well as the SHV family of class A beta-lactamases in eight case and two 
follow-up samples. Genes representing the ADC family of class C ESBLs harbored by Acinetobacter were also 
detected.

Among other relevant non-ESBL beta-lactamases, the BlaEC family of class C beta-lactamases was detected 
in 49 cases and 19 follow-ups and was primarily associated with genus Escherichia. Genes encoding the CfxA 
family of class A broad-spectrum beta-lactamases were also frequently detected in Bacteroides and Prevotella. 
Of those associated with Bacteroides, CfxA genes were found in 46 cases and 48 follow-ups, while CfxA genes 
associated with Prevotella were found in five cases and nine follow-ups. Genes encoding the broad CMY-family 
of class C beta-lactamases were also detected and assigned to Salmonella in three cases and two follow-ups. 
Relatedly, the CMY-2 family of class C beta-lactamases was identified within Citrobacter and Salmonella; eight 
cases had CMY-2 genes associated with Citrobacter, while two cases had CMY-2 genes assigned to Salmonella. 
CMY-2 genes were also linked to Citrobacter in three follow-up samples and to Salmonella in one. Lastly, genes 
for the general subclass A2 of class A beta-lactamases were found in Bacteroides in both the cases (n = 45) and 
follow-ups (n = 47), while the general “class A beta-lactamase” gene was detected in nine other genera includ-
ing Atlantibacter, Bacillus, Burkholderia, Clostridium, Proteus, Salmonella, Yersinia, Escherichia, and Klebsiella.

Discussion
The human gut microbiome, when disrupted by an infectious pathogen, can drastically change in composition 
taxonomically, genetically, and  functionally32. In most instances, pathogen invasion leads to a state of dysbio-
sis linked to a decrease in gut microbiota  diversity4,33. Our study supports these findings, as markedly lower 
microbiota diversity was observed among cases during infection than after recovery regardless of the bacterial 
pathogen causing infection. The observed shifts in microbiota composition post-recovery are indicative of gut 
health, as healthy family members (controls) and follow-ups had more similar taxonomic profiles than the cases. 
In addition to the increased microbiota diversity post-recovery, specific taxonomic signatures such as enhanced 
abundance of Bacteroidetes and Firmicutes, were observed. For instance, members of Bacteroides, Prevotella, 
and Phocaeicola as well as Faecalibacterium, Roseburia, and Ruminococcus were found, which have been shown 
to play influential roles in maintaining gut homeostasis and metabolic  health34–36. By contrast, the cases were 
defined primarily by members of Proteobacteria such as Escherichia, Salmonella, Shigella, and Klebsiella, which 
have been linked to acute enteric disturbances as well as prolonged dysbiosis and long-term disease  outcomes37. 
Collectively, the taxonomic data also provide support for common microbiota disturbances regardless of the 
pathogen causing the infection, as the differing abundances were similar to those described in our prior study 
of patients with Campylobacter  infections7.

The opposite was true for the collection of ARGs, as cases had greater resistome diversity during infection than 
after recovery. Because shifts in microbial composition inherently influence the presence and abundance of ARGs 
harbored by microbes within a community, this finding is not surprising. Among the key differences observed, 
cases had more multi-compound and multi-drug resistance genes during infection than post-recovery, whereas 
tetracycline, MLS, and aminoglycoside resistance genes were more abundant in the recovered (follow-up) sam-
ple. Diverse sets of ARGs have previously been found in otherwise healthy individuals as  well7,38,39, providing 
additional support for the human gut as an important reservoir of antibiotic resistance  determinants11. Although 
a subset of patients (n = 2) and follow-ups (n = 5) had taken antibiotics, which are known disruptors of microbial 
communities, the sample size was too small to determine whether specific antibiotics impacted the ARG or 
taxonomic profiles. Nonetheless, the microbiota PCoA showed that antibiotic use significantly influenced the 
distribution of points in the ordination for microbiota composition but not ARG abundance. Additional studies 
are therefore needed to understand how specific antibiotics impact the microbiota composition before and after 
infection. The same was true for age in years, which influenced the distribution of points in the microbiota and 
ARG PCoA. Because age has been shown to influence the composition of the  microbiota40,41, future studies using 
larger sample sizes are required in order to stratify the profiles by age group.

Intriguingly, the PCoA point distribution for microbiota abundances was also influenced by the number of 
days between samplings, or the follow-up period. Upon further inspection, a subset of five follow-up samples 
were more closely related to the case microbiota and resistome samples in the PCoA. Because these patients had 
an average number of 110 days since infection, which did not differ from the overall mean (n = 108 days), other 
factors likely contributed to the case-like taxonomic profiles observed. Indeed, four patients were either < 10 
or > 50 years of age and two of these individuals were hospitalized. Since children and older individuals typically 
have an enhanced risk of developing more severe  disease42,43, these patients could have experienced lengthier 
infections than other members of the sample cohort. The same is true for those who were hospitalized and hence, 
the microbiota may have not fully recovered at the time of follow-up sampling. The complete level of microbiome 
recovery, however, could not be deduced for any of the patients since we did not evaluate the gut microbiome 
in the same patients prior to infection. It is likely that the state of the microbiome prior to infection as well as its 
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resilience to disturbances will vary across individuals and greatly impact the trajectory of disease and recovery. 
Implementation of a more rigorous longitudinal study is therefore needed.

In the host-tracking analysis, we demonstrated that specific microbial taxa were more likely to harbor ARGs 
during infection. Escherichia, for instance, was a prominent host in the cases regardless of the pathogen linked 
to the infection. Specifically, Escherichia comprised an average of 38% of all ACCs, with most genes being 
important for MDR or multi-compound resistance. This result is not surprising given the increased abundance 
of Escherichia observed during infection. Expansion of Escherichia and Enterobacteriaceae in general, was pre-
viously suggested to be linked to inflammation in the  gut44, which was also shown to augment HGT rates 
between commensal and pathogenic members of this  family45. Moreover, as the level of MDR increases within a 
population, so too does the number of integrons, which were also shown to persist among commensal E. coli46. 
This enhanced mobility and maintenance of resistance determinants are key contributors to the emergence of 
resistant  pathobionts3,47.

Evidence of ARGs harbored by genera linked to the acute infections was also observed, indicating that 
some pathogens bring resistance genes into the gut during infection. In patients with Salmonella infections, for 
instance, Salmonella accounted for ~ 31% of all ACCs compared to the overall case average of 18%, with most 
genes encoding MDR or drug and biocide resistance. Co-selection for resistance to antibiotics, metals, and 
biocides has been previously documented in Salmonella and other foodborne  pathogens48. This evidence is sup-
ported by data generated in a co-occurrence network analysis despite being a less robust  approach49. Notably, a 
Salmonella-specific subnetwork comprised of various metal, biocide, and MDR genes was identified among Sal-
monella cases (Figure S19). These findings indicate that the different Salmonella pathogens brought similar ARGs 
into the microbial communities at the time of infection. This subnetwork was not detected in the co-occurrence 
network generated for the Campylobacter cases alone despite the identification of ACCs attributes to Salmonella 
(Figure S20). The detection of Salmonella in the Campylobacter cases is interesting but not unprecedented, as 
previous studies have identified polymicrobial infections involving multiple enteric  pathogens50 including C. 
jejuni and Salmonella51. It is therefore possible that only the Campylobacter was recovered from these cases at 
the time of sampling. Future studies that apply whole-genome sequencing to the bacterial pathogens recovered 
from each sample are needed to determine the diversity and frequency of those ARGs that were introduced into 
each gut community by the infecting pathogen.

In the follow-up samples, Escherichia still accounted for the greatest proportion (~ 20%) of all ARG-carrying 
contigs, which mostly contained MDR genes; however, the proportion was 1.9 times less than that observed 
during infection. Unlike the cases, Bacteroides was the second most important genus accounting for ~ 15% of 
the ARG-carrying contigs at recovery with MLS, beta-lactam, and tetracycline resistance genes predominat-
ing. Members of Bacteroidetes and Firmicutes have previously been linked to high levels of tetracycline and 
erythromycin resistance carrying genes such as tetQ as well as ermF and ermG,  respectively52. These genes were 
previously suggested to be maintained in microbial host populations even in the absence of antibiotic selection, 
thereby enhancing the likelihood of  HGT52. Although resistance to beta-lactam antibiotics has been documented, 
variation in resistance rates has been observed across species and geographic locations, particularly for the beta-
lactamase  producers53,54.

Indeed, the transfer and acquisition of genes encoding beta-lactamase production is of great concern. During 
enteric infection, we detected 11 distinct ESBLs that varied in frequency among the cases, although this number 
may underestimate the actual diversity as not all sequences could be assigned a class  designation55. Our find-
ing that Klebsiella and Escherichia both harbored ESBLs in case and/or follow-up samples calls attention to the 
documented capacity of these genera to transfer genes across species or clonal  lineages56. Importantly, ESBL-
producing Escherichia coli have been documented in healthy children and  adults57 and beta-lactamase genes are 
increasingly prevalent in the human gut, even among healthy  subjects58. In our study, Klebsiella was a prominent 
ARG carrier in 9.2% and 4.6% of ACCs in the cases and follow-ups, respectively, and was associated with a high 
occurrence of the IS5 family of transposases. The identification of a genomic element with capacity to transfer 
ARGs is notable, particularly to other members of Enterobacteriaceae that have contributed to the widespread 
distribution of ESBL  genes2,59. Although relevant to the spread of ESBLs and other ARGs, HGT could not be 
confirmed in our study based on the detection of a gene in two genera at different time points. Hence, future work 
should employ more rigorous methods such as enhanced sequencing depth and characterizing sequence-level 
similarity among ARGs, to more confidently infer gene transfer between and within genera.

Other limitations related to the ACC analysis include the potential for misclassifying ARGs found on plas-
mids even though they were previously shown to contain taxonomic information regarding the host  microbe60. 
Because assembly of short-read sequences can inaccurately characterize plasmids and other  MGEs61, deeper 
sequencing is needed to generate more complete assemblies and avoid misclassifying microbial hosts. Use of 
bioinformatic tools that focus on plasmid sequence analysis would also be informative if deeper sequencing 
methods are applied. Moreover, multiple ARGs were attributed to “uncultured” microbes. This finding, in addi-
tion to the large proportion of unassigned reads, also highlight the need for more comprehensive databases that 
can accurately predict microbial host taxonomies. Relatedly, our use of an amino acid-based taxonomic classifier 
for short reads (Kaiju) may have resulted in the overestimation of known taxa or genes, a limitation that may 
falsely inflate our measure of species richness and  diversity62. In addition, the greatest proportion of unassigned 
reads was observed for lower taxonomic ranks (e.g., Genus, Species), suggesting that nucleic acid- or marker 
gene-based classification tools such as Kraken  263 or MetaPhlAn  464, respectively, may be better for taxonomic 
annotation. Since all our samples were processed with Kaiju at the same resolution, however, any loss of taxo-
nomic information should be consistent across samples. Nonetheless, these alternative annotation strategies, 
used in conjunction with deeper sequencing methods, may be needed to further characterize gut communities. 
Because the ACC analysis relies on classifying microbial hosts based on co-occurrence of an ARG and its taxa 
on the same contig, alternative methods such as Single-molecule Real-time sequencing, could also be applied to 
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address this issue in future studies. Finally, this study was performed before the inclusion of sequencing controls 
was common, and therefore, positive and negative controls were not included. These controls are required to 
appropriately remove potential contaminating sequences, which was not performed here. This omission could 
alter certain interpretations, particularly for the less abundant taxa or genes and may explain some of the batch 
effects observed by run.

Despite these limitations, this study provides important data about alterations in the gut microbiota and 
resistome among patients with acute enteric infections caused by four bacterial pathogens. Our work also cap-
tures the relative restoration of a “healthy” gut following recovery from these infections in that the communities 
rebound to be more similar to the household (uninfected) controls. Such findings are needed to guide the devel-
opment of targeted intervention strategies and therapeutic options aimed at rehabilitating a dysbiotic gut. Future 
work should focus on understanding the trajectory of recovery as it pertains to the presence and dissemination 
of drug resistance. Importantly, characterizing the interactions between microbial hosts, ARGs, and MGEs dur-
ing the process of recovery is crucial to our understanding of how enteric infection impacts such dissemination.

Data availability
Sequencing reads were deposited in the National Center for Biotechnology Information (NCBI) sequence read 
archive (SRA) database under BioProjects PRJNA862908 and PRJNA660443 (BioSamples SAMN29999523 to 
SAMN29999673 and SAMN15958881 to SAMN15958950, respectively). Bioinformatic scripts were described 
 previously7 and are available at: https:// github. com/ ZoeHa nsen/ PAPER_ Hansen_ Scien tific Repor ts_ 2023.
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