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DRCNN: decomposing residual 
convolutional neural networks 
for time series forecasting
Yuzhen Zhu 1, Shaojie Luo 2, Di Huang 2, Weiyan Zheng 2, Fang Su 2* & Beiping Hou 1

Recent studies have shown great performance of Transformer-based models in long-term time series 
forecasting due to their ability in capturing long-term dependencies. However, Transformers have 
their limitations when training on small datasets because of their lack in necessary inductive bias 
for time series forecasting, and do not show significant benefits in short-time step forecasting as 
well as that in long-time step as the continuity of sequence is not focused on. In this paper, efficient 
designs in Transformers are reviewed and a design of decomposing residual convolution neural 
networks or DRCNN is proposed. The DRCNN method allows to utilize the continuity between data 
by decomposing data into residual and trend terms which are processed by a designed convolution 
block or DR-Block. DR-Block has its strength in extracting features by following the structural design 
of Transformers. In addition, by imitating the multi-head in Transformers, a Multi-head Sequence 
method is proposed such that the network is enabled to receive longer inputs and more accurate 
forecasts are obtained. The state-of-the-art performance of the presented model are demonstrated on 
several datasets.

With the success of neural networks in computer vision field and natural language processing1, 2, more and 
more neural network-based time series forecasting methods have been proposed3, 4, which are mainly divided 
into three categories, i.e. RNN-based methods, PredRNN5, DeepAR6. CNN-based methods WaveNet7, TCN8, 
SCINet9, Transformer-based methods Informer10, Autoformer11, FEDformer12. The RNN-based methods are 
autoregressive methods13, which mean that the predicted results of each step depend on previous results. When 
the length of the sequence to be predicted is short, the autoregressive method helps the model to achieve better 
results. However, when the length of the prediction sequence becomes longer, the autoregressive method leads to 
accumulation of errors. Meanwhile the time cost of the model increases linearly. Therefore, RNN-based methods 
are difficult to be applied to long-term series prediction. For example, Fig. 1 shown that LSTM14, an excellent 
RNN network, has small MSE scores in predictions at short time steps and is also fast. But when the time step 
becomes longer, the MSE score rises with a large gradient and the speed becomes slow.

Different from RNNs which usually use rolling prediction, Transformer-based methods output all predic-
tions simultaneously10. This one-shot approach prevents the model from accumulating errors due to longer 
predictions15. However, we find Transformers have shortcomings too. Modeling of sequence in Transformers16 
are based on self-attention mechanism which uses an attention score matrix to correlate importance among 
sequences. Thus, Transformers can merely learn relative relationship of sequence, rather than from the context 
of sequence. Therefore, Transformer uses an extra positional encoding to learn this context, which does not actu-
ally change the absence of Transformer’s inductive bias17. In natural language processing, Transformers can be 
trained with billions of characters, such huge dataset helps Transformers to train well. But in general time series 
forecasting tasks, we usually only have tens of thousands of pieces of data, because collecting data is expensive 
in time series forecasting. For example, the ETT dataset10 was collected from power transformers, and a subset 
of it, ETT-small-m1, was sampled at 15-min intervals, yielding 70,080 data points over two years of collection. 
Although many approaches have been proposed to improve self-attention by introducing frequency domain 
analysis, they do not fully address the shortcomings of Transformer’s inability to take advantage of contextual 
learning. Because of such advantage, the Transformer-based model performs poorly in short time series forecast-
ing, in which model needs the ability to better incorporate context. We tested the performance of Autoformer 
when predicting outputs of different lengths in Fig. 1 which shows that the MSE score of Autoformer is greatly 
improved compared to RNN network in long-term series prediction, but RNN is better than Autoformer in 
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short-term series prediction. In terms of training speed, Autoformer training speed is slower, but the speed does 
not significantly change as the length of the predicted sequence vary.

CNN-based methods convolve the input sequence with a certain step size through a convolution kernel. This 
method itself implies a hypothesis that adjacent data have greater correlation, which happens to be the inductive 
bias that Transformers lack. At the same time, unlike RNN-based methods, CNNs can easily adopt one-shot 
methods to predict like Transformers.

CNNs are widely used in time series analysis of sensor data18, 19, because they have strength in recognizing 
simple patterns in data and then using these simple patterns to generate more complex patterns in higher-level 
layers count data or signal data with a fixed length period. We also see that CNN-based methods achieve SOTA 
performance in time series forecasting9, and based on the above considerations, we believe that the excellent 
performance of CNNs can be extended to long-term time series forecasting, allowing the model achieves good 
performance in both short-term and long-term time series forecasting. We believe that CNN-based methods 
will be an excellent solution for time series forecasting.

Based on the above discussion, a DRCNN is proposed. By adopting the efficient design of Transformer-based 
methods, the model can achieve better results when dealing with long-term time series forecasting, and we also 
design modules that allow the model to efficiently use longer inputs and have better performance. Our main 
contributions are as follows:

•	 We propose a Multi-head Sequence operation. By downsampling the sequence into multiple subsequences, 
the number of subsequences is used as a hyperparameter, each subsequence extracts features independently 
and concat them at the end. The model can use more information from longer input sequences to obtain bet-
ter results and this parallelized processing can greatly improve the speed of the model. We have also extended 
this approach to Transformer to obtain performance improvements.

•	 We design the DR-Block. DR-Block combines the method proposed above and uses the structure of AddNorm 
to improve the performance of the convolutional layer. It can effectively capture long-term and short-term time 
series information, so that the model can achieve good results in both long-term and short-term prediction.

•	 We design a structure to decompose the input sequence into trend terms and residual terms at multiple scales, 
each using a convolution block to learn the features of the corresponding scale, and the sum of the learned 
features is the output of the model. This design allows the model to make better use of the input sequence. 
the corresponding scale, and the sum of the learned features is the output of the model. This design allows 
the model to make better use of the input sequence

Extensive experiments show that our model can achieve SOTA results by utilizing longer input sequence and 
gain better result. We tested our model on seven datasets, all achieved SOTA results. In particular, for the ETT 
dataset, a relative improvement of more than 10% in terms of mean squared error is achieved compared to SOTA 
methods. We briefly show the performance of the model in Fig. 1. DRCNN has better short-term prediction per-
formance than RNN, and the training time does not change much with the increase of the prediction sequence.

Related work
Classical time series forecasting methods, such as VAR20 and ARIMA21 are indispensable part in the field of time 
series forecasting. However, these models are constrained by linearity assumptions and the number of covariates. 
As a result, it’s difficult to handle complex nonlinear time series for them22.

RNN-based methods memorize previous information and use the previous information to influence the out-
put of subsequent nodes. In this way, the model can perform well on short-term series predictions, but the way 
the output is generated in multiple steps makes the model perform poorly on long-term series. There are many 
works to improve this weaknesses by introducing other methods. LSTNet23 introduces a CNN to capture short 
and long-term temporal patterns. DARNN24 introduces attention to resolve long-term dependencies of predic-
tions. The introduction of Transformer makes long-term sequential prediction possible. By using the attention 
scoring matrix, the model can well resolve the long-term dependence of the input sequence, thus improving 
the accuracy of long-time time series prediction. A lot of work also builds on it to improve the performance of 
the model again. Informer10 designs a decoder that outputs all predicted sequences at one time, avoiding accu-
mulated errors. TCCT​25 improves the performance of the model on Informer using a convolutional structure 
parallel to self-attention, and this improvement gives us confidence in the power of convolution for time series 

Figure 1.   Model performance on ETTm2 in serveral output length.
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prediction. The sequence decomposition block proposed by Autoformer11 greatly improves the performance of 
the model by decomposing the input into residual terms and trend terms for prediction respectively, and at the 
same time improves the attention mechanism by using Fast Fourier Transform, and proposes an autocorrela-
tion mechanism. Our model also uses the sequence decomposition block to decompose the input. Fedformer12 
design a more complete frequency domain analysis method on it, which further improved the performance of 
the model. Our model structure is inspired by the mixture of experts method in FEDformer. People also see 
the potential of CNNs for time series forecasting. Using a CNN-derived TCN8, 26 structure easily outperforms 
RNNs on many tasks9. TCN uses dilated convolution and grouped convolution to improve the performance of 
the model, while the author uses causal convolution to prevent future information leakage, which is considered 
to limit the performance of the model in SCINet9, as such way actually reduces historical information. SCINet 
adopts a one-shot output method while abandoning the design of causal convolution. In addition, SCINet 
designs a binary downsampling method so that the model can learn more refined features. Our DR-Block is 
inspired by Transformer and introduces both grouped convolution and dilated convolution, which are proven 
in several experiments.

Methods
Problem definition
Time series forecasting methods try to predict future time series from previous time series. In particular, given 
a previous time series Xt1:t2 = {xt1 , xt1+1, ..., xt2 } , each variable x with dx dimension, and we should predict 
Xt3:t4 = {xt3 , xt3+1, ..., xt4 }.

Therefore, the crux of the problem lies in effectively mapping a two-dimensional matrix onto another two-
dimensional matrix, where the former contains the time dimension and the feature dimension. This perspec-
tive unifies two distinct forecasting scenarios: multivariate time-series forecasting and univariate time-series 
forecasting. The difference lies in the number of feature dimensions they encompass. In our proposed approach, 
we initially extract the feature vectors of the time series through the model, subsequently aligning the feature 
vectors with their corresponding outputs via the utilization of two linear layers.

In this section, we focus our methods on time series forecasting due to their superior performance, especially 
for multivariate time series.

Multi‑head sequence method
Inspired by Transformer’s multi-head structure, we designed Sequence multi-head by downsampling the 
sequence into multiple subsequences, we can able to obtain multiple representations of the original sequence, 
which facilitates the model to get the patterns for the sequence. The experimental results show that how this 
approach affects the optimal input sequence length of the model and improve the performance.

We tried two ways to down sample. One way is to use uniform sampling. Uniform sampling means that the 
original sequence is evenly divided into subsequence segments, and each segment of the original sequence is 
sampled in a certain order. For instance, the original sequence in Fig. 2a is divided into 6 sub-segments for each 
field we sample in the same order.

Another way is random sampling. In order to avoid the loss of information, we will ensure that every value 
of the original sequence is sampled, so we divide the original sequence first in the same way as uniform sam-
pling. For each segment, we choose a value by random sampling, but make sure that every point is sampled. 
For example, in Fig. 2b, the orange line is generated by this random sampling method. These two approaches 
behave differently on different datasets. Through our tests, we found that uniform sampling performs better on 
smoother sequences, while random sampling is better on sequences with strong noise.

Both of them can be implemented with simple code, and the pseudo-code is given below. For uniform sam-
pling, the kth subsequence S[k] :

(1)S[k] = X[:, k::N , :].

Figure 2.   Two different ways to sampling.



4

Vol:.(1234567890)

Scientific Reports |        (2023) 13:15901  | https://doi.org/10.1038/s41598-023-42815-6

www.nature.com/scientificreports/

N means the total number of subsequences.
For random sampling, we need to generate a sampling matrix:

randperm is a function that generates a random permutation of integers within a given range. and the sampled 
subsequence S[k] :

We also attempt to illustrate why MS has positive implications for time series forecasting from the perspective 
of serial smoothing. The method of smoothing series is widely used in traditional time series forecasting. For 
example, ARIMA21, 27 uses moving average to smoothing the sequence and it has proved effective. Autoformer’s 
attempt to introduce moving averages led us realize that perhaps smooth sequences are applicable in emerg-
ing deep learning-based methods. The subsequence generate by downsampling can be regarded as a smoothed 
sequence. Each subsequence has a different representation while the pattern is similar. Each convolution block 
can learn the encoded representation information in different subspaces which enhances the expressiveness of 
the model.

DR‑block
With the MS introduced above, we designed a convolutional module or DR-Block, which as follows:

Sample here refers to the two sampling methods mentioned above, and S is a series of subsequences obtained 
after sampling. These subsequences are concatenated together after extracting features through a series of con-
volutional layers independent of the parameters as the intermediate variable Concat. Concat is added to the 
original input X as the output of DRBlock after passing the LayerNorm and activation function which is GELU28 
in our implementation.

LayerNorm (Layer Normalization) is a technique used in deep learning to normalize the activations of a 
neural network layer. It helps stabilize the training process and improve the convergence of the model.

LayerNorm is applied element-wise to each dimension of the input tensor X. It normalizes the values by 
subtracting the mean and dividing by the standard deviation. The scaling factor ensures that the normalized 
values have the desired variance.

The design of DR-Block follows the design of AddNorm29, 30 in Transformer, as shown in Fig. 3, we will pass 
the input through the convolution layer and activate it, we also use Dropout31 and norm to prevent overfitting, 
and finally add it to the original input as the output. AddNorm is the key for Transformer to build an effective 

(2)IDX[k] = randperm(N)+ k × N .

(3)S[k] = X[:, IDX[k], :].

(4)
S = Sample(X)

Concat = Concatenate(Conv1(S[1]), ...,ConvN (S[N]))
DRBlock(X) = X + Activation(LayerNorm(Concat)).

(5)

LayerNorm(X) = 1√
σ 2 + ε

· (X − µ)

µ = mean(X)(Mean of the input)

σ = std(X)(Standard deviation of the input)

ε = small constant.

Figure 3.   Structure of DRCNN.
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deep architecture32. This also helps the decomposition structure introduced in the next section to be consist-
ently effective.

DRCNN
Inspired by MOE Decomp in FEDformer which use a set of filters with different sizes to extract multiple trend 
components from the input signal and combining them as the final trend, we use a multi-resolution moving 
average to learn the features of the residual terms. Specifically, we choose a set of average ensemble layers with 
different convolutional kernel sizes. The kernels are sized from large to small, so that the trend terms decom-
posed from the residual terms will have multi-scale features. After obtaining the multi-scale trend terms and 
the final residual terms, we learn the importance of each term by MLP33, and the importance will be turned 
into coefficients between 0 and 1 by softmax, these coefficients will be multiplied with the corresponding terms 
respectively, these results will be summed up for the model.

For the outputs Y after convolutional layers, we use MLP to estimate their confidence levels separately and 
then use softmax to scale these confidence levels to a coefficient I that sums to I:

S here refers to the softmax function, which is a widely used activation function in neural networks for map-
ping the outputs of multiple neurons, into the (0,1) interval.

The final output is the sum of the dot products of I and Y:

DRCNN is based on DR-Block to obtain further performance improvement by decomposing the residuals. 
As shown in Fig. 3, we decompose the input of DRCNN into trend and residual terms by decomposition module. 
The decomposition module obtains the trend term by moving average and subtracts the input sequence from 
the trend term to obtain the residual term. We use a moving average with a larger window at the shallow level of 
DRCNN to obtain the trend term at the shallow level, and we use a smaller moving evaluation at the deep level 
to obtain the trend term at the deeper level.

We will use DR-Block to learn the features of the trend term obtained from the residual term. And the last 
remaining residual term will also use DR-Block to learn features which will be mapped to the length of the 
output sequence by linear after summing. This structure is also the factor that the model can utilize longer input 
sequences to obtain better performance. The above process can be described as:

where Xtrend
k  is obtained by decomposing the k-1th residual term by the kth SeriesDecomp. The kth residual term 

Xseasonal
k  is then derived from the Xseasonal

k−1  subtracted from Xtrend
k  . Yk is obtained by passing a Xtrend

k  through the 
kth DRBlock, and Yn+1 is obtained by passing the last residual term through the DRBlock. The Y obtained here 
will be calculated by the method above to produce the output.

SeriesDecomp utilizes the Autoformer idea, especially the following two processes:

AvgPool acts as a moving average here, and Padding ensures that the length of the sequence does not change, 
so that the result of SeriesDecomp are used as trend term.

Loss function
Typically, time series forecasting is optimized by either mean squared errors (MSE) or mean absolute errors 
(MAE) as the loss function, both of which are also used as evaluation metrics to determine how good the model 
is. We choose to use the SmoothL1 loss function to optimize the model. The SmoothL1 loss function can be 
written as:

SmoothL1 loss is proposed in Fast RCNN34 and is widely used in target detection due to its excellent robust-
ness. In the task of time series prediction, when the prediction value is too different from the ground truth, 
SmoothL1 loss ensures that the gradient is not too large to cause training instability, and when the prediction 
value is very small from the ground truth, it ensures that the gradient value is not so large that it destroys the 
network parameters. We find that there are benefits of introducing SmoothL1 loss in time series forecasting.

(6)I = S(MLP(Y)), Si(X) =
exi

∑n
j=1 e

xj
.

(7)Output =
n+1
∑

i=0

IiYi .

(8)

Xtrend
k = SeriesDecompk(X

seasonal
k−1 )

Xseasonal
k = Xseasonal

k−1 − Xtrend
k

Yk = DRBlockk(X
trend
k )

Yn+1 = DRBlockn+1(X
seasonal
n ),

(9)SeriesDecomp(X) = AvgPool(Padding(X)).

(10)smoothL1(x) =
{

0.5x2 if x <1
|x| − 0.5 otherwise

.
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Experiments
In this section, we present the experimental results of the above methods. We analyze these methods and explore 
them one by one, and try to illustrate how they affect performances.

Dataset
ETT (electricity transformer temperature)10

The ETT dataset was collected from two counties in China over 2-year period. By varying the sampling interval, 
the ETT is divided into four datasets ETTh1, ETTh2, ETTm1, and ETTm2. 1 or 2 indicates the different counties 
from which the data originate. h represents a 1-h sampling interval and m represents a 15-min sampling interval. 
Specifically, ETTh1 and ETTh2 contain 17,420 data points and ETTm1 and ETTm2 contain 69,680 data points. 
These datasets consist of the same 8 features.

ECL (electricity consumption load)
The ECL consists of the hourly electricity consumption of 321 users over a 2-year period and contains 26,304 
data points.

Exchange35

Exchange records daily exchange rates for eight different countries from 1990 to 2016 and contains 7588 data 
points.

Weather
The dataset records 21 climatic characteristics of Thuringia in 2020, including temperature, humidity and baro-
metric pressure, with a sampling period of 10 min and a total of 52,696 data points.

Traffic
The traffic dataset is roadway occupancy recorded by 861 sensors on San Francisco Bay Area freeways, with a 
data sampling period of 1 h for a total of 17,544 data points.

ILI (influenza‑like illness)
This dataset records data on patients with influenza-like illness recorded by the Centers for Disease Control 
between 2002 and 2021, and is specific to the proportion of patients with ILI out of the total number of patients. 
The data sampling period was one week totaling 966 data points.

All datasets were processed by normalization prior to training, and we employed the widely used dataset 
processor of Autoformer (https://​github.​com/​thuml/​Autof​ormer). All compared models were tested under the 
same data division.

Setup
Baselines
In order to compare with our proposed DRCNN, we chose five SOTA Transformer models namely FEDformer, 
Autoformer, Informer, Reformer36, Transformer. We place the comparison of DRCNN with other CNN-based 
networks in other studies. Because the original authors of these Transformer-based models tested more datasets 
and more output length.

Implementation details
We use the ADAM37 optimizer to optimize the parameters and a learning rate decay38 of 0.5 to train our model. 
We also utilize an early stop training strategy to avoid overfitting. The training epochs were set to 10 and the 
batch size was set to 128. All experiments were done on PyTorch39 and trained on a single NVIDIA RTX3090 
24GB GPU. For the fairness of the comparison, we used a standard setup, for the ETT dataset we divided it into 
6:2:2, for the other datasets we used a ratio of 7:1:2 and divided all datasets into training, validation and test sets 
in chronological order.

Metrics
We employ MSE and MAE as our evaluation metrics, which as follows:

ŷ refers here to the predictions of the model, and y is used as the ground truth. The reason why we use MAE 
and MSE as evaluation metrics is that the two evaluation metrics can be used to evaluate the performances of 
our model by comparing the corresponding evaluation metrics. Although metrics with scale consistency such as 
MAPE provide a better understanding of the relative percentage for error measurements. MSE and MAE still have 
some advantages, such as the fact that both evaluation metrics provide a visual representation of the prediction 

(11)

MSE = 1

n

n
∑

i=1

(ŷi − yi)
2,

MAE = 1

n

n
∑

i=1

|ŷi − yi|.

https://github.com/thuml/Autoformer
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accuracy. Besides real-world time series often have outlier values that are not due to measurement error. MSE 
and MAE can reflect prediction errors if there are large deviations or outliers in the dataset.

Main result
To better demonstrate the effectiveness of DRCNN on time series forecasting, we performed multivariate time 
series forecasting and univariate time series forecasting on several datasets. Multivariate time series forecasting 
requires forecasting all input features, while univariate time series forecasting forecasts a specific feature. For 
the ILI dataset our forecasting horizon T ∈ {24, 36, 48, 60} because this dataset is small with only a few thousand 
data. For the others our forecasting horizon T ∈ {24, 96, 192, 336, 720}.

For the Transformer-based models we used 24 inputs on the ILI and the rest used 96 inputs, which is the setup 
for these models to achieve SOTA scores. For DRCNN, we used 96-length inputs on the ILI and Exchange-rate 
datasets, and 720-length inputs for the other datasets, which helped the models to achieve excellent performance 
on each dataset. We choose MSE and MAE as evaluation metrics, and a smaller evaluation metric means better 
performance.

Multivariate time‑series forecasting
In Table 1, DRCNN achieves an absolute advantage. We get 18% MSE improvement on the ETTm2 dataset, 
27.8% MSE improvement on the electricity dataset, 42.3% MSE improvement on the foreign exchange dataset, 
30.4% MSE improvement on the traffic dataset, 24.1% MSE improvement on the weather dataset, and 2% MSE 
improvement on the ILI dataset.

We speculate that the reason for only a small improvement on the ILI dataset is that the dataset is too small, 
with only 960 data, and the sampling period is too long for the sequences to be smooth enough for our proposed 
MS to work. For all other data sets, our model achieves SOTA results, obtaining an average improvement of more 
than 20% compared to previous models. On short time series, i.e., 24-length outputs, we obtain even greater per-
formance improvements, For example, on the power dataset, we have a 37.8% improvement for 24-length outputs, 
compared to an average of 27.8% for this dataset. This may indicate that these Transformer-based models focus 

Table 1.   Multivariate time-series forecasting results on six datasets. Best-performing model values are in bold.

Methods DRCNN FEDformer Autoformer Informer Reformer Transformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTm2

24 0.092 0.190 0.115 0.226 0.153 0.259 0.318 0.423 0.263 0.371 0.179 0.309

96 0.164 0.252 0.203 0.287 0.255 0.339 0.365 0.453 0.658 0.619 0.735 0.626

192 0.223 0.294 0.269 0.328 0.281 0.340 0.533 0.563 1.078 0.827 1.185 0.854

336 0.273 0.331 0.325 0.366 0.339 0.372 1.363 0.887 1.549 0.972 1.293 0.857

720 0.358 0.393 0.421 0.415 0.422 0.419 3.379 1.338 2.631 1.242 2.404 1.132

Electricity

24 0.102 0.199 0.164 0.284 0.163 0.284 0.265 0.357 0.280 0.376 0.224 0.332

96 0.132 0.229 0.183 0.297 0.201 0.317 0.274 0.368 0.312 0.402 0.263 0.361

192 0.143 0.242 0.195 0.308 0.222 0.334 0.296 0.386 0.348 0.433 0.278 0.369

336 0.161 0.260 0.212 0.313 0.231 0.338 0.300 0.394 0.350 0.433 0.278 0.369

720 0.190 0.288 0.231 0.343 0.254 0.361 0.373 0.439 0.340 0.420 0.292 0.375

Exchange

24 0.023 0.100 0.054 0.168 0.092 0.228 0.498 0.547 0.656 0.626 0.278 0.409

96 0.078 0.199 0.139 0.276 0.197 0.323 0.847 0.752 1.065 0.829 0.589 0.636

192 0.160 0.292 0.256 0.369 0.300 0.369 1.204 0.895 1.188 0.906 1.656 1.030

336 0.293 0.408 0.426 0.464 0.509 0.524 1.672 1.036 1.357 0.976 1.409 0.986

720 0.636 0.610 1.090 0.800 1.447 0.941 2.478 1.310 1.510 1.016 1.615 1.054

Traffic

24 0.354 0.257 0.550 0.359 0.609 0.384 0.762 0.435 0.727 0.412 0.770 0.457

96 0.381 0.269 0.562 0.349 0.613 0.388 0.719 0.391 0.732 0.423 0.703 0.395

192 0.388 0.270 0.562 0.346 0.616 0.382 0.696 0.379 0.733 0.420 0.744 0.413

336 0.404 0.280 0.570 0.323 0.622 0.337 0.777 0.420 0.742 0.420 0.684 0.373

720 0.450 0.306 0.596 0.368 0.660 0.408 0.864 0.472 0.755 0.423 0.674 0.367

Weather

24 0.101 0.131 0.152 0.236 0.218 0.318 0.271 0.337 0.655 0.583 0.170 0.254

96 0.165 0.213 0.217 0.296 0.266 0.336 0.300 0.384 0.689 0.596 0.438 0.445

192 0.210 0.253 0.276 0.336 0.307 0.367 0.598 0.544 0.752 0.638 0.593 0.367

336 0.265 0.291 0.339 0.380 0.359 0.395 0.578 0.523 0.639 0.596 0.444 0.474

720 0.332 0.340 0.403 0.428 0.578 0.578 1.059 0.741 1.130 0.792 0.654 0.579

ILI

24 2.141 1.004 2.203 0.963 3.483 1.287 5.764 1.677 4.400 1.382 4.138 1.329

36 2.222 1.042 2.272 0.976 3.103 1.148 4.755 1.467 4.783 1.448 4.430 1.423

48 2.178 1.031 2.209 0.981 2.669 1.085 4.763 1.469 4.832 1.465 4.883 1.477

60 2.340 1.084 2.545 1.061 2.770 1.125 5.264 1.564 4.882 1.483 5.202 1.571
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too much on the prediction of long time series and not very well on the prediction of short time series, and the 
use of Transformer-based models for the prediction of short time series may be a very interesting topic to explore.

Univariate time‑series forecasting
As shown in Table 2, we tested the univariate time series prediction results of DRCNN on three datasets. The 
parameter settings were consistent with multivariate time series prediction, with only the feature input dimension 
modified. DRCNN achieves a 6.1% MSE improvement on ETTm2. Besides, DRCNN achieved an 18.8% MSE 
improvement on the Electricity dataset and a 29.6% improvement on the Exchange dataset.

Table 2.   Univariate time-series forecasting results on three datasets. Best-performing model values are in 
bold.

Methods DRCNN FEDformer Autoformer Informer Reformer Transformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTm2

24 0.019 0.092 0.021 0.105 0.028 0.117 0.069 0.207 0.042 0.150 0.029 0.114

96 0.061 0.182 0.063 0.189 0.065 0.189 0.080 0.217 0.131 0.288 0.088 0.235

192 0.093 0.231 0.102 0.245 0.118 0.256 0.112 0.259 0.195 0.360 0.124 0.269

336 0.124 0.270 0.130 0.279 0.154 0.305 0.166 0.314 0.220 0.381 0.163 0.315

720 0.163 0.317 0.178 0.325 0.182 0.335 0.228 0.380 0.290 0.442 0.223 0.379

Electricity

24 0.130 0.257 0.233 0.365 0.379 0.473 0.265 0.357 0.213 0.340 0.207 0.338

96 0.218 0.325 0.253 0.370 0.341 0.438 0.258 0.367 0.275 0.379 0.311 0.402

192 0.268 0.359 0.282 0.386 0.345 0.428 0.285 0.388 0.304 0.304 0.313 0.406

336 0.287 0.379 0.346 0.431 0.406 0.470 0.336 0.423 0.370 0.448 0.455 0.495

720 0.363 0.441 0.422 0.484 0.565 0.581 0.607 0.599 0.460 0.511 0.498 0.529

Exchange

24 0.025 0.121 0.037 0.149 0.092 0.228 0.498 0.547 0.095 0.243 0.050 0.179

96 0.090 0.233 0.131 0.284 0.241 0.387 1.327 0.944 0.298 0.444 0.283 0.409

192 0.183 0.333 0.277 0.420 0.300 0.369 1.258 0.924 0.777 0.719 1.912 1.001

336 0.324 0.451 0.426 0.511 0.509 0.524 2.179 1.296 1.833 1.128 2.339 1.179

720 0.852 0.715 1.162 0.832 1.260 0.867 1.280 0.953 1.203 0.956 1.035 0.772

Figure 4.   Trend of model performance with increasing input length.

Figure 5.   More complete input length settings in DRCNN.
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Ablation studies
All our ablation experiments are performed on the ETTm2 prediction 720 length output, which is a good task 
to test the performance of the model on long-term series prediction, and a good form of performance to verify 
the effectiveness of the proposed method above.

Ablation study on input length
In justifying our choice of utilizing 720-length inputs for our main experiments, while employing 96-length 
inputs for other baseline models, we believe such comparisons are meaningful. An important aspect of this paper 
is to investigate the potential for achieving improved prediction results by utilizing longer input sequences, a 
challenge that other models may not readily address. Our experiments further underline this perspective. As 
we gradually increased the input length beyond 96, the performance of the other models, as depicted in Fig. 4, 
exhibited a decline in performance.

Figure 6.   Trend of model performance with more subsequence.

Figure 7.   Trend of model performance with more DR-block.

Table 3.   Uniform sampling vs. random sampling. Best-performing model values are in bold.

Methods Uniform Random

Metric MSE MAE MSE MAE

ETTm2

24 0.103 0.204 0.112 0.215

96 0.178 0.269 0.176 0.271

192 0.243 0.314 0.246 0.318

336 0.294 0.349 0.332 0.357

720 0.375 0.399 0.361 0.387

Traffic

24 0.359 0.254 0.356 0.254

96 0.393 0.269 0.389 0.269

192 0.404 0.274 0.399 0.274

336 0.421 0.283 0.416 0.282

720 0.471 0.306 0.465 0.306
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We find that the performance still improves after the input length is beyond 1000, until the model perfor-
mance drops back and is basically stable when the input length approaches 2000, which was shown in Fig. 5.

Ablation study on multi‑head sequence
In Fig. 6, our experiments demonstrate that as the number of subsequences grows, the MSE error of the model 
first decreases significantly and then will rebound, which is in line with expectations. This observation under-
scores the significance of choosing an appropriate number of subsequences. It enables the model to effectively 
capture sequence features and harness input from long sequences. However, it also highlights the need to strike 
a balance, as an excessive degree of subsequences can potentially disrupt timing information and result in a 
decline in model performance.

Ablation study on network layers
Figure 7 shows the trend of network performance as the number of layers increases, and the number of subse-
quences is set to 5. Experimentally, it is shown that a network with 1 to 2 layers can extract the input features 
well, and a network that is too deep can lead to overfitting and make the model perform worse.

Table 4.   SmoothL1 vs. MSE. Best-performing model values are in bold.

Loss SmoothL1 MSE MAE

Metric MSE MAE MSE MAE MSE MAE

ETTm2

24 0.092 0.190 0.104 0.209 0.101 0.202

96 0.164 0.252 0.179 0.274 0.168 0.257

192 0.223 0.294 0.243 0.318 0.230 0.298

336 0.273 0.331 0.301 0.358 0.284 0.335

720 0.358 0.393 0.366 0.407 0.372 0.386

Table 5.   Transformer with MS. Best-performing model values are in bold.

Methods Transformer* Transformer

Metric MSE MAE MSE MAE

ETTm2

24 0.201 0.327 0.179 0.309

96 0.473 0.520 0.735 0.626

192 0.911 0.713 1.185 0.854

336 1.211 0.831 1.293 0.857

720 2.239 1.109 2.404 1.132

Table 6.   Comparison with SCINet and ARIMA. Best-performing model values are in bold.

Methods DRCNN SCINet ARIMA

Metric MSE MAE MSE MAE MSE MAE

ETTh1

24 0.313 0.364 0.341 0.379 0.108 0.284

48 0.340 0.379 0.368 0.395 0.175 0.424

168 0.373 0.404 0.451 0.457 0.396 0.504

336 0.459 0.464 0.502 0.497 0.468 0.593

720 0.493 0.506 0.583 0.560 0.659 0.766

ETTh2

24 0.166 0.265 0.188 0.288 3.554 0.445

48 0.222 0.307 0.279 0.358 3.190 0.474

168 0.405 0.436 0.505 0.504 2.800 0.595

336 0.518 0.504 0.618 0.560 2.753 0.738

720 0.898 0.685 1.074 0.761 2.878 1.044

ETTm1

24 0.199 0.279 0.126 0.229 0.090 0.206

48 0.263 0.323 0.169 0.274 0.179 0.306

96 0.295 0.345 0.191 0.291 0.272 0.399

288 0.349 0.379 0.365 0.415 0.462 0.558

672 0.408 0.414 0.713 0.604 0.639 0.697
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Ablation study on sampling
The two methods we propose to obtain multi-headed subsequences have their own advantages and disadvantages 
on different datasets. We tested the performance of the two methods on the two datasets. The experimental 
results are shown in Table 3.

Ablation study on loss function
Table 4 shows the results obtained by using SmoothL1 MSE and MAE as loss functions on ETTm2. Using MSE 
or MAE directly as the objective function is not as effective as using the SmoothL1 function indirectly.

Other studies
In Table 5, we tried using our proposed MS on the Transformer while retaining the original feature dimension 
Multi-heads, and our proposed MS mechanism helped the original Transformer to achieve an 18% performance 
improvement. However, the simple application of MS in Transformer has led us to believe that this approach 
can be extended to other Transformer-based models as well. We believe that this is a good direction to improve 
the Transformer-based model.

Beyond the initial time we also did comparison experiments with SCINet and ARIMA. Because these models 
compared different datasets and different output lengths, we finally decided to put their results in here, and we 
also obtained SOTA results in the comparison with these models. As shown in Table 6.

Conclusion
In this paper, we proposed a CNN-based model called DRCNN. In DRCNN, a Multi-head Sequence method 
is introduced to divide the sequence into multiple subsequences by downsampling the input sequence. This 
approach helps the model make predictions using information from longer input sequences. Based on this, we 
design a convolution block, which can effectively extract temporal features through the method of Multi-head 
Sequence and the effective structure of AddNorm. We also use cyclic decomposition to smooth the sequence to 
help the model achieve good results. DRCNN achieves SOTA prediction performance in various experimental 
settings on different datasets, which demonstrates the effectiveness of our DRCNN.

Data availability
The ETT dataset is available at https://​github.​com/​zhouh​aoyi/​ETDat​aset. The ECL dataset is available at https://​
archi​ve.​ics.​uci.​edu/​ml/​datas​ets/​Elect​ricit​yLoad​Diagr​ams20​112014. The Exchange dataset is available at https://​
github.​com/​laigu​okun/ multivariatetime-series-data. The Weather datasetis available at https://​www.​bgcje​na.​
mpg.​de/​wetter/. The Traffic dataset is available at http://​pems.​dot.​ca.​gov. The ILI dataset is available at https://​
gis.​cdc.​gov/​grasp/​fluvi​ew/​flupo​rtald​ashbo​ard.​html.

Code availability
The code is available at https://​github.​com/​acrndr/​DRCNN.
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