
1

Vol.:(0123456789)

Scientific Reports | (2023) 13:15901 | https://doi.org/10.1038/s41598-023-42815-6

www.nature.com/scientificreports

DRCNN: decomposing residual
convolutional neural networks
for time series forecasting
Yuzhen Zhu 1, Shaojie Luo 2, Di Huang 2, Weiyan Zheng 2, Fang Su 2* & Beiping Hou 1

Recent studies have shown great performance of Transformer-based models in long-term time series
forecasting due to their ability in capturing long-term dependencies. However, Transformers have
their limitations when training on small datasets because of their lack in necessary inductive bias
for time series forecasting, and do not show significant benefits in short-time step forecasting as
well as that in long-time step as the continuity of sequence is not focused on. In this paper, efficient
designs in Transformers are reviewed and a design of decomposing residual convolution neural
networks or DRCNN is proposed. The DRCNN method allows to utilize the continuity between data
by decomposing data into residual and trend terms which are processed by a designed convolution
block or DR-Block. DR-Block has its strength in extracting features by following the structural design
of Transformers. In addition, by imitating the multi-head in Transformers, a Multi-head Sequence
method is proposed such that the network is enabled to receive longer inputs and more accurate
forecasts are obtained. The state-of-the-art performance of the presented model are demonstrated on
several datasets.

With the success of neural networks in computer vision field and natural language processing1, 2, more and
more neural network-based time series forecasting methods have been proposed3, 4, which are mainly divided
into three categories, i.e. RNN-based methods, PredRNN5, DeepAR6. CNN-based methods WaveNet7, TCN8,
SCINet9, Transformer-based methods Informer10, Autoformer11, FEDformer12. The RNN-based methods are
autoregressive methods13, which mean that the predicted results of each step depend on previous results. When
the length of the sequence to be predicted is short, the autoregressive method helps the model to achieve better
results. However, when the length of the prediction sequence becomes longer, the autoregressive method leads to
accumulation of errors. Meanwhile the time cost of the model increases linearly. Therefore, RNN-based methods
are difficult to be applied to long-term series prediction. For example, Fig. 1 shown that LSTM14, an excellent
RNN network, has small MSE scores in predictions at short time steps and is also fast. But when the time step
becomes longer, the MSE score rises with a large gradient and the speed becomes slow.

Different from RNNs which usually use rolling prediction, Transformer-based methods output all predic-
tions simultaneously10. This one-shot approach prevents the model from accumulating errors due to longer
predictions15. However, we find Transformers have shortcomings too. Modeling of sequence in Transformers16
are based on self-attention mechanism which uses an attention score matrix to correlate importance among
sequences. Thus, Transformers can merely learn relative relationship of sequence, rather than from the context
of sequence. Therefore, Transformer uses an extra positional encoding to learn this context, which does not actu-
ally change the absence of Transformer’s inductive bias17. In natural language processing, Transformers can be
trained with billions of characters, such huge dataset helps Transformers to train well. But in general time series
forecasting tasks, we usually only have tens of thousands of pieces of data, because collecting data is expensive
in time series forecasting. For example, the ETT dataset10 was collected from power transformers, and a subset
of it, ETT-small-m1, was sampled at 15-min intervals, yielding 70,080 data points over two years of collection.
Although many approaches have been proposed to improve self-attention by introducing frequency domain
analysis, they do not fully address the shortcomings of Transformer’s inability to take advantage of contextual
learning. Because of such advantage, the Transformer-based model performs poorly in short time series forecast-
ing, in which model needs the ability to better incorporate context. We tested the performance of Autoformer
when predicting outputs of different lengths in Fig. 1 which shows that the MSE score of Autoformer is greatly
improved compared to RNN network in long-term series prediction, but RNN is better than Autoformer in

OPEN

1School of Automation and Electrical Engineering, Zhejiang University of Science and Technology,
Hangzhou 310000, China. 2Hangzhou Science and Technology Development Branch of Zhejiang Dayou Industrial
Co.,Ltd., Hangzhou 310000, China. *email: dykj32776@163.com

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-42815-6&domain=pdf

2

Vol:.(1234567890)

Scientific Reports | (2023) 13:15901 | https://doi.org/10.1038/s41598-023-42815-6

www.nature.com/scientificreports/

short-term series prediction. In terms of training speed, Autoformer training speed is slower, but the speed does
not significantly change as the length of the predicted sequence vary.

CNN-based methods convolve the input sequence with a certain step size through a convolution kernel. This
method itself implies a hypothesis that adjacent data have greater correlation, which happens to be the inductive
bias that Transformers lack. At the same time, unlike RNN-based methods, CNNs can easily adopt one-shot
methods to predict like Transformers.

CNNs are widely used in time series analysis of sensor data18, 19, because they have strength in recognizing
simple patterns in data and then using these simple patterns to generate more complex patterns in higher-level
layers count data or signal data with a fixed length period. We also see that CNN-based methods achieve SOTA
performance in time series forecasting9, and based on the above considerations, we believe that the excellent
performance of CNNs can be extended to long-term time series forecasting, allowing the model achieves good
performance in both short-term and long-term time series forecasting. We believe that CNN-based methods
will be an excellent solution for time series forecasting.

Based on the above discussion, a DRCNN is proposed. By adopting the efficient design of Transformer-based
methods, the model can achieve better results when dealing with long-term time series forecasting, and we also
design modules that allow the model to efficiently use longer inputs and have better performance. Our main
contributions are as follows:

•	 We propose a Multi-head Sequence operation. By downsampling the sequence into multiple subsequences,
the number of subsequences is used as a hyperparameter, each subsequence extracts features independently
and concat them at the end. The model can use more information from longer input sequences to obtain bet-
ter results and this parallelized processing can greatly improve the speed of the model. We have also extended
this approach to Transformer to obtain performance improvements.

•	 We design the DR-Block. DR-Block combines the method proposed above and uses the structure of AddNorm
to improve the performance of the convolutional layer. It can effectively capture long-term and short-term time
series information, so that the model can achieve good results in both long-term and short-term prediction.

•	 We design a structure to decompose the input sequence into trend terms and residual terms at multiple scales,
each using a convolution block to learn the features of the corresponding scale, and the sum of the learned
features is the output of the model. This design allows the model to make better use of the input sequence.
the corresponding scale, and the sum of the learned features is the output of the model. This design allows
the model to make better use of the input sequence

Extensive experiments show that our model can achieve SOTA results by utilizing longer input sequence and
gain better result. We tested our model on seven datasets, all achieved SOTA results. In particular, for the ETT
dataset, a relative improvement of more than 10% in terms of mean squared error is achieved compared to SOTA
methods. We briefly show the performance of the model in Fig. 1. DRCNN has better short-term prediction per-
formance than RNN, and the training time does not change much with the increase of the prediction sequence.

Related work
Classical time series forecasting methods, such as VAR20 and ARIMA21 are indispensable part in the field of time
series forecasting. However, these models are constrained by linearity assumptions and the number of covariates.
As a result, it’s difficult to handle complex nonlinear time series for them22.

RNN-based methods memorize previous information and use the previous information to influence the out-
put of subsequent nodes. In this way, the model can perform well on short-term series predictions, but the way
the output is generated in multiple steps makes the model perform poorly on long-term series. There are many
works to improve this weaknesses by introducing other methods. LSTNet23 introduces a CNN to capture short
and long-term temporal patterns. DARNN24 introduces attention to resolve long-term dependencies of predic-
tions. The introduction of Transformer makes long-term sequential prediction possible. By using the attention
scoring matrix, the model can well resolve the long-term dependence of the input sequence, thus improving
the accuracy of long-time time series prediction. A lot of work also builds on it to improve the performance of
the model again. Informer10 designs a decoder that outputs all predicted sequences at one time, avoiding accu-
mulated errors. TCCT​25 improves the performance of the model on Informer using a convolutional structure
parallel to self-attention, and this improvement gives us confidence in the power of convolution for time series

Figure 1.   Model performance on ETTm2 in serveral output length.

3

Vol.:(0123456789)

Scientific Reports | (2023) 13:15901 | https://doi.org/10.1038/s41598-023-42815-6

www.nature.com/scientificreports/

prediction. The sequence decomposition block proposed by Autoformer11 greatly improves the performance of
the model by decomposing the input into residual terms and trend terms for prediction respectively, and at the
same time improves the attention mechanism by using Fast Fourier Transform, and proposes an autocorrela-
tion mechanism. Our model also uses the sequence decomposition block to decompose the input. Fedformer12
design a more complete frequency domain analysis method on it, which further improved the performance of
the model. Our model structure is inspired by the mixture of experts method in FEDformer. People also see
the potential of CNNs for time series forecasting. Using a CNN-derived TCN8, 26 structure easily outperforms
RNNs on many tasks9. TCN uses dilated convolution and grouped convolution to improve the performance of
the model, while the author uses causal convolution to prevent future information leakage, which is considered
to limit the performance of the model in SCINet9, as such way actually reduces historical information. SCINet
adopts a one-shot output method while abandoning the design of causal convolution. In addition, SCINet
designs a binary downsampling method so that the model can learn more refined features. Our DR-Block is
inspired by Transformer and introduces both grouped convolution and dilated convolution, which are proven
in several experiments.

Methods
Problem definition
Time series forecasting methods try to predict future time series from previous time series. In particular, given
a previous time series Xt1:t2 = {xt1 , xt1+1, ..., xt2 } , each variable x with dx dimension, and we should predict
Xt3:t4 = {xt3 , xt3+1, ..., xt4 }.

Therefore, the crux of the problem lies in effectively mapping a two-dimensional matrix onto another two-
dimensional matrix, where the former contains the time dimension and the feature dimension. This perspec-
tive unifies two distinct forecasting scenarios: multivariate time-series forecasting and univariate time-series
forecasting. The difference lies in the number of feature dimensions they encompass. In our proposed approach,
we initially extract the feature vectors of the time series through the model, subsequently aligning the feature
vectors with their corresponding outputs via the utilization of two linear layers.

In this section, we focus our methods on time series forecasting due to their superior performance, especially
for multivariate time series.

Multi‑head sequence method
Inspired by Transformer’s multi-head structure, we designed Sequence multi-head by downsampling the
sequence into multiple subsequences, we can able to obtain multiple representations of the original sequence,
which facilitates the model to get the patterns for the sequence. The experimental results show that how this
approach affects the optimal input sequence length of the model and improve the performance.

We tried two ways to down sample. One way is to use uniform sampling. Uniform sampling means that the
original sequence is evenly divided into subsequence segments, and each segment of the original sequence is
sampled in a certain order. For instance, the original sequence in Fig. 2a is divided into 6 sub-segments for each
field we sample in the same order.

Another way is random sampling. In order to avoid the loss of information, we will ensure that every value
of the original sequence is sampled, so we divide the original sequence first in the same way as uniform sam-
pling. For each segment, we choose a value by random sampling, but make sure that every point is sampled.
For example, in Fig. 2b, the orange line is generated by this random sampling method. These two approaches
behave differently on different datasets. Through our tests, we found that uniform sampling performs better on
smoother sequences, while random sampling is better on sequences with strong noise.

Both of them can be implemented with simple code, and the pseudo-code is given below. For uniform sam-
pling, the kth subsequence S[k] :

(1)S[k] = X[:, k::N , :].

Figure 2.   Two different ways to sampling.

4

Vol:.(1234567890)

Scientific Reports | (2023) 13:15901 | https://doi.org/10.1038/s41598-023-42815-6

www.nature.com/scientificreports/

N means the total number of subsequences.
For random sampling, we need to generate a sampling matrix:

randperm is a function that generates a random permutation of integers within a given range. and the sampled
subsequence S[k] :

We also attempt to illustrate why MS has positive implications for time series forecasting from the perspective
of serial smoothing. The method of smoothing series is widely used in traditional time series forecasting. For
example, ARIMA21, 27 uses moving average to smoothing the sequence and it has proved effective. Autoformer’s
attempt to introduce moving averages led us realize that perhaps smooth sequences are applicable in emerg-
ing deep learning-based methods. The subsequence generate by downsampling can be regarded as a smoothed
sequence. Each subsequence has a different representation while the pattern is similar. Each convolution block
can learn the encoded representation information in different subspaces which enhances the expressiveness of
the model.

DR‑block
With the MS introduced above, we designed a convolutional module or DR-Block, which as follows:

Sample here refers to the two sampling methods mentioned above, and S is a series of subsequences obtained
after sampling. These subsequences are concatenated together after extracting features through a series of con-
volutional layers independent of the parameters as the intermediate variable Concat. Concat is added to the
original input X as the output of DRBlock after passing the LayerNorm and activation function which is GELU28
in our implementation.

LayerNorm (Layer Normalization) is a technique used in deep learning to normalize the activations of a
neural network layer. It helps stabilize the training process and improve the convergence of the model.

LayerNorm is applied element-wise to each dimension of the input tensor X. It normalizes the values by
subtracting the mean and dividing by the standard deviation. The scaling factor ensures that the normalized
values have the desired variance.

The design of DR-Block follows the design of AddNorm29, 30 in Transformer, as shown in Fig. 3, we will pass
the input through the convolution layer and activate it, we also use Dropout31 and norm to prevent overfitting,
and finally add it to the original input as the output. AddNorm is the key for Transformer to build an effective

(2)IDX[k] = randperm(N)+ k × N .

(3)S[k] = X[:, IDX[k], :].

(4)
S = Sample(X)

Concat = Concatenate(Conv1(S[1]), ...,ConvN (S[N]))
DRBlock(X) = X + Activation(LayerNorm(Concat)).

(5)

LayerNorm(X) = 1√
σ 2 + ε

· (X − µ)

µ = mean(X)(Mean of the input)

σ = std(X)(Standard deviation of the input)

ε = small constant.

Figure 3.   Structure of DRCNN.

5

Vol.:(0123456789)

Scientific Reports | (2023) 13:15901 | https://doi.org/10.1038/s41598-023-42815-6

www.nature.com/scientificreports/

deep architecture32. This also helps the decomposition structure introduced in the next section to be consist-
ently effective.

DRCNN
Inspired by MOE Decomp in FEDformer which use a set of filters with different sizes to extract multiple trend
components from the input signal and combining them as the final trend, we use a multi-resolution moving
average to learn the features of the residual terms. Specifically, we choose a set of average ensemble layers with
different convolutional kernel sizes. The kernels are sized from large to small, so that the trend terms decom-
posed from the residual terms will have multi-scale features. After obtaining the multi-scale trend terms and
the final residual terms, we learn the importance of each term by MLP33, and the importance will be turned
into coefficients between 0 and 1 by softmax, these coefficients will be multiplied with the corresponding terms
respectively, these results will be summed up for the model.

For the outputs Y after convolutional layers, we use MLP to estimate their confidence levels separately and
then use softmax to scale these confidence levels to a coefficient I that sums to I:

S here refers to the softmax function, which is a widely used activation function in neural networks for map-
ping the outputs of multiple neurons, into the (0,1) interval.

The final output is the sum of the dot products of I and Y:

DRCNN is based on DR-Block to obtain further performance improvement by decomposing the residuals.
As shown in Fig. 3, we decompose the input of DRCNN into trend and residual terms by decomposition module.
The decomposition module obtains the trend term by moving average and subtracts the input sequence from
the trend term to obtain the residual term. We use a moving average with a larger window at the shallow level of
DRCNN to obtain the trend term at the shallow level, and we use a smaller moving evaluation at the deep level
to obtain the trend term at the deeper level.

We will use DR-Block to learn the features of the trend term obtained from the residual term. And the last
remaining residual term will also use DR-Block to learn features which will be mapped to the length of the
output sequence by linear after summing. This structure is also the factor that the model can utilize longer input
sequences to obtain better performance. The above process can be described as:

where Xtrend
k is obtained by decomposing the k-1th residual term by the kth SeriesDecomp. The kth residual term

Xseasonal
k is then derived from the Xseasonal

k−1 subtracted from Xtrend
k  . Yk is obtained by passing a Xtrend

k through the
kth DRBlock, and Yn+1 is obtained by passing the last residual term through the DRBlock. The Y obtained here
will be calculated by the method above to produce the output.

SeriesDecomp utilizes the Autoformer idea, especially the following two processes:

AvgPool acts as a moving average here, and Padding ensures that the length of the sequence does not change,
so that the result of SeriesDecomp are used as trend term.

Loss function
Typically, time series forecasting is optimized by either mean squared errors (MSE) or mean absolute errors
(MAE) as the loss function, both of which are also used as evaluation metrics to determine how good the model
is. We choose to use the SmoothL1 loss function to optimize the model. The SmoothL1 loss function can be
written as:

SmoothL1 loss is proposed in Fast RCNN34 and is widely used in target detection due to its excellent robust-
ness. In the task of time series prediction, when the prediction value is too different from the ground truth,
SmoothL1 loss ensures that the gradient is not too large to cause training instability, and when the prediction
value is very small from the ground truth, it ensures that the gradient value is not so large that it destroys the
network parameters. We find that there are benefits of introducing SmoothL1 loss in time series forecasting.

(6)I = S(MLP(Y)), Si(X) =
exi

∑n
j=1 e

xj
.

(7)Output =
n+1
∑

i=0

IiYi .

(8)

Xtrend
k = SeriesDecompk(X

seasonal
k−1)

Xseasonal
k = Xseasonal

k−1 − Xtrend
k

Yk = DRBlockk(X
trend
k)

Yn+1 = DRBlockn+1(X
seasonal
n),

(9)SeriesDecomp(X) = AvgPool(Padding(X)).

(10)smoothL1(x) =
{

0.5x2 if x <1
|x| − 0.5 otherwise

.

6

Vol:.(1234567890)

Scientific Reports | (2023) 13:15901 | https://doi.org/10.1038/s41598-023-42815-6

www.nature.com/scientificreports/

Experiments
In this section, we present the experimental results of the above methods. We analyze these methods and explore
them one by one, and try to illustrate how they affect performances.

Dataset
ETT (electricity transformer temperature)10

The ETT dataset was collected from two counties in China over 2-year period. By varying the sampling interval,
the ETT is divided into four datasets ETTh1, ETTh2, ETTm1, and ETTm2. 1 or 2 indicates the different counties
from which the data originate. h represents a 1-h sampling interval and m represents a 15-min sampling interval.
Specifically, ETTh1 and ETTh2 contain 17,420 data points and ETTm1 and ETTm2 contain 69,680 data points.
These datasets consist of the same 8 features.

ECL (electricity consumption load)
The ECL consists of the hourly electricity consumption of 321 users over a 2-year period and contains 26,304
data points.

Exchange35

Exchange records daily exchange rates for eight different countries from 1990 to 2016 and contains 7588 data
points.

Weather
The dataset records 21 climatic characteristics of Thuringia in 2020, including temperature, humidity and baro-
metric pressure, with a sampling period of 10 min and a total of 52,696 data points.

Traffic
The traffic dataset is roadway occupancy recorded by 861 sensors on San Francisco Bay Area freeways, with a
data sampling period of 1 h for a total of 17,544 data points.

ILI (influenza‑like illness)
This dataset records data on patients with influenza-like illness recorded by the Centers for Disease Control
between 2002 and 2021, and is specific to the proportion of patients with ILI out of the total number of patients.
The data sampling period was one week totaling 966 data points.

All datasets were processed by normalization prior to training, and we employed the widely used dataset
processor of Autoformer (https://​github.​com/​thuml/​Autof​ormer). All compared models were tested under the
same data division.

Setup
Baselines
In order to compare with our proposed DRCNN, we chose five SOTA Transformer models namely FEDformer,
Autoformer, Informer, Reformer36, Transformer. We place the comparison of DRCNN with other CNN-based
networks in other studies. Because the original authors of these Transformer-based models tested more datasets
and more output length.

Implementation details
We use the ADAM37 optimizer to optimize the parameters and a learning rate decay38 of 0.5 to train our model.
We also utilize an early stop training strategy to avoid overfitting. The training epochs were set to 10 and the
batch size was set to 128. All experiments were done on PyTorch39 and trained on a single NVIDIA RTX3090
24GB GPU. For the fairness of the comparison, we used a standard setup, for the ETT dataset we divided it into
6:2:2, for the other datasets we used a ratio of 7:1:2 and divided all datasets into training, validation and test sets
in chronological order.

Metrics
We employ MSE and MAE as our evaluation metrics, which as follows:

ŷ refers here to the predictions of the model, and y is used as the ground truth. The reason why we use MAE
and MSE as evaluation metrics is that the two evaluation metrics can be used to evaluate the performances of
our model by comparing the corresponding evaluation metrics. Although metrics with scale consistency such as
MAPE provide a better understanding of the relative percentage for error measurements. MSE and MAE still have
some advantages, such as the fact that both evaluation metrics provide a visual representation of the prediction

(11)

MSE = 1

n

n
∑

i=1

(ŷi − yi)
2,

MAE = 1

n

n
∑

i=1

|ŷi − yi|.

https://github.com/thuml/Autoformer

7

Vol.:(0123456789)

Scientific Reports | (2023) 13:15901 | https://doi.org/10.1038/s41598-023-42815-6

www.nature.com/scientificreports/

accuracy. Besides real-world time series often have outlier values that are not due to measurement error. MSE
and MAE can reflect prediction errors if there are large deviations or outliers in the dataset.

Main result
To better demonstrate the effectiveness of DRCNN on time series forecasting, we performed multivariate time
series forecasting and univariate time series forecasting on several datasets. Multivariate time series forecasting
requires forecasting all input features, while univariate time series forecasting forecasts a specific feature. For
the ILI dataset our forecasting horizon T ∈ {24, 36, 48, 60} because this dataset is small with only a few thousand
data. For the others our forecasting horizon T ∈ {24, 96, 192, 336, 720}.

For the Transformer-based models we used 24 inputs on the ILI and the rest used 96 inputs, which is the setup
for these models to achieve SOTA scores. For DRCNN, we used 96-length inputs on the ILI and Exchange-rate
datasets, and 720-length inputs for the other datasets, which helped the models to achieve excellent performance
on each dataset. We choose MSE and MAE as evaluation metrics, and a smaller evaluation metric means better
performance.

Multivariate time‑series forecasting
In Table 1, DRCNN achieves an absolute advantage. We get 18% MSE improvement on the ETTm2 dataset,
27.8% MSE improvement on the electricity dataset, 42.3% MSE improvement on the foreign exchange dataset,
30.4% MSE improvement on the traffic dataset, 24.1% MSE improvement on the weather dataset, and 2% MSE
improvement on the ILI dataset.

We speculate that the reason for only a small improvement on the ILI dataset is that the dataset is too small,
with only 960 data, and the sampling period is too long for the sequences to be smooth enough for our proposed
MS to work. For all other data sets, our model achieves SOTA results, obtaining an average improvement of more
than 20% compared to previous models. On short time series, i.e., 24-length outputs, we obtain even greater per-
formance improvements, For example, on the power dataset, we have a 37.8% improvement for 24-length outputs,
compared to an average of 27.8% for this dataset. This may indicate that these Transformer-based models focus

Table 1.   Multivariate time-series forecasting results on six datasets. Best-performing model values are in bold.

Methods DRCNN FEDformer Autoformer Informer Reformer Transformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTm2

24 0.092 0.190 0.115 0.226 0.153 0.259 0.318 0.423 0.263 0.371 0.179 0.309

96 0.164 0.252 0.203 0.287 0.255 0.339 0.365 0.453 0.658 0.619 0.735 0.626

192 0.223 0.294 0.269 0.328 0.281 0.340 0.533 0.563 1.078 0.827 1.185 0.854

336 0.273 0.331 0.325 0.366 0.339 0.372 1.363 0.887 1.549 0.972 1.293 0.857

720 0.358 0.393 0.421 0.415 0.422 0.419 3.379 1.338 2.631 1.242 2.404 1.132

Electricity

24 0.102 0.199 0.164 0.284 0.163 0.284 0.265 0.357 0.280 0.376 0.224 0.332

96 0.132 0.229 0.183 0.297 0.201 0.317 0.274 0.368 0.312 0.402 0.263 0.361

192 0.143 0.242 0.195 0.308 0.222 0.334 0.296 0.386 0.348 0.433 0.278 0.369

336 0.161 0.260 0.212 0.313 0.231 0.338 0.300 0.394 0.350 0.433 0.278 0.369

720 0.190 0.288 0.231 0.343 0.254 0.361 0.373 0.439 0.340 0.420 0.292 0.375

Exchange

24 0.023 0.100 0.054 0.168 0.092 0.228 0.498 0.547 0.656 0.626 0.278 0.409

96 0.078 0.199 0.139 0.276 0.197 0.323 0.847 0.752 1.065 0.829 0.589 0.636

192 0.160 0.292 0.256 0.369 0.300 0.369 1.204 0.895 1.188 0.906 1.656 1.030

336 0.293 0.408 0.426 0.464 0.509 0.524 1.672 1.036 1.357 0.976 1.409 0.986

720 0.636 0.610 1.090 0.800 1.447 0.941 2.478 1.310 1.510 1.016 1.615 1.054

Traffic

24 0.354 0.257 0.550 0.359 0.609 0.384 0.762 0.435 0.727 0.412 0.770 0.457

96 0.381 0.269 0.562 0.349 0.613 0.388 0.719 0.391 0.732 0.423 0.703 0.395

192 0.388 0.270 0.562 0.346 0.616 0.382 0.696 0.379 0.733 0.420 0.744 0.413

336 0.404 0.280 0.570 0.323 0.622 0.337 0.777 0.420 0.742 0.420 0.684 0.373

720 0.450 0.306 0.596 0.368 0.660 0.408 0.864 0.472 0.755 0.423 0.674 0.367

Weather

24 0.101 0.131 0.152 0.236 0.218 0.318 0.271 0.337 0.655 0.583 0.170 0.254

96 0.165 0.213 0.217 0.296 0.266 0.336 0.300 0.384 0.689 0.596 0.438 0.445

192 0.210 0.253 0.276 0.336 0.307 0.367 0.598 0.544 0.752 0.638 0.593 0.367

336 0.265 0.291 0.339 0.380 0.359 0.395 0.578 0.523 0.639 0.596 0.444 0.474

720 0.332 0.340 0.403 0.428 0.578 0.578 1.059 0.741 1.130 0.792 0.654 0.579

ILI

24 2.141 1.004 2.203 0.963 3.483 1.287 5.764 1.677 4.400 1.382 4.138 1.329

36 2.222 1.042 2.272 0.976 3.103 1.148 4.755 1.467 4.783 1.448 4.430 1.423

48 2.178 1.031 2.209 0.981 2.669 1.085 4.763 1.469 4.832 1.465 4.883 1.477

60 2.340 1.084 2.545 1.061 2.770 1.125 5.264 1.564 4.882 1.483 5.202 1.571

8

Vol:.(1234567890)

Scientific Reports | (2023) 13:15901 | https://doi.org/10.1038/s41598-023-42815-6

www.nature.com/scientificreports/

too much on the prediction of long time series and not very well on the prediction of short time series, and the
use of Transformer-based models for the prediction of short time series may be a very interesting topic to explore.

Univariate time‑series forecasting
As shown in Table 2, we tested the univariate time series prediction results of DRCNN on three datasets. The
parameter settings were consistent with multivariate time series prediction, with only the feature input dimension
modified. DRCNN achieves a 6.1% MSE improvement on ETTm2. Besides, DRCNN achieved an 18.8% MSE
improvement on the Electricity dataset and a 29.6% improvement on the Exchange dataset.

Table 2.   Univariate time-series forecasting results on three datasets. Best-performing model values are in
bold.

Methods DRCNN FEDformer Autoformer Informer Reformer Transformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTm2

24 0.019 0.092 0.021 0.105 0.028 0.117 0.069 0.207 0.042 0.150 0.029 0.114

96 0.061 0.182 0.063 0.189 0.065 0.189 0.080 0.217 0.131 0.288 0.088 0.235

192 0.093 0.231 0.102 0.245 0.118 0.256 0.112 0.259 0.195 0.360 0.124 0.269

336 0.124 0.270 0.130 0.279 0.154 0.305 0.166 0.314 0.220 0.381 0.163 0.315

720 0.163 0.317 0.178 0.325 0.182 0.335 0.228 0.380 0.290 0.442 0.223 0.379

Electricity

24 0.130 0.257 0.233 0.365 0.379 0.473 0.265 0.357 0.213 0.340 0.207 0.338

96 0.218 0.325 0.253 0.370 0.341 0.438 0.258 0.367 0.275 0.379 0.311 0.402

192 0.268 0.359 0.282 0.386 0.345 0.428 0.285 0.388 0.304 0.304 0.313 0.406

336 0.287 0.379 0.346 0.431 0.406 0.470 0.336 0.423 0.370 0.448 0.455 0.495

720 0.363 0.441 0.422 0.484 0.565 0.581 0.607 0.599 0.460 0.511 0.498 0.529

Exchange

24 0.025 0.121 0.037 0.149 0.092 0.228 0.498 0.547 0.095 0.243 0.050 0.179

96 0.090 0.233 0.131 0.284 0.241 0.387 1.327 0.944 0.298 0.444 0.283 0.409

192 0.183 0.333 0.277 0.420 0.300 0.369 1.258 0.924 0.777 0.719 1.912 1.001

336 0.324 0.451 0.426 0.511 0.509 0.524 2.179 1.296 1.833 1.128 2.339 1.179

720 0.852 0.715 1.162 0.832 1.260 0.867 1.280 0.953 1.203 0.956 1.035 0.772

Figure 4.   Trend of model performance with increasing input length.

Figure 5.   More complete input length settings in DRCNN.

9

Vol.:(0123456789)

Scientific Reports | (2023) 13:15901 | https://doi.org/10.1038/s41598-023-42815-6

www.nature.com/scientificreports/

Ablation studies
All our ablation experiments are performed on the ETTm2 prediction 720 length output, which is a good task
to test the performance of the model on long-term series prediction, and a good form of performance to verify
the effectiveness of the proposed method above.

Ablation study on input length
In justifying our choice of utilizing 720-length inputs for our main experiments, while employing 96-length
inputs for other baseline models, we believe such comparisons are meaningful. An important aspect of this paper
is to investigate the potential for achieving improved prediction results by utilizing longer input sequences, a
challenge that other models may not readily address. Our experiments further underline this perspective. As
we gradually increased the input length beyond 96, the performance of the other models, as depicted in Fig. 4,
exhibited a decline in performance.

Figure 6.   Trend of model performance with more subsequence.

Figure 7.   Trend of model performance with more DR-block.

Table 3.   Uniform sampling vs. random sampling. Best-performing model values are in bold.

Methods Uniform Random

Metric MSE MAE MSE MAE

ETTm2

24 0.103 0.204 0.112 0.215

96 0.178 0.269 0.176 0.271

192 0.243 0.314 0.246 0.318

336 0.294 0.349 0.332 0.357

720 0.375 0.399 0.361 0.387

Traffic

24 0.359 0.254 0.356 0.254

96 0.393 0.269 0.389 0.269

192 0.404 0.274 0.399 0.274

336 0.421 0.283 0.416 0.282

720 0.471 0.306 0.465 0.306

10

Vol:.(1234567890)

Scientific Reports | (2023) 13:15901 | https://doi.org/10.1038/s41598-023-42815-6

www.nature.com/scientificreports/

We find that the performance still improves after the input length is beyond 1000, until the model perfor-
mance drops back and is basically stable when the input length approaches 2000, which was shown in Fig. 5.

Ablation study on multi‑head sequence
In Fig. 6, our experiments demonstrate that as the number of subsequences grows, the MSE error of the model
first decreases significantly and then will rebound, which is in line with expectations. This observation under-
scores the significance of choosing an appropriate number of subsequences. It enables the model to effectively
capture sequence features and harness input from long sequences. However, it also highlights the need to strike
a balance, as an excessive degree of subsequences can potentially disrupt timing information and result in a
decline in model performance.

Ablation study on network layers
Figure 7 shows the trend of network performance as the number of layers increases, and the number of subse-
quences is set to 5. Experimentally, it is shown that a network with 1 to 2 layers can extract the input features
well, and a network that is too deep can lead to overfitting and make the model perform worse.

Table 4.   SmoothL1 vs. MSE. Best-performing model values are in bold.

Loss SmoothL1 MSE MAE

Metric MSE MAE MSE MAE MSE MAE

ETTm2

24 0.092 0.190 0.104 0.209 0.101 0.202

96 0.164 0.252 0.179 0.274 0.168 0.257

192 0.223 0.294 0.243 0.318 0.230 0.298

336 0.273 0.331 0.301 0.358 0.284 0.335

720 0.358 0.393 0.366 0.407 0.372 0.386

Table 5.   Transformer with MS. Best-performing model values are in bold.

Methods Transformer* Transformer

Metric MSE MAE MSE MAE

ETTm2

24 0.201 0.327 0.179 0.309

96 0.473 0.520 0.735 0.626

192 0.911 0.713 1.185 0.854

336 1.211 0.831 1.293 0.857

720 2.239 1.109 2.404 1.132

Table 6.   Comparison with SCINet and ARIMA. Best-performing model values are in bold.

Methods DRCNN SCINet ARIMA

Metric MSE MAE MSE MAE MSE MAE

ETTh1

24 0.313 0.364 0.341 0.379 0.108 0.284

48 0.340 0.379 0.368 0.395 0.175 0.424

168 0.373 0.404 0.451 0.457 0.396 0.504

336 0.459 0.464 0.502 0.497 0.468 0.593

720 0.493 0.506 0.583 0.560 0.659 0.766

ETTh2

24 0.166 0.265 0.188 0.288 3.554 0.445

48 0.222 0.307 0.279 0.358 3.190 0.474

168 0.405 0.436 0.505 0.504 2.800 0.595

336 0.518 0.504 0.618 0.560 2.753 0.738

720 0.898 0.685 1.074 0.761 2.878 1.044

ETTm1

24 0.199 0.279 0.126 0.229 0.090 0.206

48 0.263 0.323 0.169 0.274 0.179 0.306

96 0.295 0.345 0.191 0.291 0.272 0.399

288 0.349 0.379 0.365 0.415 0.462 0.558

672 0.408 0.414 0.713 0.604 0.639 0.697

11

Vol.:(0123456789)

Scientific Reports | (2023) 13:15901 | https://doi.org/10.1038/s41598-023-42815-6

www.nature.com/scientificreports/

Ablation study on sampling
The two methods we propose to obtain multi-headed subsequences have their own advantages and disadvantages
on different datasets. We tested the performance of the two methods on the two datasets. The experimental
results are shown in Table 3.

Ablation study on loss function
Table 4 shows the results obtained by using SmoothL1 MSE and MAE as loss functions on ETTm2. Using MSE
or MAE directly as the objective function is not as effective as using the SmoothL1 function indirectly.

Other studies
In Table 5, we tried using our proposed MS on the Transformer while retaining the original feature dimension
Multi-heads, and our proposed MS mechanism helped the original Transformer to achieve an 18% performance
improvement. However, the simple application of MS in Transformer has led us to believe that this approach
can be extended to other Transformer-based models as well. We believe that this is a good direction to improve
the Transformer-based model.

Beyond the initial time we also did comparison experiments with SCINet and ARIMA. Because these models
compared different datasets and different output lengths, we finally decided to put their results in here, and we
also obtained SOTA results in the comparison with these models. As shown in Table 6.

Conclusion
In this paper, we proposed a CNN-based model called DRCNN. In DRCNN, a Multi-head Sequence method
is introduced to divide the sequence into multiple subsequences by downsampling the input sequence. This
approach helps the model make predictions using information from longer input sequences. Based on this, we
design a convolution block, which can effectively extract temporal features through the method of Multi-head
Sequence and the effective structure of AddNorm. We also use cyclic decomposition to smooth the sequence to
help the model achieve good results. DRCNN achieves SOTA prediction performance in various experimental
settings on different datasets, which demonstrates the effectiveness of our DRCNN.

Data availability
The ETT dataset is available at https://​github.​com/​zhouh​aoyi/​ETDat​aset. The ECL dataset is available at https://​
archi​ve.​ics.​uci.​edu/​ml/​datas​ets/​Elect​ricit​yLoad​Diagr​ams20​112014. The Exchange dataset is available at https://​
github.​com/​laigu​okun/ multivariatetime-series-data. The Weather datasetis available at https://​www.​bgcje​na.​
mpg.​de/​wetter/. The Traffic dataset is available at http://​pems.​dot.​ca.​gov. The ILI dataset is available at https://​
gis.​cdc.​gov/​grasp/​fluvi​ew/​flupo​rtald​ashbo​ard.​html.

Code availability
The code is available at https://​github.​com/​acrndr/​DRCNN.

Received: 2 June 2023; Accepted: 14 September 2023

References
	 1.	 Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding.

Preprint at http://​arxiv.​org/​abs/​1810.​04805 (2018).
	 2.	 Liu, Z. et al. Swin transformer: Hierarchical vision transformer using shifted windows. In Proc. IEEE/CVF International Conference

on Computer Vision 10012–10022 (2021).
	 3.	 Tang, Y. et al. A survey on machine learning models for financial time series forecasting. Neurocomputinghttps://​doi.​org/​10.​1016/j.​

neucom.​2022.​09.​003 (2022).
	 4.	 Deb, C., Zhang, F., Yang, J., Lee, S. E. & Shah, K. W. A review on time series forecasting techniques for building energy consump-

tion. Renew. Sustain. Energy Rev. 74, 902–924 (2017).
	 5.	 Wang, Y., Long, M., Wang, J., Gao, Z. & Yu, P. S. PredRNN: Recurrent neural networks for predictive learning using spatiotemporal

LSTMs. In Advances in Neural Information Processing Systems 879–888 (2017).
	 6.	 Flunkert, V., Salinas, D. & Gasthaus, J. Deepar: Probabilistic forecasting with autoregressive recurrent networks. CoRR. http://​

arXiv.​org/​abs/​1704.​04110 (2017).
	 7.	 Oord, A. V. D. et al. Wavenet: A generative model for raw audio. Preprint at http://​arxiv.​org/​abs/​1609.​03499 (2016).
	 8.	 Bai, S., Kolter, J. Z. & Koltun, V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling.

CoRR. http://​arXiv.​org/​abs/​1803.​01271 (2018).
	 9.	 Liu, M. et al. Scinet: Time series modeling and forecasting with sample convolution and interaction. In Thirty-Sixth Conference

on Neural Information Processing Systems (NeurIPS) 2022 (2022).
	10.	 Zhou, H. et al. Informer: Beyond efficient transformer for long sequence time-series forecasting. In The Thirty-Fifth AAAI Confer‑

ence on Artificial Intelligence, AAAI 2021, Virtual Conference, Vol. 35, 11106–11115 (AAAI Press, 2021).
	11.	 Wu, H., Xu, J., Wang, J. & Long, M. Autoformer: Decomposition transformers with auto-correlation for long-term series forecast-

ing. In Advances in Neural Information Processing Systems (2021).
	12.	 Zhou, T. et al. FEDformer: Frequency enhanced decomposed transformer for long-term series forecasting. In Proc. 39th Interna‑

tional Conference on Machine Learning (ICML 2022) (2022).
	13.	 Elman, J. L. Finding structure in time. Cogn. Sci. 14, 179–211. https://​doi.​org/​10.​1016/​0364-​0213(90)​90002-E (1990).
	14.	 Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural Comput. 9, 1735–1780 (1997).
	15.	 Song, H., Rajan, D., Thiagarajan, J. & Spanias, A. Attend and diagnose: Clinical time series analysis using attention models. In

Proc. AAAI Conference on Artificial Intelligence, Vol. 32 (2018).
	16.	 Vaswani, A. et al. Attention is all you need (2017).
	17.	 d’Ascoli, S. et al. Convit: Improving vision transformers with soft convolutional inductive biases. Preprint at http://​arxiv.​org/​abs/​

2103.​10697 (2021).

https://github.com/zhouhaoyi/ETDataset
https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
https://github.com/laiguokun/
https://github.com/laiguokun/
https://www.bgcjena.mpg.de/wetter/
https://www.bgcjena.mpg.de/wetter/
http://pems.dot.ca.gov
https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html
https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html
https://github.com/acrndr/DRCNN
http://arxiv.org/abs/1810.04805
https://doi.org/10.1016/j.neucom.2022.09.003
https://doi.org/10.1016/j.neucom.2022.09.003
http://arXiv.org/abs/1704.04110
http://arXiv.org/abs/1704.04110
http://arxiv.org/abs/1609.03499
http://arXiv.org/abs/1803.01271
https://doi.org/10.1016/0364-0213(90)90002-E
http://arxiv.org/abs/2103.10697
http://arxiv.org/abs/2103.10697

12

Vol:.(1234567890)

Scientific Reports | (2023) 13:15901 | https://doi.org/10.1038/s41598-023-42815-6

www.nature.com/scientificreports/

	18.	 Jönsson, P. & Eklundh, L. Timesat—A program for analyzing time-series of satellite sensor data. Comput. Geosci. 30, 833–845
(2004).

	19.	 Kosorus, H., Honigl, J. & Kung, J. Using r, weka and rapidminer in time series analysis of sensor data for structural health monitor-
ing. In 2011 22nd International Workshop on Database and Expert Systems Applications 306–310 (IEEE, 2011).

	20.	 Freeman, J. R., Williams, J. T. & Lin, T. Vector autoregression and the study of politics. Am. J. Polit. Sci. 33, 842–877 (1989).
	21.	 Box, G. E. & Pierce, D. A. Distribution of residual autocorrelations in autoregressive-integrated moving average time series models.

J. Am. Stat. Assoc. 65, 1509–1526 (1970).
	22.	 Taieb, S. B., Bontempi, G. & Hyndman, R. J. Machine Learning Strategies for Multi-step-ahead Time Series Forecasting (Universit

Libre de Bruxelles, 2014).
	23.	 Lai, G., Chang, W., Yang, Y. & Liu, H. Modeling long- and short-term temporal patterns with deep neural networks. CoRR. http://​

arXiv.​org/​abs/​1703.​07015 (2017).
	24.	 Qin, Y. et al. A dual-stage attention-based recurrent neural network for time series prediction. CoRR. http://​arXiv.​org/​abs/​1704.​

02971 (2017).
	25.	 Shen, L. & Wang, Y. Tcct: Tightly-coupled convolutional transformer on time series forecasting. Neurocomputing 480, 131–145.

https://​doi.​org/​10.​1016/j.​neucom.​2022.​01.​039 (2022).
	26.	 Borovykh, A., Bohte, S. & Oosterlee, C. W. Conditional time series forecasting with convolutional neural networks. Preprint at

http://​arxiv.​org/​abs/​1703.​04691 (2017).
	27.	 Box, G. E., Jenkins, G. M., Reinsel, G. C. & Ljung, G. M. Time Series Analysis: Forecasting and Control (Wiley, 2015).
	28.	 Hendrycks, D. & Gimpel, K. Gaussian Error Linear Units (GELUS), Vol. 1606, 08415 (2023).
	29.	 He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In Proc. IEEE Conference on Computer Vision

and Pattern Recognition 770–778 (2016).
	30.	 Ba, J. L., Kiros, J. R. & Hinton, G. E. Layer normalization. Preprint at http://​arxiv.​org/​abs/​1607.​06450 (2016).
	31.	 Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R. Dropout: A simple way to prevent neural networks

from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014).
	32.	 Dong, Y., Cordonnier, J.-B. & Loukas, A. Attention is not all you need: Pure attention loses rank doubly exponentially with depth.

In International Conference on Machine Learning 2793–2803 (PMLR, 2021).
	33.	 Rosenblatt, F. The perceptron: A probabilistic model for information storage and organization in the brain. Psychol. Rev. 65, 386

(1958).
	34.	 Girshick, R. Fast r-cnn. In Proc. IEEE International Conference on Computer Vision 1440–1448 (2015).
	35.	 Lai, G., Chang, W.-C., Yang, Y. & Liu, H. Modeling long-and short-term temporal patterns with deep neural networks. In The 41st

International ACM SIGIR Conference on Research & Development in Information Retrieval 95–104 (2018).
	36.	 Kitaev, N., Kaiser, Ł. & Levskaya, A. Reformer: The efficient transformer. Preprint at http://​arxiv.​org/​abs/​2001.​04451 (2020).
	37.	 Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization. Preprint at http://​arxiv.​org/​abs/​1412.​6980 (2014).
	38.	 Loshchilov, I. & Hutter, F. Decoupled weight decay regularization. Preprint at http://​arxiv.​org/​abs/​1711.​05101 (2017).
	39.	 Paszke, A. et al. Pytorch: An imperative style, high-performance deep learning library. In Advances in Neural Information Processing

Systems, Vol. 32 (2019).

Acknowledgements
This research was supported by This work was supported by Key R &D Program of Zhejiang (2021C04030);
Natural Science Foundation of Zhejiang Province(LGG21F030004); “Pioneer” and “Leading Goose”R &D Pro-
gram of Zhejiang (2022C04012).

Author contributions
Y.Z. performed the experiments, wrote and revised the manuscript; F.S. and B.H. managed the project, acquired
the fund, conceived the work, designed the experiments, guided and revised the manuscript; S.L., D.H. and
W.Z. analyzed the experimental results and revised the manuscript. All authors read and approved the final
manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to F.S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2023

http://arXiv.org/abs/1703.07015
http://arXiv.org/abs/1703.07015
http://arXiv.org/abs/1704.02971
http://arXiv.org/abs/1704.02971
https://doi.org/10.1016/j.neucom.2022.01.039
http://arxiv.org/abs/1703.04691
http://arxiv.org/abs/1607.06450
http://arxiv.org/abs/2001.04451
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1711.05101
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	DRCNN: decomposing residual convolutional neural networks for time series forecasting
	Related work
	Methods
	Problem definition
	Multi-head sequence method
	DR-block
	DRCNN
	Loss function

	Experiments
	Dataset
	ETT (electricity transformer temperature)10
	ECL (electricity consumption load)
	Exchange35
	Weather
	Traffic
	ILI (influenza-like illness)

	Setup
	Baselines
	Implementation details
	Metrics

	Main result
	Multivariate time-series forecasting
	Univariate time-series forecasting

	Ablation studies
	Ablation study on input length
	Ablation study on multi-head sequence
	Ablation study on network layers
	Ablation study on sampling
	Ablation study on loss function
	Other studies

	Conclusion
	References
	Acknowledgements

