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Reservoir computing using 
self‑sustained oscillations 
in a locally connected neural 
network
Yuji Kawai 1*, Jihoon Park 1,2 & Minoru Asada 1,2,3,4

Understanding how the structural organization of neural networks influences their computational 
capabilities is of great interest to both machine learning and neuroscience communities. In our 
previous work, we introduced a novel learning system, called the reservoir of basal dynamics 
(reBASICS), which features a modular neural architecture (small‑sized random neural networks) 
capable of reducing chaoticity of neural activity and of producing stable self‑sustained limit cycle 
activities. The integration of these limit cycles is achieved by linear summation of their weights, 
and arbitrary time series are learned by modulating these weights. Despite its excellent learning 
performance, interpreting a modular structure of isolated small networks as a brain network has 
posed a significant challenge. Here, we investigate how local connectivity, a well‑known characteristic 
of brain networks, contributes to reducing neural system chaoticity and generates self‑sustained limit 
cycles based on empirical experiments. Moreover, we present the learning performance of the locally 
connected reBASICS in two tasks: a motor timing task and a learning task of the Lorenz time series. 
Although its performance was inferior to that of modular reBASICS, locally connected reBASICS could 
learn a time series of tens of seconds while the time constant of neural units was ten milliseconds. 
This work indicates that the locality of connectivity in neural networks may contribute to generation 
of stable self‑sustained oscillations to learn arbitrary long‑term time series, as well as the economy of 
wiring cost.

The brain is a complex network of structurally connected and functionally interacting neural units. The network 
structure is essential for collective computational capability of the neural units. Investigating neural mechanisms 
from structure to computation is critical to neuroscience and can provide insights into improving artificial neural 
network systems.

Reservoir computing, a type of artificial recurrent neural  network1–3, has been utilized to study neural infor-
mation processing in brain  networks4–6. Standard reservoir computing uses a fixed, randomly connected reservoir 
network that creates complex dynamics induced by inputs. The system outputs are obtained through readouts 
from network units, and only the readout weights are modified so that the outputs produce a target time series. 
To explore the effects of network structures on reservoir computing, reservoir networks based on brain-like 
topological  features4,7,8 or the human  connectome4–6 have been constructed. These studies have reported that 
such network structures enhance the learning performance of reservoir computing.

Recently, Kawai et al.9 proposed a new type of reservoir computing called the reservoir of basal dynamics 
(reBASICS), which comprises multiple modules of small random neural networks. If recurrent weight gain is 
large, random networks with a large size (number of neural units) exhibit chaotic  behavior10, leading to learn-
ing failure because of orbital instability, but a small network size reduces the chaoticity of network activity and 
generates limit cycles, that is, oscillatory activity, even if the gain is  large11. They found that the limit cycles from 
isolated small network modules show a wide frequency spectrum and are orthogonal to each other, creating an 
orthogonal  basis9. reBASICS learns to reproduce a target time series as a linear summation of these limit cycles. 
It exhibits excelled learning performance because of its orthogonal basis. reBASICS indicates the computational 
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role of network modularity, which is a significant feature of brain  networks12–14. However, the modules in reBA-
SICS are completely isolated, that is, no intermodular connectivity, which has not been observed in the brain 
networks which have seamless spatial connectivity. Therefore, the contribution of other network structures to 
reBASICS computation must be explored.

This study investigates the role of locality of connections in brain networks, which are known to be composed 
of a substantial number of short-range local connections and relatively few long-range  connections15–19. Such 
connectivity results in a small-world  topology20–23, which is supposed to reduce wiring  costs24,25. Kawai et al.4 
introduced a small-world topology to a reservoir network to study the impact of local connectivity on compu-
tational performance. The study found that the local connectivity suppresses chaoticity and allows for learn-
ing, even for large recurrent weight gain that would otherwise cause chaos in a randomly connected standard 
reservoir. However, the neural activity generated by local connectivity remains unclear. If the neural activities 
exhibit stable and orthogonal limit cycles to each other, they can be employed for reBASICS computation. The 
local connectivity structure is expected to bolster the biological plausibility of reBASICS, thus deepening our 
understanding of the computational roles of local connections in the brain.

Local connectivity has been used to improve the learning performance of reservoir computing. For instance, 
Rodan and  Tino26,27 proposed a cyclic reservoir, where neural units are arranged in a cycle and connected one 
way to the neighboring unit in a cyclic manner. This topology allows input information to be stored in the cycle, 
providing a large memory capacity. Appeltant et al.28 implemented reservoir computing on a single nonlinear 
unit with delayed self-feedback, which can be considered as a cycle reservoir, using virtual units. Dale et al.29 
evaluated the computing quality of reservoir networks with a ring, lattice, or torus topologies. They concluded 
that topological constraints, like the ring, often exhibit limited behavior. These approaches assume that neural 
units are driven by external inputs and their activities asymptotically depend on the input time series, which is 
called the echo state  property1. Further, in these studies, the local connectivity has not been intended to reduce 
the chaoticity of unit activities.

The essence of reBASICS is the self-organization of mutually orthogonal self-sustained neural oscillations. 
While conventional reservoir computers assume that neural units are powered by external inputs, reBASICS 
can autonomously generate time series without continuous input. In our previous  study9, we demonstrated 
the effectiveness of a modular structure for reBASICS computation. Now, we suggest that this can similarly be 
achieved with local connections. To examine the effect of locally connected neural networks on network activity 
and self-sustained limit cycles in reBASICS computations, we conducted computer simulations on a locally con-
nected reBASICS. Neural units were arranged in a one-dimensional ring or two-dimensional lattice and locally 
connected with to one another. Our experiment demonstrated that the locally connected neural network gener-
ates diverse and stable limit cycles, which are moderately orthogonal to each other. Subsequently, we evaluated 
the learning performance of locally connected reBASICS in a motor timing task and learning task of the Lorenz 
time series. The study results indicate that it can learn long time series of tens of seconds, but its performance is 
inferior to that of the existing modular reBASICS. Nevertheless, the results suggest that the locality of connectivity 
in neural networks may contribute to neural computation beyond reducing wiring cost.

Results
Locally connected reBASICS. The locally connected reBASICS comprises N neural units arranged in a 
one-dimensional ring (see Fig. 1) or two-dimensional lattice pattern (see Fig. 2). Hereafter, one-dimensional and 
two-dimensional locally connected reBASICSs are referred to as 1D and 2D reBASICSs, respectively. Each unit 
has E connections with its neighboring units, with incoming connections from E units randomly chosen from M 
units before and after the destination unit in the 1D reBASICS (where M is a neighbor parameter ( E ≤ M)), and 
from M units in the vicinity of the destination unit in the 2D reBASICS (where E = M ) (as shown Fig. 2). The 
connection weights between units are randomly chosen from a Gaussian distribution with zero mean and stand-
ard deviation g/

√
E , where g is the scaling coefficient for recurrent weights. This local connectivity is expected 

to reduce chaoticity of network activity and generate limit-cycle time series.

−
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Figure 1.  One-dimensional locally connected reservoir of basal dynamics (1D reBASICS). Each neural unit 
arranged on a lattice has only its neighboring units. The readout output is obtained by a linear sum of units’ 
activation, in which the weights are trained with the recursive least squares (green arrows).
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All units receive input signals, and some units emit outputs to the readout unit. The readout weights (repre-
sented by green arrows in Fig. 1) are modulated using recursive least  squares30 to minimize the errors between 
the readout and target signals. Thus, the weighted summation of various limit-cycle time series can reproduce 
the target time series. When the limit cycles are orthogonal to each other, they constitute an orthogonal basis, 
resulting in excellent time-series reproduction capabilities. This computational principle is common to the 
Fourier and wavelet transformations, which utilize trigonometric functions as their basis.

Network dynamics. Fig.  3 shows five instances of unit output time series in a 1D reBASICS with 
N = 50, 000 , E = 10 , and M = 20 . The trajectories display a range of limit cycles with different frequencies and 
waveforms. To learn the target time series, a single short input pulse with 50 ms width was introduced into all 
units at just before 0 ms as a start signal (yellow thick line). This input pulse synchronized the phases of the unit 
outputs in different runs coping with varying initial conditions. This eliminated the initial state dependency and 
allowed the network to generate the same limit cycle trajectories across trials.

Further, we analyzed the orthogonality of the unit outputs. Fig. 4 shows the average absolute inner product 
as a function of the distance between units. The inner products between the outputs of adjacent units were large 
(approximately 0.7), indicating low orthogonality. Interestingly, even for short distances between nonneighbor 
units, the orthogonality between their outputs increased (approximately 0.37). However, even over longer dis-
tances between units, their inner products did not approach to zero.

Fig. 5 illustrates the orthogonality of the network activities of the 1D reBASICS for various values of the 
neighbor parameter M and scaling coefficient g for recurrent weights. Evidently, the two highly orthogonal 
regions are found, where M and g are low (bottom left) and high (top right), respectively. The former region is 
more restricted in terms of the locality of the connections and has smaller weights. The latter region has relatively 
more global connections and larger weights.

To evaluate the instability of the network activities, we computed the local Lyapunov exponents (LLE) of the 
1D reBASICS in terms of M and g (Fig. 6). We found that a larger g resulted in a higher instability, implying that 
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Figure 2.  Local connection patterns in the 2D reBASICS. Green destination unit receives connections from 
yellow neighboring source units. The model with three parameter settings [(a) M = 4 , (b) 8, and (c) 12] is 
examined in the experiments. The right panel in (a) shows that one end of the lattice was connected to the 
opposite end.
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Figure 3.  Time series of five sample unit outputs. The green and black curves indicate two runs with different 
initial unit states. The yellow area between −51 to 0 ms indicates the period during which the input pulse was 
given.
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Figure 4.  Averaged absolute inner products between unit outputs versus the distance between units. The 
distance between adjacent units was considered to be 1.
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Figure 5.  Orthogonality between unit outputs. Colors indicate the averaged absolute inner products between 
unit outputs, which were averaged over 20 networks. A low value (blue) indicates a high degree of orthogonality.
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Figure 6.  Instability of network activity. Colors indicate the local Lyapunov exponents of unit outputs, which 
were averaged over 20 networks. A high value (yellow) indicates a high degree of instability.



5

Vol.:(0123456789)

Scientific Reports |        (2023) 13:15532  | https://doi.org/10.1038/s41598-023-42812-9

www.nature.com/scientificreports/

the network activity became more chaotic. Conversely, a smaller M caused a lower instability, indicating that 
the locality of connectivity could suppress the chaoticity of the network activity. Based on the findings from the 
orthogonality analysis (Fig. 5), it can be inferred that the area in the top-right quadrant (Fig. 6), which exhibited 
extensive global connections, was characterized by a high degree of chaos despite being highly orthogonal.

To synthesize an arbitrary time series, time series of various frequencies are required. Thus, we calculated the 
frequency spectra of the unit outputs of the 1D reBASICS by fast Fourier transformation. Fig. 7 shows histograms 
of peak frequencies of power spectra when g = 1.0 and 1.2 when M = 20 . We found that a lower g resulted in 
low frequency peaks, reducing frequency variation. Fig. 8 shows the frequency spectra of unit outputs for vari-
ous Ms when g = 1.2 . The output units with a large M showed a wide range of power spectra, and a small M 
shows low power in high frequencies. The orthogonality analysis (Fig. 5) indicates that the area in the bottom-left 
quadrant, where g and M are small, was characterized by low frequency band despite being highly orthogonal.

Motor timing task. The motor timing task is commonly used to assess the learning ability of reservoir 
computing with self-sustained neural  activity9,31,32. In this task, the input to the system is a single pulse from 
−51 ms to 0 ms, while the desired output is a single Gaussian pulse with a peak after a specific interval from 
the end of the input pulse. Owing to the interval period without input and output, previous studies have dem-
onstrated that standard reservoir computing including echo state networks and  FORCE33 cannot complete this 
task  successfully9,31.

An example of the readout output of a 1D reBASICS in a test trial with a 10 s interval is shown in Fig. 9. The 
readout output successfully replicated the Gaussian pulse at 10 s after the input pulse. Notably, despite the time 
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Figure 7.  Histograms of peak frequencies of power spectra of unit activities. The networks had 1.0 (orange) and 
1.2 (cyan) of recurrent weight scaling coefficient g and 20 of neighbor parameter M.
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Figure 8.  One-sided power spectra of the time series of unit outputs, which were computed using fast Fourier 
transformation. They are averaged power spectra over all the output units and over 20 networks.
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constant of neural units ( τ = 10 ms), it was capable of learning at intervals of one minute ( R2 = 0.50 ) and two 
minutes ( R2 = 0.25).

We evaluated the learning performance using the coefficient of determination (the squared Pearson correla-
tion coefficient) R2 between the system output and target signal. As shown in Fig. 10, we varied the intervals 
parametrically and plotted R2 . The performances of the 1D reBASICS and modular  reBASICS9 are indicated by 
the green and black curves, respectively. Although the performance of the 1D reBASICS was inferior to that of 
the modular reBASICS, it was capable of learning even at very long intervals of one minute or more.

Conventional reservoir computers (represented by randomly connected echo state networks: ESNs, depicted 
by the gray curve), typically driven by external input, faltered in the timing task due to an interval without input. 
These ESNs had a network size of 1,000 and a spectral radius of 1.0. Similar results were observed when the 
network size increased. This finding aligns with existing  studies9,31.

Fig. 11 shows the timing capacity, defined as the area under the R2 curve up to 120 s, of the 1D reBASICS 
in terms of M and g. The best timing capacity was obtained when M = 20 and g = 1.2 . Conversely, the timing 
capacity decreased when M and g (top right region) were large, and when g = 1.0 (left column).

Fig. 12 shows the performance of 1D reBASICS with various network sizes N. The green curve at N = 50, 000 
is the same as that in Fig. 10. This curve does not differ from the curve for N = 40, 000 , indicating that the 
performance was saturated at N = 50, 000 . Reducing N resulted in a significant decrease in the performance. 
However, a small network size does not mean that learning fails; for example, at N = 10, 000 , the performance 
for a 10-second interval was R2 = 0.88.

In Fig. 10, the yellow curve depicts the result of a 2D reBASICS with M = 4 . The figure shows that the per-
formance of the 2D reBASICS was lower than that of the 1D reBASICS. Fig. 13 shows the timing capacity of 2D 
reBASICS with M = 4 (green), 8 (black), and 12 (yellow). The best timing capacity was obtained when M = 4 
and g = 1.2.

Learning of the Lorenz time series. Fig. 14 presents an instance of the learning outcomes of the 1D 
reBASICS when applied to the Lorenz time series for a period of 10 s. Similar to the previous experiment, the 
input consisted of a single pulse at time 0 (yellow lines in Fig. 14). Following the input, the self-sustained limit 
cycles were able to produce a time series resembling the Lorenz time series. The performance for x, y, and z in 
the Lorenz system were R2 = 0.96± 0.025 , 0.91± 0.031 , and 0.87± 0.031 (mean ± s.d. for 20 networks), respec-
tively. This result indicates that the 1D reBASICS is capable of learning non-periodic complex time series, such 
as the Lorenz time series.
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Figure 9.  An example of the readout output of locally connected reBASICS after learning for interval of 10 s.
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Discussion
The experimental results indicate that local connectivity contributes to the generation of diverse limit cycles with 
less chaotic behavior. This facilitates reBASICS computation, which involves reproducing time-series through 
weighted sums using these limit cycles as a basis. The self-sustained nature of these limit cycles allows them to 
perform a motor timing task with a long interval without requiring any inputs.
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Figure 11.  Timing capacity of 1D reBASICS. It was averaged over 20 networks.
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To maximize the learning performance of the locally connected reBASICS, a balance between the stability and 
diversity of unit activities was crucial. Large values of M and g resulted in chaotic behavior, leading to a break-
down in learning. Conversely, smaller values of M and g caused less variation in the frequency of the limit cycles 
of unit activities. Therefore, it was essential to generate a range of self-sustained activities to a degree that would 
prevent chaos. This asymptotically stable regime is referred to as the “edge of chaos” in reservoir  computing34,35. 
In this study, we utilized the concept of “oscillatory edge of chaos” and found that the degree of the locality of 
connections was a crucial parameter in determining the edge, as well as the weight gain. Additionally, the model 
necessitated significantly more neural units (network size N) than conventional reservoir computers. When N was 
reduced from 40, 000 to a lower value, the performance markedly declined. This suggest that a sizable network 
is essential to produce diverse (orthogonal) neural oscillations.

The learning performance of the locally connected reBASICSs was found to be inferior to that of the modular 
reBASICS, which could be attributed to the insufficient orthogonality between unit activities. Although the units 
were distant from each other owing to local connectivity, their activities were weakly correlated because they 
were not completely separate. Local connectivity and modular structures are typical features of brain networks. 
By combining these features, the reBASICS was expected to exhibit stable and high performance over a wide 
range of parameters.

The reBASICS was originally proposed as a general model of either the corticostriatal system or the cer-
ebellum, two hypotheses. The fact that local connectivity enables reBASICS computations in both hypotheses 
supports this view. In the former model, the reservoir network and readout learning were interpreted as the 
cortical network and dopamine modulation in the striatum, respectively. In another study, we demonstrated 
that timing learning could be achieved even if the supervised learning of reBASICS readouts was replaced by 
reward-modulated Hebbian  learning36. As it is well known, the majority of cortical networks consist of local 
connections in small-world brain  networks17–19. However, considering the existence of long-range connections 
in cortical networks, it is necessary to investigate whether reBASICS with such connections will work well. In 
the latter cerebellar model, the reservoir network and readout learning were interpreted as the granular layer (a 
network of granule cells and interneurons) and Purkinje cell plasticity, respectively. This model is based on the 
cerebellar reservoir  hypothesis37–39. Tokuda et al.39 proposed a biologically detained cerebellar model in which 
Golgi cells, which are interneurons in the granular layer, were mutually connected via gap junctions. Owing to the 
connectivity being local, this anatomical fact is consistent with the structure of the locally connected reBASICS.

The locality of connectivity in neural networks is supposed to be due to the wiring economy, that is, shorter 
axons are less  costly24,25. In addition to the economic brain view, we emphasize the computational role of the local 
connectivity in neural networks, which includes suppressing the chaoticity of network activity and generating 
diverse stable oscillations to learn arbitrary time series. These findings lead to a better understanding of neural 
information processing and the invention of better recurrent neural networks.

Conclusion
In this study, experiments conducted using a locally connected neural network revealed that local connectivity 
reduced the chaoticity of network activity and produced stable limit cycle activities. Leveraging oscillatory activi-
ties, we proposed a locally connected reBASICS model that integrated the activities to approximate the target 
time series. The self-sustained nature of the activities enabled the system to learn the timing within an interval 
period without input. Additionally, we demonstrated that the locally connected reBASICS was capable of accu-
rately learning complex time series, including the Lorenz system. Importantly, we found that local connectivity 
and modular structure are critical to reBASICS neural computation, both of which are prominent features of 
brain networks. Our work bridges the gap between function/structure and computation of neural networks and 
provides a better understanding of temporal processing and motor learning in the brain.
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Method
The dynamics of state xi(t) of unit i ( i = 1, 2, . . . ,N ) at time t are represented as a firing rate model:

where ri(t) = tanh(xi(t)) represents the activity level of a unit i. N, τ , and u(t) denote the network size, time con-
stant, and input signal, respectively. W In

i  and INoisei  denote the input weight and noise term, respectively, which are 
drawn from Gaussian distributions with zero mean and s.d of one and s.d. I0 . Wij denotes the connection weight 
from units j to i. If there exists a connection from j to i, the value of Wij is randomly chosen from a Gaussian 
distribution with zero mean and s.d., g/

√
E , where g and E denote the recurrent weight scaling coefficient and 

number of incoming connections, respectively; otherwise, Wij = 0.
If the topology of the recurrent network is random, a high-gain regime with a large g ( > 1.0 ) makes the net-

work activity self-sustained, but  chaotic10. Although modular reBASICS sets g > 1.0 to generate self-sustained 
activity, using a small network size enables small network modules to output stable orbits, such as limit  cycles9. 
Similarly, in locally connected reBASICS, using local connectivity is expected to reduce the chaoticity of network 
activity, even when g > 1.0 , and generate limit cycles with orbital stability. Some unit activities do not exhibit 
limit cycles and converge at a fixed point. Because such an activity is unnecessary for learning, we randomly 
select L units from those that do not converge to a fixed point and remain active, and regard them as output 
units k ( k ∈ O , where O is a set of indices of output units and |O| = L ). Specifically, units with a difference of 
0.01 or more between the maximum and minimum activity from 5 s to the learning end time were considered 
active units. The value of this threshold was empirically determined. In the standard instance of 1D reBASICS 
depicted in Figs. 9 and 10, 21,895 units (44%) were disregarded as they had converged. If the number of active 
units dropped below L, the simulation was restarted from the outset, a scenario not observed in the experiments.

These oscillatory activities of the output units rk(t) are converted to the readout output y(t) by a linear sum 
given as

where WOut
k  is the readout weight trained using the recursive least squares method. Let WOut(t) and r(t) denote 

the weights and activities of the output units, respectively, as vectors of length L. WOut(t) is updated at time t 
as follows:

where d(t) denotes the target time series and P(t) is an L× L matrix that corresponds to the running estimate 
of the inverse sample covariance matrix of r(t)30. P(t) is updated as follows:

The initial value of P(t) is set to P(0) = (1/α)I , where I denotes an identity matrix and α is a constant.

Experimental settings. The numerical solutions of Eq. (1) were obtained using the Euler method with a 
simulation step size of 1 ms. The recursive least squares method was applied once every two steps in the training 
period, and �t in Eqs. (3)–(5) is set to 2 ms. The simulation begins at time −250 ms ( −2050 ms in the simulation 
in Fig. 3). The initial state of each unit was set to a uniform random value in the range [−1, 1] . In all the experi-
ments, the input u(t) was a single pulse with a magnitude of five between −51 and 0 ms and zero in other periods. 
This single-pulse input was used to initialize the phases of the limit cycles of the unit activities, that is, to reduce 
the dependency on the initial unit states (see Fig. 3).

Unless otherwise stated, the parameter values listed in Table 1 were used in the 1D reBASICS. The parameters 
M and g were empirically determined as optimal values based on the experimental results presented in Fig. 11. 
The value of N was determined by the experimental results shown in Fig. 12, where the performance was approxi-
mately saturated at that value. For a valid comparison with modular  reBASICS9, the parameters L, E, τ , I0 , and α 
were matched with the proposed method. Therefore, the modular reBASICS had 500 modules consisting of 100 
units, and each module had two output units, resulting in total 1,000 output units.

In the 2D reBASICS, N was set to 52,900 ( 230× 230 lattices), where one end of the lattice was connected 
to the opposite end. We considered three parameter values for the neighbor parameter: M = 4 , 8, or 12 (see 
Fig. 2), and the number of connections was set to E = M . The other parameter values were the same as those 
used in the 1D reBASICS.

Evaluation. For all experiments, the coefficient of determination (the squared Pearson correlation coefficient) 
R2 between the system output y(t) and target d(t) from 1 ms to the end of a task was used to evaluate the learning 
performance. This value was averaged over 10 test trials and over 20 different networks.

(1)τ
dxi(t)

dt
= −xi(t)+

N
∑

j=1

WRec
ij rj(t)+W In

i u(t)+ INoisei ,

(2)y(t) =
∑

k∈O
WOut

k (t)rk(t),

(3)W
Out(t) =W

Out(t −�t)− e(t)P(t)r⊤(t),

(4)e(t) =W
Out(t −�t)r⊤(t)− d(t),

(5)P(t) = P(t −�t)−
P(t −�t)r⊤(t)r(t)P(t −�t)

1+ r(t)P(t −�t)r⊤(t)
.
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To evaluate the instability of network activity, we used LLE, which was estimated in a similar man-
ner as in  references9,31,32. A small perturbation is given to all units at time 0 ms: xpert(0) = x(0)+ ǫ , where 
x(t) = {x1, x2, . . . , xN } and ǫ = 10−5 . The logarithm of the distance between the unperturbed and perturbed 
trajectories was then computed over time, which was normalized by the initial distance at 0 ms.

The log distance dist(t) was averaged over 10 trials with different initial unit states. The LLE was defined as the 
slope of the function from 1 s to 10 s. If LLE > 0 , the system is unstable, and the larger the LLE, the more unstable 
(chaotic) the system is.

We evaluated the orthogonality of network activity as the average absolute inner products between unit 
outputs. The temporal vectors of the time series ri(t) from t = 1, 000 to 10, 000 ms were normalized to the unit 
vectors. The absolute inner products of all combinations of vectors for all units were computed. The inner prod-
ucts were averaged over all combinations and over 20 different networks. A low value of the average absolute 
inner product indicates a high orthogonality of the entire network activity.

Motor timing task. The input was a single pulse at time 0 ms. The desired output was a single Gaussian pulse 
with a peak at a specific interval from the end of the input pulse. The magnitude and standard deviation of the 
Gaussian pulse were 1 and 30 ms, respectively. The interval was set from 1 to 120 s in the experiments. The sys-
tem was trained from time 0 ms to the interval plus 150 ms. The reBASICSs were trained on 10 trials (a trial is a 
run to the end of the training period), and then their learning performance R2 was evaluated using 10 untrained 
test trials. We defined the timing capacity as the area under the R2 curve over intervals of up to 120 s.

Learning of Lorenz time series. We used the Lorenz  system40 as the target signal to evaluate the learning per-
formance for complex and unpredictable time series. The Lorenz time series was obtained through interactions 
between three variables:

where p = 10 , r = 28 , and b = 8/3 , and we set x(0) = 0.1 , y(0) = 0 , and z(0) = 0 . We obtained the numerical 
solution for Eqs. (7)–(9), using the fourth-order Runge–Kutta method with a step size of 0.001. Then, the time 
series was downsampled to 1/5 of its length and normalized to [−1, 1] in magnitude, resulting in a 10 s three-
dimensional target signal, where 1 ms was regarded as one step. As the motor timing task, the input was a single 
pulse of 50 ms. The 1D reBASICS had three readouts corresponding to the x, y, and z variables of the Lorenz time 
series. Each readout weight was modulated using the corresponding target time series. The number of trials for 
training and testing was the same as that for the learning of motor timing.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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(6)dist(t) = log

(

�xpert(t)− x(t)�
�xpert(0)− x(0)�

)

.

(7)
dx(t)

dt
=− px(t)+ py(t),

(8)
dy(t)

dt
=− x(t)z(t)+ rx(t)− y(t),

(9)
dz(t)

dt
=x(t)y(t)− bz(t),

Table 1.  Parameter values.

Parameter Description Value

N Network size (the number of units) 50,000

M Neighbor parameter 20

L The number of output units 1,000

g Recurrent weight scaling coefficient 1.2

E The number of in-coming connections 10

τ Time constant 10 (ms)

I0 Noise amplitude 0.001

α Initial value for recursive least squares 1.0
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