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Predicting cancer stages 
from tissue energy dissipation
A. Arango‑Restrepo 1* & J. M. Rubi 1,2

Understanding cancer staging in order to predict its progression is vital to determine its severity and 
to plan the most appropriate therapies. This task has attracted interest from different fields of science 
and engineering. We propose a computational model that predicts the evolution of cancer in terms of 
the intimate structure of the tissue, considering that this is a self-organised structure that undergoes 
transformations governed by non-equilibrium thermodynamics laws. Based on experimental data 
on the dependence of tissue configurations on their elasticity and porosity, we relate the cancerous 
tissue stages with the energy dissipated, showing quantitatively that tissues in more advanced 
stages dissipate more energy. The knowledge of this energy allows us to know the probability of 
observing the tissue in its different stages and the probability of transition from one stage to another. 
We validate our results with experimental data and statistics from the World Health Organisation. 
Our quantitative approach provides insights into the evolution of cancer through its different stages, 
important as a starting point for new and integrative research to defeat cancer.

According to the World Health Organisation, about 10 million people suffered from cancer in 2020, the 0.13% of 
the world’s population1. Statistical projections indicate that this percentage could double by 20302. Although great 
efforts are currently being made to map in detail the genetic and biochemical alterations that occur in cancer, it is 
becoming increasingly clear that it is difficult to integrate and interpret the data and translate it into treatments3. 
It is therefore urgent to consider new approaches that provide information on the emergence and sustainability 
of cancerous tissues in order to apply the most appropriate therapies. Figure 1 shows that understanding the 
emergence, sustainability and evolution of cancerous tissues is a multidisciplinary issue.

Physical laws are essential for a thorough understanding of the occurrence and progression of cancer at all 
length scales. Modelling based on these laws provides quantitative aspects useful for understanding a process as 
complex as cancer development. In particular, one branch of physics, thermodynamics, provides information 
on the mechanism of cancer emergence and growth, from proteins to cells4–7. Analysing the mechanobiology of 
cancer using a thermodynamic formalism8,9, helps to reveal why certain changes in cell and tissue architecture 
are so useful in detecting, identifying and staging cancer. The concept of entropy production, borrowed from 
non-equilibrium thermodynamics, has been used to explain the different mechanisms occurring in cancerous 
tissues at different scales and stages10–13. Therefore, thermodynamic models can provide insights into cancer 
development4–7,12,14.

Tissues can be understood as self-assembled (SA) and self-organised (SO) structures that form under non-
equilibrium conditions, with consequent entropy production and energy dissipation, and with a response to 
external stimuli that depends on the intimate properties of the structures15–19. It has been suggested that the 
evolution of cancer through its successive stages and its metastatic tendency could be interpreted as a non-
equilibrium phase transition involving energy dissipation14,20. Since the study of the emergence of cancer and 
its evolution through natural selection does not provide conclusive results because of whether it is to the benefit 
of the cell or the organism21, we want to contribute to a better understanding of this important topic by using 
non-equilibrium thermodynamics as a promising tool.

Cancer tissues are made up of cells with high self-replication rates that can adapt to the environment to 
survive22. Cancer therapies (chemotherapy, radiotherapy, immunotherapy, ozone therapy, hyperthermia and 
ultrasound therapy) involve the intervention of external agents such as chemical and mechanical forces that 
dismantle the cellular structure and strip it of cancer cells. The presence of such forces causes the tissue to dis-
sipate energy23,24, the amount of which depends on the physical properties of the tissue which in turn provide 
information about the stage of cancer, as well as the tendency to metastasise25,26. Changes in cellular and extra-
cellular mechanical properties can promote the growth of cancer27, in which the connection between mechanical 
and biochemical aspects is a powerful tool to develop diagnosis and therapies28.
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In this article, we show that cancer stages can be predicted from knowledge of the energy dissipated at each 
stage. To calculate this energy, we first analyse the dynamic response of the tissue to external agents, such as 
mechanical or chemical forces associated with treatment, taking into account that the tissue is characterised by 
its porosity and elasticity, and then calculate the entropy production from the non-equilibrium thermodynamics 
of the tissue. The results obtained allow us to understand why cancerous tissues at different stages adopt certain 
values of porosity and elasticity, key properties for the development of therapies. We analyse the configurations 
that dissipate more energy and relate them to the reported data on pancreatic adenocarcinoma. From the char-
acterisation of the different stages of cancer in terms of the energy dissipated, we thus estimate the transition 
probabilities between them. This perspective allows us to understand the evolution of cancer as a function of a 
few global tissue parameters. Figure 2 summarises the different steps leading to the thermodynamic characteri-
sation of cancerous tissues. The scheme shows that, by using experimental values for the porosity and Young’s 
modulus of the tissue, the energy dissipation is obtained which is a measure of the energy needed to change 
the tissue structure during its evolution. This quantity plays a central role in quantifying the occurrence and 
sustainability of cancerous tissues.

Results
We have calculated the energy dissipated by a cancerous tissue when a traction force is applied to it, and from 
this the probability of a tissue configuration and the probability of its evolution through the different cancer 
stages (see Methods).
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Figure 1.   Different scientific areas contributing to the prediction of carcinogenic tissue formation. The union 
of some fields of these areas might bring new and more robust approaches to understanding the emergence of 
carcinogenic tissues.
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Figure 2.   Thermodynamic characterisation of cancer tissues through their mechanical parameters, entropy 
production and non-equilibrium free energy from which the transition between the different stages of cancer 
can be analysed.
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Figure 3, shows (black dots) the values of porosity and Young’s modulus corresponding to healthy and 
carcinogenic pancreatic tissues obtained in the experiments29,30. The color map of the figure shows that the 
energy dissipation is greater in pancreatic adenocarcinoma than in the healthy tissue in agreement with the 
experimental results corresponding to the regions delimited by the dashed lines of the figure. Cancerous tissues 
then dissipate more energy than healthy tissues. We also see that the energy dissipated is larger at low porosity 
and high Young’s modulus. These results explain the fact that higher values of energy dissipated in cancerous 
tissues result in higher rates of self-replication and self-repair processes that take place outside thermodynamic 
equilibrium. In contrast, healthy tissues show a mild response to external stimuli which is explained by the fact 
that the cells do not perceive the stimuli as an attack.

In Fig. 4, we represent the probability of a tissue configuration ρ as a function of porosity and Young’s modulus 
scaled with the probability ρac = ρ(φc ,Yc) corresponding to the average value of porosity and Young’s modulus 
observed in pancreatic adenocarcinoma: φc = 0.0022 and Yc = 45.5 kPa. We observe that it is very unlikely to 
find a tissue with low porosity and high Young’s modulus29,30. The experimental values of φ and Y are given by the 
green dots with the black line indicating their tendency. They correspond to healthy, fibrous, carcinogenic and 
rigid carcinogenic tissues, as well as an initial fibrous stage located between the healthy and fibrous stages. The 
probability reaches its highest values as φ increases and Y decreases (healthy tissue). The initial stage of fibrosis, 
which corresponds to the white region lies in the vicinity of the local maximum of ρ . The local minimum of ρ 
takes place at the average values φ = 0.0022 and Y = 45.5 kPa, whereas the region for which ρ decreases cor-
responds to rigid carcinogenic tissue. In the figure, we also see that log10 ρ/ρac for healthy tissues is 3, i.e., it is 
1000 times most likely to be healthy than cancerous.

Figure 3.   Energy dissipated per gram of tissue Ed [mJ] as a function of Young’s modulus Y [kPa] and porosity 
φ (dimensionless). The values obtained from our model are given by the colour map. The experimental data for 
healthy tissue and pancreatic adenocarcinoma tissue correspond to the regions delimited by the dashed lines29,30.

Figure 4.   Probability of a tissue configuration, ρ , as a function of Young’s modulus Y and porosity φ , scaled to 
the probability ρac corresponding to the average value of the parameters of cancerous tissues reported in Ref.29: 
φ = 0.0022 and Y = 45.5 kPa. Values obtained from our model are given by the colour map. Green points 
correspond to pancreatic adenocarcinoma experimental data29,30, whereas the continuous black line shows the 
trend of these data. The figure shows the different stages: healthy tissue (HT), early fibrous tissue (F0T), fibrous 
tissue (FT), transition from fibrous to carcinogenic (T), carcinogenic tissue (CT), transition from carcinogenic 
to rigid (Tc ) and rigid carcinogenic tissue (RC).
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In Fig. 5, we plot the probability current and its derivative as a function of Young’s modulus. The cyan region 
corresponds to the healthy stage, while the blue region denotes the initial fibrosis stage. The green region repre-
sents the fibrosis stage, while the Young’s modulus values corresponding to the white regions are highly unlikely 
in pancreatic adenocarcinoma. The light red region is the typical carcinogenic stage of most cancers, while the 
magenta region represents the advanced carcinogenic stage.

We observe that in the healthy and fibrosis stages it is fulfilled that ∂J/∂Y = 0 , so they are dynamically stable 
states (see Methods). In the fibrosis and transition stages, the current is positive, implying a high probability 
of transition favouring the cancer stage. Furthermore, in the cancer stage the sign of the current changes from 
positive to negative, which means that there is a configuration to which the system will tend once the process 
has started. Finally, the transition from cancer to advanced cancer regimes tends to be slow as the current is 
very small. The advanced and rigid cancer stage is dynamically stable as the derivative is approximately zero.

In Fig. 6, we show the transition probability (left side) and the conditional probability (right side), defined 
in Methods. A very low value for the probability of transition from the healthy stage (H) to the early fibrosis 
stage ( F0 ) is observed, as expected from the analysis of the probability current. The transition probabilities are 
higher than 0.75 except that from the carcinogenic stage (C). This means that once the tissue has reached the 
initial fibrosis stage ( F0 ), the evolution towards a carcinogenic stage (C) is energetically favoured, whereas that 
to a more advanced cancer stage, ( Tc or RC), is less favoured. The results obtained for the conditional probability 
show that, beyond the healthy stage, it decays rapidly becoming lower than 25 in 10000. We have found that 
the probability of observing pancreatic tissue at the cancer stage is approximately 1/1000, according to World 
Health Organisation data1.

Discussion
We have proposed a general model that describes the evolution of a cancerous tissue through its different stages, 
from healthy to carcinogenic tissue, focusing on the case of pancreatic adenocarcinoma. The tissue is considered 
as a self-organised structure that can be characterised by mechanical parameters such as porosity and elasticity, 
and by the dissipated energy (computed from Eqs. (10)–(12)) obtained from the dynamic response of the tissue 
to an external force (by solving Eqs. (1)–(9)). From the energy dissipated, we have computed the non-equilibrium 
free energy by means of non-equilibrium thermodynamics of the formation of self-assembled structures31 (Eq. 
(15)) and from it the probability of transition between the different stages of the cancerous tissue (Eq. (19)). The 
proposed predictive model allows us to know both the evolution of cancer and the level of treatment required 
using Young’s modulus value of the patient’s tissue.

Our study has demonstrated that healthy tissues operate with minimal energy dissipation, resulting in ther-
modynamically efficient SA/SO structures. In contrast, cancerous tissues function with maximum energy dis-
sipation and possess an effective dynamic response to external stimuli. These scenarios are frequently observed 
in physical-chemical and biological systems.

Figure 5.   Probability current J [1/s] and its derivative ∂J/∂Y  as a function of Young modulus Y. Cyan, blue, 
green, salmon and magenta regions correspond to healthy, initial fibrosis, fibrosis, carcinogenic and advanced 
carcinogenic stages. White regions represent unlikely configurations for the corresponding values of Y in 
pancreatic adenocarcinoma. Blue and red points denote healthy and carcinogenic tissues.
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Because carcinogenic tissues are highly dissipative structures, it is not a good strategy to use therapies that 
increase energy dissipation. Future treatments should consider external agents that interact with the carcinogenic 
tissue and result in low-energy dissipation, such as drugs that do not induce significant changes in free energy.

Our work aligns with previous research, which has considered cancer cells and tissues as out-of-equilibrium 
systems that generate entropy and dissipate energy due to irreversible processes32–34. Our study, along with 
previous research, has successfully measured the effect of external forces on the thermodynamic and dynamic 
responses of these systems by calculating entropy production. This collective body of work supports our current 
proposal in the field of biothermodynamics, which aims to enhance our comprehension of cancer dynamics.

Conclusions
Our work presents a methodology that utilizes thermodynamic results, specifically energy dissipation, to gain 
insight into cancerous tissues. Our model accounts for the conservation of matter and energy, as well as impor-
tant system variables. Further variables and phenomena can be added to improve accuracy and delve deeper 
into cancer dynamics, including growth, metastasis, and a biochemical analysis of metabolic pathways from a 
bioenergetic and biothermodynamic standpoint.

The proposed model and methodology allow, in particular, to understand the evolution of pancreatic adeno-
carcinoma and its different stages without the need to invoke complex evolution equations for Young’s modulus 
and porosity that characterise the structure. The energy dissipation study carried out could be extended by con-
sidering different metabolic pathways. In this way, the role of dissipated energy could be analysed more precisely 
and thus provide a more detailed description of the evolution of cancerous structures and an assessment of the 
prospects offered by the proposed treatments.

Methods
To characterise the different tissue configurations from the energy dissipated, we will first analyse the response 
of the tissue to a force and obtain the resulting entropy production for different values of porosity and Young’s 
modulus which multiplied by the temperature gives the energy dissipation. We will subsequently obtain the 
non-equilibrium free energy of the self-organised structures and from it the probability that the tissue adopts a 
given configuration corresponding to the different cancer stages.

Specifically, we will study the tissue dynamic response to both a periodic mechanical force Fm that modifies 
the space between cells and a chemical force Fch , which affects the flow of chemical compounds such as glucose 
or drugs through the tissue.

Tissue structure
Tissue microstructure can be characterised primarily by its porosity φ , which measures the volume fraction 
of the extracellular space, and its Young’s modulus Y, related to the tissue stiffness, proportional to the elastic 
constant. Although in principle many different configurations are compatible with a given value of these two 
parameters, only a few of them have been observed. Figure 7 shows three possible configurations: healthy tissue, 
fibrous tissue and carcinogenic tissue. They have different porosity, Young’s modulus, and dissipated energy Ed 
which we will define in the next subsection.

Figure 6.   Transition probability between cancer stages and conditional stage probability. The left-hand side 
figure shows the transition probability from healthy to initial fibrosis ( H → F0 ), initial fibrosis to fibrosis 
( F0 → F ), fibrosis to transition stage ( F → T ), transition stage to cancer ( T → C ), cancer to carcinogenic 
transition stage ( C → TC ) and from carcinogenic transition stage to advanced/rigid cancer ( TC → AC ). The 
right-hand side figure shows the conditional stage probability for initial fibrosis F0 , fibrosis F, transition T, 
cancer C, carcinogenic transition TC and advanced cancer stage RC.
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We consider the intercellular space to be formed by channels of variable width, as shown in Fig. 8, due to the 
periodicity of the applied force which can be modelled as

where x is the position along the channel in m, t the time in s, Ah the amplitude of the channel in m, h0 the bottle 
neck width in m, Rm the characteristic length of the channels in m (4 cells diameter31) and f the frequency of the 
applied force in s −1 . The amplitude is a function of the porosity defined as φ = 1

R3m

∫ Rm
0 h2dr . From this expres-

sion, using Eq. (1) and solving for Ah , we obtain

where r0 [m] is the smallest opening in the walls of the capillaries that carry blood and chemicals to the tissues.
To compute h0 , we consider that the amount of energy needed to expand the channel a distance h0 − r0 is 

the elastic energy Ee = Y(h0 − r0)
2/2Rm [J]35. We next assume that the energy given by the mechanical external 

force Fm is proportional to the pressure difference induced inside the capillary �P [kPa]: EF(Fm) = C0�P . By 
equating Ee with EF , we thus find

where the constant C0 = 5× 10−10m3 can be estimated from experiments36.

Conservation equations
The mass conservation equation for the i-th species is written as

(1)h(x, t) = Ah

(

sin

(

π
x

Rm
−

π

2

)

+ 1

)

| sin(ft)| + h0

(2)Ah =
√

(2/3)φR2
m − (2/9)r20 − (2/3)r0

(3)h0 =
√

2C0Rm�P

Y
+ r0

Figure 7.   Three possible tissue configurations composed of cells, extracellular matrix, and interstices. Healthy 
tissue (HT) shows a more ordered distribution of cells and less tortuous cell spacing than cancerous tissue 
(CT) while fibrous tissue (FT) is an intermediate structure between HT and CT. The tissue configurations 
are quantified by porosity and Young’s modulus: φh and Yh for HT, φF and YF for FT, and φc and Yc for CT. In 
healthy tissues, Young’s modulus is lower and porosity is higher than in carcinogenic tissues. Tissues can also be 
characterised by the dissipated energy: Ed,h for healthy tissues, Ed,F for fibrous tissues and Ed,c for carcinogenic 
tissues.

Figure 8.   Illustration of an intercellular space of varying half-width h(x, t) [m] through which drugs can flow, 
with Ji [mol/m2 s] mass fluxes. Compounds can also be absorbed at rates Ja,i [mol/m3s], and consumed at rates 
Jr,i [mol/m3s].
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in which ci is the concentration in mol/m3 , Ji the diffusive flux in mol/m2 s, ṙi the consumption rate in mol/m3 s 
and Ja,i the absorption flux into the extracellular matrix of the tissue and cells of the i-th compound in mol/m3 s. 
The diffusion flux depends on the chemical potential gradient ∂µi

∂x  in J/mol m. The diffusive flux is given by31

Here R is the gas constant in J/mol K, Di(x, t) [m2/s] is an effective diffusion coefficient that depends on position 
and time due to the tortuosity of the channels. It is given by Di = D0,i/[1+ ( ∂h

∂x )
2]1/237, with D0,i the diffusion 

coefficient of the chemical compound not affected by constrictions. The boundary conditions for the flux is:

with K a constant and the chemical force (transport coefficient in m/s) Fch = −K(ci(0, t)− c∗i ) with c∗i  the con-
trolled fixed value for the concentration of the i-th chemical compound at the boundary. The second boundary 
condition for the flux is Ji(∞, t) = 0 . The chemical potential of the i-th specie is given by

where the first term on the right-hand side corresponds to the case of the absence of constrictions, while the 
second term is the consequence of the effect of constrictions on transport37.

The absorption flux Ja,i is proportional to the difference in the concentration of the i-th compound in the 
interstices and in the cells and extracellular matrix

where ci,c is the concentration in the cells and Da an absorption coefficient in m/s. The consumption rate ṙi is 
given by

where k is a kinetic constant in s −1.

Energy dissipation
We will compute the energy dissipated from the entropy production rate σ [w/m3k]. The entropy production rate 
σch including contributions due to diffusion, absorption and chemical reactions38,39 is given by

with �azn the difference of fugacities between free and absorbed states [J/mol], Jr,m the reaction flux of reaction 
m, and �zm its fugacity difference.

Regarding the mechanical force, we assume that Fm = �P sinωt/� , and the stretching rate is Jm = −κFm 
[m/s]38, where κ = �−1√Y/δ/� [m2/Pa.s] is the corresponding permittivity35, with � the attenuation coefficient 
[Pa/m], � a characteristic length [m] (cell diameter), and δ the tissue density [kg/m3 ]. The local entropy produc-
tion rate due to the mechanical force σm is given by38

The local entropy production rate σ is then σ = σch + σm . From this quantity, we compute the total entropy 
produced in the tissue � during the action of the external forces by integrating in space and time:

The energy dissipated is finally defined as Ed(Y ,φ) = T�(Y ,φ) . Specifically, in the case of adenocarcinoma the 
porosity of the tissue φ can be written as a function of the Young modulus Y as φ(Y) = a(1+ bφ)−1 , with a and 
b constants that can be obtained from experimental data29,30. Therefore, the dissipated energy only depends on Y.

Probability of observing a given structure
According to statistical thermodynamics, the probability of observing a cancerous tissue configuration with 
Young’s modulus value Y is given by39

where �G is the free energy of the tissue in J/mol, T its temperature and R the constant of gases. The ratio between 
probabilities of a tissue with Y1 (e.g., healthy tissue) and another with Y2 (e.g.,carcinogenic tissue) is thus

(4)
dci

dt
= −

∂Ji

dx
− ṙi − Ja,i

(5)Ji(x, t) = −
Di

RT
ci
∂µi

∂x

(6)Ji(0, t) = KFch

(7)µi(r, t) = kBT ln ci(r, t)+ kBT ln

(

h(r, t)

Rm

)2

(8)Ja,i(r, t) = −
Da

h(r, t)
(ci,c − ci)

(9)ṙi = −kci

(10)σch(x, t;Y ,φ) = −
1

T

[

J
∂µ

∂r
+

∑

n

Ja,n�az +
∑

m

Jr,m�zm

]

(11)σm(x, t;Y ,φ) = κ(�P sinωt/�)2

(12)�(Y ,φ) =
∫ ∞

0

∫ ∞

0
σ(x, t;Y ,φ)dxdt

(13)ρ(Y) ∼ exp (�G(Y)/RT)
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with β = (RT)−1 . To do this, we will consider the tissue as a self-assembled structure out of equilibrium subject 
to changes in free energy and energy dissipation due to the action of external forces that maintain the structure. 
The variation of the free energy of the tissue must incorporate a contribution due to the work that must be done 
on the tissue to change its structure. Thus, the free energy can be written as:

where the first contribution, �rG , is the reversible free energy change due to the action of the force, the second 
term is the irreversible change (or lost work) equal to the energy dissipated per mole Ed , i.e., �iG = Ed = T�40, 
and the last term is the free energy cost to change the configurational parameters, i.e., Young’s modulus changes 
due to internal processes.

To obtain the configurational free energy change �cG , we assume that the process evolves by making efficient 
use of the available resources41,42, for which an extreme value of the energy dissipated, at which ∂�Ed/∂Y |Y∗ = 0 , 
is the signature of an optimal design of the structure. Therefore, the energy cost to keep a configuration different 
from the hypothetical efficient configuration is �cG = |Ed(Y)− Ed(Y

∗)| . By performing an expansion of Ed 
around Y∗43, we obtain:

Notice that in the case of a non-dissipative tissue, i.e., Ed = 0 , the free energy �G coincides with the reversible 
free energy for all values of Y.

Transition probability between cancer stages
We will assume that the evolution of cancer through its stages can be described by a drift-diffusion process in 
Y-space in which the corresponding flux is given by

with DY a diffusivity in Y-space. Knowledge of the current is useful to characterise and delimit the different stages 
of cancer as a function of Young’s modulus. The boundaries between stages are characterised by an extreme value 
of the current derivative. A derivative equal to zero means a dynamically stable state in which the probability 
does not change. A negative current value indicates an unfavourable transition from one stage to the next, while 
high positive currents show just the opposite.

To estimate the transition probability Wsi→si+1 from stage si to stage si+1 , we compute the average current 
along both stages

and relate it with the transition probability, observing that: i) when the average flux is equal to zero, it is equal to 
0.5; ii) when the average flux is much larger than 0, it tends to 1; iii) when the average flux is much smaller than 
0, it tends to 0; iv) the transition probability should depend on the average value of the derivative of the flux along 
the stages. The function fulfilling these requirements is a hyperbolic tangent, therefore one has

with k a constant that depends on the average derivative of the current at the ith stage. Finally, the conditional 
probability of being at stage i (for i > 1 ) when starting in the healthy stage ( i = 1 ) is:

where the probability of staying at the initial stage is

Data availability
All data generated or analysed during this study are included in this published article.
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