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Electronic correlations in epitaxial 
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Chromium nitride (CrN) spurred enormous interest due to its coupled magnetostructural  and unique 
metal-insulator transition. The underneath electronic structure of CrN remains elusive. Herein, the 
electronic structure of epitaxial CrN thin film has been explored by employing resonant photoemission 
spectroscopy (RPES) and X-ray absorption near edge spectroscopy study in combination with the 
first-principles calculations. The RPES study indicates the presence of a charge-transfer screened 3 dnL 
( L : hole in the N-2p ) and 3 dn−1 final-states in the valence band regime. The combined experimental 
electronic structure along with the orbital resolved electronic density of states from the first-principles 
calculations reveals the presence of Cr(3d)-N(2p ) hybridized (3dnL ) states between lower Hubbard 
(3dn−1 ) and upper Hubbard (3dn+1 ) bands with onsite Coulomb repulsion energy (U) and charge-
transfer energy ( � ) estimated as ≈ 4.5 and 3.6 eV, respectively. It verifies the participation of ligand 
(N-2p ) states in low energy charge fluctuations and provides concrete evidence for the charge-transfer 
( � < U) insulating nature of CrN thin film.

Transition metal nitride (TMN) materials have drawn considerable attention because of their interesting physical 
properties: mechanical strength, ultra-hardness, corrosion resistance, high-melting points, superconductivity, 
thermoelectricity, magnetostructural phase-transition1–5 etc. These properties are primarily governed by the 
electronic  structure1,6,7. Electronic correlations play an indispensable role in determining exotic properties of 
strongly correlated materials such as high-temperature  superconductivity8 and  multiferroicity9. Mott metal-
insulator transition (MIT) is one such phenomenal example. The MIT depends on the competition between 
itinerancy and electron–electron  correlations10,11. The Mott–Hubbard  theory12 first described the MIT via a 
reduction of the W/U parameter, where W is the bandwidth and the Hubbard energy U is the effective onsite 
Coulomb repulsion. Afterwards, Zaanen et al.13 proposed a classification scheme for TM based compounds. 
According to this scheme, depending on the magnitude of ligand to metal charge-transfer energy ( � ) or intra-
atomic Coulomb repulsion energy (U), the TM compounds fall into two categories: (i) Mott–Hubbard (U< � ) 
(ii) charge transfer ( � < U) insulator.

Among TMNs, CrN indeed seems to be peculiar as it does not shows superconductivity like its isostruc-
tural neighbors:  TiN14,  VN15,  NbN16,  MoN17 etc. It shows a first-order magnetostructural transition from a 
high-temperature paramagnetic cubic (Fm-3m) to a low-temperature antiferromagnetic (AFM) orthorhombic 
(Pnma) phase. In the literature, the transition temperature (TN ) of CrN varies from nearly room temperature 
to 100 K or even gets completely suppressed depending on the Cr/N  ratio18, polycrystalline/epitaxial nature, 
compressive/tensile  strain19,20,  thickness19,21, choice of substrates  as well as substrate  orientations20,22. Given 
the  fundamental2,23,24 and technological  interest25, some experimental and theoretical works have already been 
done on CrN and the structural and magnetic properties of CrN are well understood. However, the optical 
and electrical properties of CrN have been rather controversial and the underlying electronic structure of CrN 
received significant  attention19,20,22,23,26–30. Quintela et al.29 found semiconducting behavior in the paramagnetic 
phase with an activation energy of 75 meV but concluded that in the AFM phase the electrical resistivity behavior 
was neither conventional semiconducting nor fully itinerant. Herle et al.31 showed bulk CrN follows activation 
behavior with a small gap of 90 meV in the temperature range of 5–300 K. Constantin et al.32 reported a high tem-
perature semiconductor (band gap ≈ 50 meV) to a low temperature metallic transition around 240 K in epitaxial 
CrN thin film deposited on MgO (001) substrate. Further, Bhobe et al.23 reported similar results and concluded 
that the bulk CrN exhibits a high temperature correlated insulator (band-gap ≈ 70 meV) to a disordered metal 
transition. In a recent work by Jin et al.19 demonstrated that strain mediated orbital splitting can customize the 
small band-gap ≈ 20 meV which drives MIT in the epitaxial thin films or free standing foil of CrN.
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Besides this, Imada et al.11 interpreted the observed magnetic, structural, and electronic properties of CrN 
in terms of charge ordering or Mott-insulating behavior, which is characteristic of correlated electron systems. 
Similarly, Herwadkar et al.26 performed first-principles calculations using the local spin-density approximation 
corrected by the Hubbard Coulomb term (LSDA + U) and showed a small spin separation of states near the 
Fermi-level (EF ) which open a small charge-gap of less than 1 eV between the N-2p and Cr-3d bands hinting 
that the CrN is a charge-transfer type insulator. Moreover, Allah et al.33 studied the electronic and vibrational 
properties of polycrystalline CrN using optical transmission and reflection measurements. They reported differ-
ent absorption bands in the frequency range of 0.012–2.48 eV and explained these bands in terms of the charge-
transfer insulator picture. The similar optical reflectance measurements in broad frequency ranges (0.04–5 eV) 
have been performed by Gall et al.34. They showed a small indirect-band gap of 0.19 eV at the E F , which was 
attributed to electron interaction effects and claimed CrN to be a Mott–Hubbard-type insulator. Hence, a com-
prehensive knowledge of the electronic structure comprising the experimental and theoretical electronic band 
structure is lacking in CrN. To solve the discrepancy in electronic state of the CrN, a detailed study underlying 
the electronic structure of CrN is required.

In view of contradictory experimental and theoretical reports on the electronic structure of CrN, the present 
study attempts to investigate the electronic structure of CrN. To explore the true electronic structure and elimi-
nate any strain-related  modifications19,30 relaxed thin film of CrN has been deposited on MgO (001) substrate. 
We have investigated occupied and unoccupied density of states using a combination of resonant photoemission 
spectroscopy (RPES) and X-ray absorption near edge structure (XANES) measurements in combination with 
first-principles calculations. Finally, the detailed electronic structure in the vicinity of E F has been examined.

Results and discussion
Structural and transport properties
Figure 1a1 show RHEED patterns taken along (110) direction of bare MgO (001) substrate and (a2–a4) are 
the images taken during the film growth at 2, 12 , 35 nm. The in-plane lattice parameter (LP) was obtained by 

Figure 1.  (a1–a4) shows the RHEED images taken along (110) direction of the MgO (001) substrate and 
deposited CrN thin film at thickness (t) of 2, 15 and 35 nm. (b) In-plane lattice parameter as a function of film 
thickness (t). (c) Schematic shows the strain relaxation process. (d) X-ray diffraction patterns of grown CrN thin 
film along with bare MgO (001) substrate. (e) Temperature dependent electrical resistivity measurements with 
upper inset shows expanded view of heating and cooling cycle and lower inset shows activation fit in the high 
temperature regime.
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monitoring spacing between (11) and (11̄ ) diffraction streaks (marked in the RHEED images) as a function of 
film thickness (t) (see Fig. 1b). Based on the strain relaxation this spectrum is apportioned into three regions 
R(I), R(II) and R(III): In R(I), at the early stages of growth (0–5 nm), grown CrN film is fully strained and the 
estimated in-plane LP ≈ 4.19 ± 0.01 Å  alike to MgO (LP of MgO ≈ 4.21 Å) substrate. The respective RHEED 
image taken after ≈ 2 nm deposition is shown in Fig. 1a2. Here, the intense streaky pattern suggests film follows 
the substrate orientation and grows in 2D layer-by-layer  manner35. In R(II) t = 5 to 25 nm, as can be seen from 
Fig. 1b strain relaxation ensues and LP of growing film approaches the bulk  values19. The RHEED image (taken at 
t ≈ 15 nm) is presented in Fig. 1a3 depicting a modulated streaky pattern evincing that the film has a multilevel 
stepped surface possibly due to enhancement in the surface roughness. Further, in R(III) t>25 nm: LP of the 
growing film becomes constant ( ≈ 4.16 Å) which endows that the film is now  relaxed19. The modulated streaky 
RHEED pattern shown in the Fig. 1a4 taken at t = 35 nm confirms the cube on cube symmetric growth of CrN 
thin film on MgO (001) substrate ended with multilevel stepped surface. Figure 1c shows a schematic depicting 
the grown film possess in-plane (out-of-plane) tensile (compressive) strain in the R(I) region and as the thick-
ness of the film increases some strain relaxation takes place in R(II). Finally, in the R(III) film is fully relaxed. 
Figure 1d shows out-of-plane XRD patterns of CrN thin film taken after the film deposition and bare MgO (001) 
substrate. It shows single-phase growth of CrN thin film along (001) direction. The out-of-plane LP of the film is 
calculated to be 4.160 ± 0.005 Å. Though, N-vacancies in CrN are seems to be thermodynamically  stable36, with 
a right choice of growth parameters, stoichiometric CrN films can be grown on MgO (001)  substrate37. Zhang 
et al.38 showed that the deviation in the CrN composition distort the cubic symmetry and drastically changes 
the c/a ratio, resulting in an overall lattice shrinkage. While in our grown film both in-plane and out-of-plane LP 
values akin to the bulk values of ≈ 4.16 Å (c/a ≈ 1) which is an indication stoichiometric nature of the grown film.

The temperature-dependent resistivity measurement depicted in Fig. 1e, reveals an anomaly near the room 
temperature regime. Further, the inset of Fig. 1e demonstrates clear hysteresis in the cooling and warming cycle, 
confirming a first-order phase transition with a T N ≈ 286 K. This value matches well the bulk values and confirms 
the stoichiometric nature of the  film2,23. The ρ follows an activation behavior in the high temperature regime 
(see lower inset of Fig. 1e). Herein, ρ(T) has been fitted using the expression: ρ(T)=ρ(0)e−Eg/2KBT , a linear fit to 
ln(ρ ) vs 1/T yields a band gap of ≈ 26 meV confirms the opening of a finite gap. However, in the low-temperature 
regime (below 60 K), the resistivity ( ρ ) exhibits a negative temperature coefficient without following any acti-
vated behavior. This behavior has been widely reported in the  literature23,28,29. In a correlated antiferromagnetic 
metal, itinerant electrons may become frozen or crystallized due to interactions with localized spins and with 
each other, leading to reduced mobility. Consequently, the resistivity increases as the temperature approaches 
absolute zero (T → 0)39,40. It should be noted that a comprehensive analysis of the magnetic properties of the 
film grown in this study will be reported elsewhere.

Electronic properties
valence band spectra
Figure 2a shows the valence band spectrum (VBS) of CrN thin film recorded at the incident photon energy of 
52 eV. The estimated band gap from electrical resistivity measurements is ≈ 26 meV. However, the finite DOS at 
E F in VBS is visible due to limited instrumental resolution ( ≈ 300 meV). In the VBS, an intense peak around 2 eV 
binding energy (BE) and the broad feature has been observed between 3 and 10 eV. Also, an overall VB spectral 
shape concurrent with earlier  reports23,41. The spectral features appearing near the E F are mostly dominated by the 
Cr-3d derived states, while the broad feature at the higher BE has a significant N-2p band  contribution23. The elec-
tronic structure calculations for CrN using different exchange correlation potentials and hybrid  functions26,42,43 
showed presence of a considerable N-2p character near E F . Hence, to understand the contribution of different 
spectral bands, VBS is deconvoluted using A–F Voight peaks that adequately reproduces the major features of 
the spectrum (see Fig. 2a). To understand the origin of different features in VBS, resonant photoemission spec-
troscopy (RPES) measurement has been performed and discussed in the next section.

Resonant photoemission spectroscopy
In RPES, valence band spectra of the film were recorded by sweeping the photon energy across Cr-3p →3d exci-
tation threshold. Figure 2b shows the energy distribution curves (EDCs) of film with the photon energy varying 
from 39 to 56 eV. Herein, the sharp resonance around 52 eV is due to the quantum-mechanical interference 
between two excitation processes, which transform a certain initial state to the same final state via two possible 
channels. One channel is due to the direct photoemission from Cr-3d  states44:

and the second channel of photoemission comes from the intra-atomic excitation process at the resonant photon 
energy 52 eV by the Cr-3p state followed by super Coster–Kronig decay, represented as:

The final state is indistinguishable in the two cases thus the Cr-3d photoelectron yield rapidly enhances and 
exhibits resonance.The variation of spectral intensity of different VBS features with respect to the incident photon 
energy is visualized using the constant initial state (CIS) plot, illustrated in Fig.2c by plotting the area under curve 
with respect to photon energy for different features. Here, CIS plot of the feature B exhibits only resonance with 
maxima around 52 eV while the features A and D show strong resonance enhancement with a considerable anti 
resonance dip. Feature C at BE ≈ 4.0 eV does not show any resonance, confirming the non-bonding nature of 
the N-2p band. Furthermore, feature E and F are identified as the satellite structure of  Cr44,45.

(1)Cr : 3p63d3(t32g)+ hυ → Cr : 3p63d2(t22g)+ e−

(2)Cr : 3p63d3(t32g)+ hυ → [3p53d4]∗ → Cr : 3p63d2(t22g)+ e−.
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It is noteworthy that the CIS spectra for the 3 dn−1 final-states show only resonance peak without a remark-
able anti-resonance dip near the TM 3 p-3d threshold, while for 3 dnL ( L denotes a hole in the ligand-2p band) 
final-states, an anti-resonance dip on the lower photon energy side of a shallow peak is accentuated. Thus, the 
presence of anti-resonance dip followed by the sharp resonance in the CIS plot of feature A (1.0 eV) and D 
(5.4 eV) reveals these bands have a strong hybridized Cr 3 d -N 2 p (3d3L final-state) band character. For better 
visualization, the CIS plot of features A and B are fitted using a Fano line shape (see Fig. 2d) Eq. (3)46 given by:

where I 0(hv) is the 3 d emission in the absence of the autoionizing transition, INR(hv) is the non-interfering 
background contribution, E = (hv − ER)/Γ  : ER and Γ  are energy and the width of the transition and q is the 
asymmetry parameter determined by the magnitude and sign of the transition and interaction matrix elements. 
In general, q is lower for hybridized ligand 2 p and transition metal 3 d states and higher for pure TM 3 d  states47,48. 
In case of CrN thin film, feature A shows a dip in the CIS spectra and fitted well using lower q value (= 0.9) 
indicating their strong hybridized N-2p and Cr-3d (3d3L final-state) band character while the higher value of q 
(1.36) for feature B confirming its pure Cr-3d (3d2 final state) band character. To the best of our knowledge, no 
such reports are available in the literature for CrN or other similar nitride compounds in which RPES is used to 
differentiate the final electronic states of the specific feature though it is thoroughly used for strongly correlated 
TM oxide  materials49–51.

X‑ray absorption spectra
Figure 3a presents Cr L 3,2 X-ray absorption spectra (XAS) of the CrN thin film along with the reference Cr2O3 
bulk. The Cr L-edge spectra correspond to the transitions from a ground-state 2 p63d3 to one of the final-states 2 p5
3d4 allowed by the dipole selection rules ( � l = ± 1). The two broad peaks centered around ≈ 577.9 and ≈ 586 eV 
are assigned to L 3 (Cr: 2 p3/2-3d ) and L 2 (Cr: 2 p1/2-3d ) transitions, respectively, owing to the spin-orbit coupling. 
The relative position of the Cr L-edges and intensity ratio of L3 : L2 resemble with the Cr2O3 bulk reference as 
well as earlier  reports19,23 confirming Cr+3 valence state in the grown CrN thin film. The overall shape of the 
spin-orbit splitted Cr L 3,2 absorption edges is determined by the crystal field (CF) effects along with the multiplet 
effects, which are originated by 3 d-3d Coulomb interaction and the 2 p-3d Coulomb and exchange  interactions52. 
Apart from the CF and multiplet states, the core-hole lifetime also contributes to the overall broadening of L 3,2 
 peaks53. Also, Cr L 2 peak is more broadened than L 3 due to the Coster–Kroning Auger decay process into the 
2 p3/2 core-hole52. Further, the N K-edge XAS has been presented in Fig. 3b. Here, a sharp transition at a thresh-
old of 396 eV can be seen. The absorption features a and b ascribed to the electronic transitions from N-1s core 

(3)I(hv) = I0
(q + E)2

1+ E2
+ INR(hv),

Figure 2.  (a) Valence band spectrum of CrN thin film taken at 52 eV photon energy deconvoluted using peaks 
labeled A to F. (b) Energy distribution curves (EDCs) of the VBS obtained for photon energies between 39 and 
56 eV. (c) Constant initial state (CIS) plot of A, B, C, D features in valence band of CrN thin film. (d) Fano-line 
shape fit of the CIS plot of feature A and B. The PES measurements have been carried out at 300 K.
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level to π and σ hybridized non-metal N-2p and metal Cr-3d t 2g and e g orbitals, respectively while the feature c 
arises due to electronic transition into higher order hybridized Cr-4s4p and the N-2p orbitals. The crystal field 
energy (10Dq) is estimated to be ≈ 2 eV. The overall shape of Cr L 3 and L 2 edges is very sensitive to the 10Dq 
along with the Cr ground state (2p63d3 ) as well as excited state (2p53d4 ) multiplet, which can be controlled by 
the two-particle interaction parameter. Thus we have simulated the Cr L-edge spectra using a two-configuration 
charge transfer multiplet calculation for XAS and compared with the experimental spectrum (see Fig. 3a). The 
simulated Cr+3 L-edge spectrum using � = 3.6 eV, U 2p3d-U3d3d = 1.9 eV, V(eg ) = 3 eV along with the reduction 
of slater integrals (F2 and F 4 ) together with the appearance of pre-feature in the Cr L edge (see Fig. 3a) establishes 
the strong hybridization between Cr 3 d -N 2 p orbitals. Thus, overall shape of Cr L 2,3 and N K edges spectra, value 
of 10Dq, Cr-2p spin-orbit splitting derived from the L3,2 ( ≈ 8.3 eV) are in good agreement with available reports 
on the stochiometric bulk confirming the stoichiometric nature of the grown CrN film with Cr-N hybridization 
strength and overall electronic structure resemble to the  bulk23.

Experimental and first‑principles electronic structure in the vicinity of Fermi‑level
For a better understanding of the electronic structure near E F , we have combined the experimental VBS and 
conduction band (CB) plotted in Fig. 4a. For the CB, N K-edge spectrum has been used, as it can be considered 
to represent the most weighted unoccupied character TM 3 d and TM 4 sp via the hybridization with ligand 2 p 
states. In addition, the photo induced core-hole effect on the final-state DOS is less severe compared to the TM 
2 p  edge52. To plot the CB, N K edge of CrN thin film was subtracted from the BE position of the rising tail of the 
N 2 p core-level photoelectron spectrum shown in Supplementary Fig. S2b of  SM54. Although N K-edge XAS has 
been used for the CB mapping, it does not reflect the true DOS of the transition-metal states, rather reflecting 
the N 2 p projected metal 3 d  DOS55–57. Hence, N K-edge XAS is used here as a CB (see Fig. 4a). The observed 
features in the band diagram shown in Fig. 4a are already been discussed in detail.

The nature of electronic state of grown CrN film is understood by the character of individual bands in the 
vicinity of E F . These bands dictate the lowest energy charge fluctuations by evaluating the relative values of 
onsite Coulomb repulsion (U) and charge-transfer energy ( � ). In the band structure, first band at 2.6 eV in CB 
is dominated by the Cr-3d character, represents the spectroscopic signature of the upper Hubbard band (UHB) 
while features at 1.0 eV and 1.9 eV of VBS are assigned as Cr 3 d -N 2 p hybridized and dominant Cr-3d bands 
having 3 dn L and 3 dn−1 final-state configurations, respectively (as already discussed in the RPES section). Hence, 
feature at 1.9 eV in VB is assigned to a lower Hubbard band (LHB). The onsite Coulomb repulsion energy ‘U’ 
(energy difference between the LHB and UHB) and charge-transfer energy ‘ � ’ (energy difference between 
N-2p band and UHB) are estimated as ≈ 4.5 eV and 3.6 eV, respectively. We examined the electronic structure 
of CrN using the first-principles calculations under GGA + U scheme and compared those to the experimental 
once (see Fig. 4a,b). In the GGA + U relaxed structure of CrN, a small distortion in atomic structure is seen (see 
Supplementary Fig. S3 of  SM54). In the relaxed atomic structure of CrN, the local magnetic moment at Cr and N 
sites are ≈ 2.47 and 0.06 µB , respectively that are within the range of experimental  values2. The total DOS reveals 
salient features corroborate well with experimental results. Furthermore orbital resolved DOS indicates, along 
with Cr-3d band, N-2p band lies significantly near the E F , signaling strong presence of N(2p)-Cr(3d ) hybridized 
band character in the vicinity of E F . It can be better visualized in the integrated local DOS shown in the inset of 
Fig. 4c plotted in the range of E F to E F-200 meV dictates a solid contribution N-2p band along with Cr-3d bands. 
However, the dominance of Cr-3d ( ≈  thrice of N-2p ) bands can seen in the range of − 1 to − 2.5 eV (see Fig. 4c). 

Figure 3.  (a) X-ray absorption spectrum of Cr L-edges along with reference Cr2O3 and simulated Cr+3 L-edge 
spectra (b) N K-edge X-ray absorption spectrum of the CrN thin film with a schematic shows the Cr-3d 
orbital splitting into triply degenerated t2g orbitals and doubly degenerated eg orbitals due to ligand crystal field 
splitting. The XAS measurements have been carried out at 300 K.
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It validates our experimental findings that the dominant N-2p band in the form of hybridized N(2p)-Cr(3d ) 
is present near the E F while the Cr-3d bands dominates away from E F . Hence, the obtained experimental and 
first-principles results with � < U suggest the lowest energy charge fluctuations between 3 dn L and 3 dn+1 states 
occurs in CrN and thus, it is a charge-transfer-type insulator. As oxides of Cr are more ionic and thus have a 
less efficient screening than  nitrides26. In a phenomenological model proposed by the Zaanen–Sawatzky–Allen, 
chromium oxide is suggested to be placed intermediate between Mott–Hubbard and charge-transfer regimes 
owing to the equivalent value of U ≈ � ≈5  eV58. While the enhanced covalent nature of CrN results into the 
smaller value of � , and thus lies in the charge transfer regime in contrast to oxide counterpart.

Summary and conclusion
To summarize, we performed a comprehensive study to explore the electronic structure of CrN thin film using 
the complementary experimental techniques combined with the first-principles calculations. In-situ RHEED 
measurement confirms the relaxed and epitaxial nature of sputtered grown CrN (001) thin film on MgO (001) 
substrate. The electrical resistivity evidencing a clear first-order phase transition with a opening of small gap 
( ≈ 26 meV) in a high temperature regime. The overall spectral shape, absorption energy position of Cr L-edges 
confirms + 3 charge state and hopping parameters suggest strong hybridization between the N-2p and Cr-3d 
orbitals. The RPES study reveals a strong presence of N-2p and Cr-3d hybridized band near the E F . Finally, 
experimental band structure combined with the theoretically estimated electronic DOS dictates the lowest energy 
charge fluctuations between 3 dn L and 3 dn+1 states confirms the charge-transfer-type insulating ( � < U) state 
of the CrN thin film. Our results provide a better understanding of different competing electronic energetic 
that can be tailored using compressive/tensile strain as a results insulating or metallic states in the CrN can be 
 stabilized19,22.

Figure 4.  (a) Combined valence and conduction band of CrN thin film along with a schematic illustrating 
a charge-transfer-insulating nature of the grown CrN thin film. (b) Total electronic density of states (DOS) 
estimated using GGA + U scheme with U = 4.5 eV. (c) Orbital resolved partial density of states (PDOS) of CrN 
with a inset shows integrated local DOS plotted in the range of E F to E F-200 meV in (001) viewing direction.
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Methods
Experimental methods
CrN thin films were deposited on single-crystalline MgO (001) substrate using a reactive direct current mag-
netron sputtering system (AJA Int. Inc. Orion). The substrate temperature was fixed at 400 ◦ C. The sputtering 
power was kept constant at 100 W during deposition. A mixture of N 2 (purity 99.999%) and Ar (purity 99.999%) 
gas was used to sputter Cr (purity 99.95%) target. The total gas flow during the sputtering process was kept con-
stant at 50 standard cubic centimeter per minute (sccm) while the relative partial pressure of nitrogen defined 
as RN2 = PN2/(PAr + PN2) ; PAr and PN2 are gas flow of Ar and N 2 gases, respectively was changed to deposit 
CrN thin  films59. A base pressure of 4 × 10−8 Torr was achieved in the vacuum chamber before deposition. The 
working pressure was 2.8 mTorr. In-situ reflection high energy electron diffraction (RHEED, KSA Instruments) 
with a Staib electron gun operating at an accelerating voltage of 35 keV, a beam current of 1.55 A and an emission 
current of 1 µ A was utilized to monitor the structural growth of CrN thin film on MgO (001) substrate. Ex-situ 
X-ray diffraction (XRD) measurements were performed using a standard diffractometer (Bruker D8 Advance) 
equipped with a Cu-Kα (1.54 Å) X-ray source. The temperature dependent four probe electrical resistivity meas-
urements were carried out using a Quantum Design physical property measurement system. The X-ray near 
edge absorption spectroscopy (XANES) at Cr L 3,2 and N K-edges were carried out in the total electron yield 
(TEY) mode at soft X-ray beamline BL-01, Indus-2 at RRCAT, Indore, India. The energy resolution during XAS 
measurements across the measured energy range was ≈ 200  meV60. The pre and post-edge correction in the 
XANES were done using the Athena  software61. The valence band spectrum measurements were performed at 
AIPES BL-02 beamline, Indus-1 synchrotron source at RRCAT, Indore, India. The vacuum in the experimental 
chamber during measurements was in the order of 10−10 Torr. Prior to measurements the surface of thin film was 
cleaned using 500 eV Ar+ ions at grazing incidence. The Au foil was kept in electrical contact with the sample 
holder for determination of the E F . The experimental resolution was 300  meV in the measurement energy range.

Theoretical methods
We simulated the Cr L-edge for Cr+3 L-edge spectrum using the charge transfer multiplet program for x-ray 
absorption spectroscopy (CTM4XAS)62 under the ligand field and charge transfer multiplet approach. We per-
formed charge transfer multiplet calculations by varying the reduction of Slater integrals, charge transfer energy 
( � ), d–d interaction energy, and N(2p)-Cr(3d ) hybridization strength. For simulation, the Slater integrals were 
reduced to 80 % of the Hartree–Fock values and 10Dq in octahedral symmetry was set at 2 eV. The values of 
other parameters used for the simulation are as follows: charge transfer energy ( � ) = 3.6 eV, U 2p3d-U3d3d = 
1.9 eV, and hopping parameter V(eg ) = 3 eV. The Lorentzian and Gaussian line width of 0.25 eV and 0.3 eV, 
respectively are used for the simulation of spectrum, which accounts for L 3 core-hole lifetime and instrumental 
broadening  respectively52.

Moreover, electronic structures are obtained from density functional theory (DFT) calculations by Quantum 
ESPRESSO  code63. Norm-conserving pseudopotential with GGA-PBE functional for exchange and correlational 
energy was used. We have employed the Hubbard based DFT + U corrective scheme proposed by Andersen 
et al.64 and as implemented by Gironcoli et al.65 in our simulations. The onsite Hubbard parameter, U = 4.5 eV 
and Hund’s exchange term J H=0 eV for Cr-3d state is used in this work which make U eff  = U-JH = 4.5 eV. The 
kinetic energy cutoff for the plane wave was set at 680 eV. The orthogonal cell in its AFM [110]2 configurations 
is constructed and a ball-and stick model is given in the  SM54. The ground-state atomic structure was obtained 
by searching the low-energy atomic sites until forces on each atom were less than 10−3 Ry/Bohr using the 
Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm. The Brillouin Zone of AFM [110]2 of CrN was sampled 
with a Ŵ-centered 6 × 12 × 8 mesh of k-points. The electronic eigenvalues were obtained over 24 × 48 × 32 k-mesh 
for densities of states analysis where a Gaussian broadening of 0.05 eV was used.

Data availability
All data generated or analysed during this study are included in the article that is available from the correspond-
ing author.
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