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Remdesivir increases mtDNA copy 
number causing mild alterations 
to oxidative phosphorylation
Nicole DeFoor 1, Swagatika Paul 2, Shuang Li 3, Erwin K. Gudenschwager Basso 4, 
Valentina Stevenson 5, Jack L. Browning 1, Anna K. Prater 1, Samantha Brindley 1, Ge Tao 3 & 
Alicia M. Pickrell 1*

SARS-CoV-2 causes the severe respiratory disease COVID-19. Remdesivir (RDV) was the first 
fast-tracked FDA approved treatment drug for COVID-19. RDV acts as an antiviral ribonucleoside 
(adenosine) analogue that becomes active once it accumulates intracellularly. It then diffuses into the 
host cell and terminates viral RNA transcription. Previous studies have shown that certain nucleoside 
analogues unintentionally inhibit mitochondrial RNA or DNA polymerases or cause mutational 
changes to mitochondrial DNA (mtDNA). These past findings on the mitochondrial toxicity of 
ribonucleoside analogues motivated us to investigate what effects RDV may have on mitochondrial 
function. Using in vitro and in vivo rodent models treated with RDV, we observed increases in mtDNA 
copy number in Mv1Lu cells (35.26% increase ± 11.33%) and liver (100.27% increase ± 32.73%) upon 
treatment. However, these increases only resulted in mild changes to mitochondrial function. 
Surprisingly, skeletal muscle and heart were extremely resistant to RDV treatment, tissues that have 
preferentially been affected by other nucleoside analogues. Although our data suggest that RDV does 
not greatly impact mitochondrial function, these data are insightful for the treatment of RDV for 
individuals with mitochondrial disease.
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As of December 2022, over half a billion people contracted severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2), which causes the upper respiratory disease COVID-19 resulting in approximately, but most 
likely underestimated, 6.5 million deaths  worldwide1. Considering the number of infections allowing for the 
mutagenesis of SARS-CoV-2, treatments for severe disease have been  limited2,3. Currently, the United States Food 
and Drug Administration (FDA) has fully approved three medications for severe disease, Veklury™ (remdesivir) 
and two immunosuppressant therapies, Actemra™ (tocilizumab) and Olumiant™ (baricitinib). The first treat-
ment remdesivir (RDV), a ribonucleoside analogue (adenosine), was first made available under Emergency Use 
Authorization, May of  20204,5. The FDA directive allowed prescribing physicians to weigh the risks and benefits 
of this therapeutic treatment for use before its final approval in October 2020. Once approved, physicians in the 
US were using this ribonucleoside to reduce hospitalization times in efforts to avoid overpopulation and strain 
on the healthcare  system6.

RDV was initially in development for the treatment of Ebola virus, but was also shown to be efficacious 
against SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV), preventing replication and 
ameliorating  disease7. Remdesivir is nonspecifically, intracellularly catalyzed into its active form, remdesivir-
triphosphate, an analogue of adenosine tri-phosphate8. Remdesivir then works by delayed chain termination 
inhibiting viral RNA  synthesis9,10.

Mitochondria are of endosymbiotic  origin11, which uniquely places this organelle at risk for off-target side 
effects affecting mitochondrial function during both antibiotic and antiviral treatments. Mitochondria contain 
multiple copies of their own ~ 16.5kB double stranded DNA inside each mitochondrion within the cell. Mito-
chondrial DNA (mtDNA) encodes for 13 proteins required for oxidative phosphorylation (OXPHOS) and ATP 
generation for the cell alongwith its own ribosomal and mRNA machinery to transcribe and translate these 
 polypeptides12. Mutations, deletions, or mtDNA copy number depletion causes defects in OXPHOS leading to 
energy failure and tissue  dysfunction13,14. Antiviral analogs have previously been found to disrupt the function of 
the mitochondrial DNA-directed RNA polymerase (POLMRT) (transcription, mtDNA replication), the mtDNA 
polymerase gamma (replication), and thymidine kinase 2 (mtDNA nucleotide recycling)15.

Previously, antiviral drugs, specifically nucleoside analogues, demonstrated off-target effects on mitochondrial 
function. During the US HIV/AIDS epidemic in the 1980 and 1990’s, a thymidine analogue designed to treat HIV 
patients, zidovudine (AZT), was identified, moved into Phase I clinical trials, and was approved by the FDA in 
a 3-year span from 1984 to  198716,17. AZT was approved in record time with only one 19-week human clinical 
 trial18. Undeniably, AZT and newer generation antivirals that came after the development of AZT led the way to 
better treatment and management strategies for HIV/AIDS, turning a deadly disease into a chronic yet manage-
able disease. However, research studies years later demonstrated the negative effects AZT exposure had on mito-
chondrial  function19,20 and was verified to contribute to premature tissue aging and myopathies in AZT-treated 
 patients21,22. These effects were also seen with short-term usage impairing the respiratory  chain23–25. AZT has also 
been shown to cross the placenta in nonhuman  primates26. Findings in both nonhuman primates and human 
infants have found AZT may have negative effects on mitochondria and mtDNA causing additional concern for 
their  usage27,28. Due to these past findings, we decided to test whether remdesivir inadvertently caused similar 
off-target effects on mitochondrial function. Here, we report that mild changes to mtDNA occur in response to 
RDV treatment, but mitochondrial function is largely unperturbed in acute regimens used in this study.

Results
Mv1Lu cells increase mtDNA copy number in response to remdesivir with minimal changes 
to oxidative phosphorylation. Mv1Lu were chosen to first test whether RDV caused off-target effects 
in vitro. SARS-CoV-2 uses angiotensin-converting enzyme 2 (ACE2) as an entry receptor into the host  cell29, 
which is highly expressed in lung and airway  epithelia30. These cells are of epithelial origin and have been shown 
to support the replication of  coronaviruses31. Mv1Lu cells were treated with either a high (2.5  μM) or low 
(0.25 μM) dose of remdesivir for 72 h. 0.25 μM or 2.5 μM were concentrations that previously showed efficiency 
in cell culture when clearing SARS-CoV-2  virus32,33. While the viability of these cells was unaffected at either 
dose (Fig. 1a), a significant, slight increase in mtDNA copy number occurred with a high dose of remdesivir with 
primers targeting the ND6 region (Fig. 1b). However, this result was not recapitulated using another mtDNA 
primer set against the mtDNA region of the gene ND4 (Fig. 1b). We next set out to test whether mitochondrial 
function was perturbed by RDV. Oxidative phosphorylation (OXPHOS) protein expression showed mostly no 
changes except an increase in the nuclear-encoded succinate dehydrogenase [ubiquinone] iron-sulfur (SDHB) 
subunit of complex II for cells treated with 2.5 μM of RDV (Fig. 1c,e). Other subunits were unaffected, which 
were also nuclear-encoded, for complexes I (NDUFB8), III (UQCRC2), and V (ATP5A) (Fig. 1c,e). This was 
also true for the mtDNA-encoded cytochrome c oxidase (COX) 1 subunit (Fig. 1c,e), indicating that changes 
to mtDNA copy number did not result in a biological effect. Mitochondrial transcription factor A (TFAM), 
which is responsible for mtDNA replication and transcription, was also unaffected by RDV treatment (Fig. 1d,f). 
Considering that complex IV activity is sensitive to mtDNA  alterations34,35, we then tested the activity of citrate 
synthase (CS) and cytochrome c oxidase (complex IV) finding no effect of remdesivir treatment (Fig. 1g–i).

MtDNA copy number is increased in the liver of mice treated with remdesivir, but doesn’t 
impact liver function. It was possible that slight changes in vitro could be magnified in vivo. Also, previous 
studies demonstrate that post-mitotic tissues like heart and skeletal muscle accumulate more mtDNA mutations 
after nucleoside analogue treatment perhaps because these cells cannot turn  over21,36,37. We treated 2-month-
old adult CD-1 male mice for 10 days with remdesivir, choosing a duration more likely to mimic the treatment 
provided to human patients with COVID-1938. We chose male animals because more men were enrolled in the 
initial clinical trials for  RDV39, and more men were hospitalized for COVID-19 (60.3–39.7%) than  women40. The 
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initial reports on RDV also indicated a 10-day treatment period for COVID-19 provided benefit to patients over 
 placebo6, so we also chose a 10-day treatment regimen using efficacious doses previously reported in  mice41. We 
then measured mtDNA copy number levels using two primer sets targeting the regions encoding the genes for 
ND1 and COX1 in liver, lung, heart, and skeletal muscle. We found a significant increase in mtDNA copy num-
ber 30 days post-treatment in liver using both primer sets (Fig. 2a). However, there were no detectable changes 
to mtDNA copy number for lung, heart, and skeletal muscle (Fig. 2b–d).
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Figure 1.  Mv1Lu cells increase mtDNA copy number in response to remdesivir with minimal changes to 
oxidative phosphorylation. (a) Normalized luminescence measurements for viability using CellTiter-Glo for 
Mv1Lu cells exposed to RDV. n = 4 independent experiments. (b) MtDNA copy number quantification for 
Mv1Lu cells exposed to RDV using two primer sets against the mtDNA normalized to guide DNA (gDNA) 
levels. (c) Representative western blots for subunits for oxidative phosphorylation complexes and MTCO1. 
Vinculin is used as a loading control. Full-length membrane images can be found in Figure S3a-d. (d) 
Representative western blots for TFAM. Vinculin is used as a loading control. Full-length membrane images can 
be found in Figure S3e,f. (e) Quantification of western blots in (c) for subunits for oxidative phosphorylation 
complexes normalized to vinculin. Protein changes in RDV treated cells are normalized to vehicle. (f) 
Quantification of western blots for TFAM in (d) normalized to vinculin. Protein changes in RDV treated cells 
are normalized to vehicle. (g,h) Spectrophotometer assays for (g) citrate synthase activity and (h) complex IV 
activity normalized to protein. (i) Ratio of complex IV activity to citrate synthase activity. Error bars ± SEM. 
* = p < 0.05; ** = p < 0.01. One dot equals an experimental replicate.
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With this change in mtDNA copy number, we next decided to profile whether mitochondrial function was 
altered after treatment in the liver. Surprisingly, western blots probing for oxidative phosphorylation subunits 
showed no change with RDV treatment compared to controls (Fig. 3a,b), but TFAM protein expression in liver 
was decreased (Fig. 3c,d). Steady state protein levels can be relatively stable for nuclear and mitochondrial DNA 
subunits unless a severe mitochondrial defect is detected, so we performed spectrophotometer assays probing CS, 
an indicator of mitochondrial mass not reliant on OXPHOS, and complex IV activity. CS activity (Fig. 3e) shows 
a significant increase in activity with RDV treated liver samples, which elevated mtDNA copy number could 
indicate increased mitochondrial biogenesis to compensate for mitochondrial defects. However, both complex 
IV activity normalized to protein and the COX/CS ratio remained unaffected by RDV (Fig. 3f–g).

We next profiled liver function to test whether RDV was toxic to the liver, since some changes to mito-
chondrial function were found. Heightened levels of liver enzymes aspartate transaminase (AST) and alanine 
transaminase (ALT) in blood serum, as well as the De Ritis ratio are indicative of liver damage. No significant 
changes in AST, ALT, or the De Ritis ratio were detected in the blood of RDV treated mice (Fig. 3h–i). In line with 
these findings, no changes in histology of the liver sections were observed (Fig. 3j). Small areas of extramedul-
lary hematopoiesis were seen multifocally within sinusoids of liver section on both groups, which is considered 
a common incidental finding.

Considering that CS activity was increased as well as mtDNA copy number, we performed next-generation 
sequencing (NGS) to test whether mutational load was affected after RDV treatment in liver. Mutations in the 
control region that may affect TFAM binding may explain why TFAM and mtDNA levels did not positively 
correlate with each other. Sequencing coverage for the mtDNA spanned the whole mitochondrial genome for 
both groups with a uniform depth of coverage (Fig. 4a). Although the mutational load did not differ between 
the groups (Fig. 4b), we identified three novel polymorphisms that differed from CD-1 and mouse reference 
genome publicly available on NCBI. In just one RDV treated mouse, a point mutation, (m.9743C > A) in the 
ND3 gene region was found that was not present in any of the vehicle samples (Fig. 4c). Overall, RDV did not 
have the same mutagenic effect as other antiviral ribonucleosides 30 days post treatment.

Lung is unaffected by remdesivir treatment. While no changes were detected in mtDNA copy num-
ber in lung (Fig. 2b), we tested whether lung tissue appeared affected by RDV treatment. All of the subunits of 
oxidative phosphorylation probed for on western blot (Fig. 5a,b) and TFAM expression (Fig. 5a,c) remained 
unchanged with RDV treatment compared to controls. Pathology of hematoxylin and eosin stained lung tissue 
sections showed no histological differences as well (Fig. 5d).

Cardiac function is unaffected by remdesivir. Previous studies have found the nucleoside analogue, 
AZT, to have a detrimental effect on cardiac and skeletal muscle, but we did not detect any changes to mtDNA 
copy number in these tissues (Fig. 2c,d). We performed western blotting to probe for subunits of OXPHOS 
finding no significant changes in either heart (Figure S1a-b) or skeletal muscle (Figure S1c-d) in our treatment 
groups.

To ensure no change in cardiac function was detected, echocardiograms were measured at three timepoints: 
1 day pre-treatment, 1 day post-treatment, and 30 days post-treatment (Fig. 6a). Ejection fraction and fractional 
shortening did not differ between groups at all the time points tested (Fig. 6b–d). Trichrome staining for histol-
ogy also shows no cardiac abnormalities in RDV treated mice (Fig. 6e).

Discussion
Remdesivir was originally developed for hepatitis C, repurposed for the Ebola and Marburg viruses, and now is 
utilized for SARS-CoV-25. Antiviral nucleosides will continue to be recycled and reused against emerging viral 
threats until researchers generate more targeted combinatory therapies to a specific viral strain. Even then, the fast 
adaptation and mutational ability of viruses such as SARS-CoV-242 will still necessitate the usage of these broad 
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Figure 2.  MtDNA copy number is increased in the liver of mice treated with remdesivir. (a-d) MtDNA copy 
number quantification for CD-1 male mice treated with remdesivir for 10 days, 30 days post-treatment, using 
two primer sets against the mtDNA normalized to gDNA levels. Tissues isolated for analysis were (a) liver (b) 
lung (c) heart and (d) skeletal muscle. Error bars ± SEM. * = p < 0.05. One dot equals an individual animal.
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antiviral treatment strategies. Our data suggests that remdesivir does have the ability to impact mitochondrial 
DNA and affect mitochondrial function, albeit not to the extent that it greatly impacts tissue physiology under 
these experimental conditions.

Previous in vitro data suggests that mitochondrial RNA polymerase does have the ability to incorporate 
remdesivir; however, its selectivity for ATP against remdesivir-TP is around 500-fold43. Previous studies evalu-
ated whether mitochondrial toxicity occurs in cell culture. Studies using immortalized cell lines found mito-
chondrial alterations and mtDNA copy number depletion but only at high micromolar concentrations that 
were  cytotoxic44,45. However, hiPSC-CMs differentiated into iCMs displayed fragmented mitochondria, deple-
tion of mtDNA encoded RNAs, and defects in respiration and ATP levels when exposed to RDV at 2.5 uM 
 concentrations41. The pharmacokinetics of RDV can affect all tissues but brain showing the highest tissue distri-
bution in the liver and  kidneys46, but side effects reported for RDV such as hypotension and bradycardia have 
been reported in clinical  trials6,47. Our data in vivo did not show an effect on the heart (Fig. 2c), but it is possible 
that time points past 30 days or a longer duration of RDV would have a different effect. Tissue distribution 
may also explain our findings in liver (Fig. 2a) and future studies should closely evaluate the effect RDV has 
on the kidneys. Our in vitro work in Mv1Lu cells used concentrations that did not affect cell viability (Fig. 1a) 
even at micromolar concentrations, and we found only significant effects on mtDNA copy number and SDHB 
protein levels but those did not significantly impact mitochondrial function. However, it is important to note, 
that repeated RDV 100 mg therapeutic doses in healthy human subjects do reach micromolar concentrations 
in the  plasma8.
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Figure 3.  Liver shows mild changes to mitochondrial function when treated with remdesivir. (a) Representative 
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control. Full-length membrane images can be found in Figure S4a-c. (b) Quantification of liver tissue western 
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western blot for TFAM in liver. Vinculin is used as a loading control. Full-length membrane images can be 
found in Figure S4d,e. (d) Quantification of liver western blots for TFAM in (c) normalized to vinculin. (e–f) 
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Previous work has already suggested or shown that SARS-CoV-2/coronaviruses localize to mitochondria in 
the host  cell48,49. Other RNA viruses have been shown to affect mtDNA and mitochondrial RNA  transcripts50. 
In the case of RNA viruses ZIKA and HSV-1, mitochondrial abnormalities have been found due to the viruses’ 
localization to the  mitochondria51,52. This raises important issues not addressed in this study or previous studies: 
In the presence of SARS-CoV-2, will mitochondria be affected and will antivirals compound any dysfunction? It 
is also possible that with the viral load being reduced with antivirals, they might affect mitochondria to a lesser 
degree.

In vivo analysis of RDV treatment on mitochondrial function has yet to be extensively profiled. One study 
treated male, 30-month-old rats for 3 months finding no mtDNA copy number alterations or deletions in 
heart, kidney, or skeletal  muscle53. Here we found mtDNA copy number was elevated in liver with concomitant 
increases in CS activity, but overall liver function appeared unaffected. Our results are largely in agreement; 
however, the duration between studies differs as well as the follow-up analysis on mitochondrial function and 
tissue function. We also chose male mice for our study as more men were being hospitalized with SARS-CoV-2 
(60.3–39.7%) than  women40. In addition, mitochondrial function is reported to be higher in multiple tissue and 
cell types in females as compared to  males54,55, indicating that female physiology may be more resistant after 
exposure to nucleoside analogue treatments. One finding that was surprising is that TFAM levels did not posi-
tively correlate with mtDNA levels (Figs. 2a and 3c,d) considering TFAM is important for mtDNA replication 
and  packaging56. NGS sequencing did not find any mutations in the TFAM binding region that could explain this 
result. We also cannot rule out that although the decrease was significant, it did not reach a threshold required 
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to cause a biological effect. The duration of a more chronic treatment regime could be utilized if RDV is used 
for other viral infections, but a longer treatment duration was not considered for our study because it did not 
reflect treatment regimens for COVID-1938.

Preclinical evaluation is important. Another nucleoside analogue, fialuridine (FIAU), displayed promise in 
treating chronic hepatitis B  infections57,58. However, during the Phase II clinical trial, the drug caused hepatic 
failure, lactic acidosis, and pancreatitis, which was fatal for five of the thirteen enrolled  patients59. Studies later 
showed off-target effects included a decrease in mtDNA copy  number60 and the enlargement of mitochondria 
with abnormal  cristae61. In conclusion, our data suggests that caution may still be warranted for individuals with 
mitochondrial disease or mitochondrial defects when choosing RDV as a potential antiviral treatment.

Materials and methods
Cell culture. Mv1Lu cells (ATCC) were grown in high glucose (25 mM) DMEM media (Gibco) with 10% 
FBS (Gibco), 1% HEPES (Gibco), 1% sodium pyruvate (Sigma-Aldrich), 1% MEM Non-Essential Amino Acids 
(Gibco) and 1% L-Glutamine (Gibco). Cells were routinely tested for mycoplasma contamination by PCR 
(Southern Biotech).

Chemicals. Experimental cells received a media change every 24 h with complete media with either a 2.5 μM 
or a 0.25 μM dose of remdesivir (Cayman Chemicals) in DMSO (Fisher). Vehicle treated cells received complete 
DMEM media change with DMSO.

Animals. All mice were housed in pathogen-free facility on a 12-h light/dark cycle at Virginia Tech or Medi-
cal University of South Carolina and provided standard rodent diet and water ad libitum. 1.5-month-old ICR 
(CD-1®) outbred mice were purchased from Envigo. All experiments were conducted in accordance with the 
NIH Guide for the Care and Use of Laboratory Animals and ARRIVE guidelines, as well as under approval of 
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the Virginia Tech Institutional Animal Care and Use Committee or Medical University of South Carolina Insti-
tutional Animal Care and Use Committee.

2-month-old male mice were injected for 10 consecutive days with either 12% sulfobutyl-b-cyclodextrin 
vehicle (Sigma-Aldrich) or 25 mg/kg dose of remdesivir (MedKoo) diluted in vehicle. Mice rested for 30 days 
with no treatment. Mice were deeply anesthetized with an intraperitoneal injection of ketamine (500 mg/kg) and 
xylazine (10 mg/kg) before sacrifice. Mice were perfused with ice cold 1 × PBS. Liver, lung, cardiac, and skeletal 
muscle (quadriceps femoris) tissue were flash frozen in liquid nitrogen and stored immediately at − 80 °C. Liver 
and lung were incubated in 10% formalin (VWR) in histology cassettes for paraffin blocks for hematoxylin and 
eosin staining performed by the Virginia-Maryland College of Veterinary Medicine Pathology core on 10 μM 
thick sections.

Western blotting. Homogenized tissue or Mv1Lu cell pellets were resuspended in 1 × RIPA Lysis and 
Extraction Buffer (Thermo Scientific) with Pierce™ protease and phosphatase inhibitors. Samples incubated on 
ice for 20 min and then incubated at 4 °C end over end for 20 min. Samples were centrifuged at 16,000 × g for 
15 min at 4 °C. Supernatant was collected and protein concentration was determined using the DC™ Protein 
Assay Kit II (Bio-Rad).

20–40 μg of protein in 2 × LDS-sample buffer (ThermoFisher) and 50 mM DTT (Sigma-Aldrich) were heated 
at 70 °C for 10 min. Samples were loaded onto NuPAGE™ 4 to 12% Bis–Tris gels (Invitrogen). Electrophoresis was 
run with 1 × MOPS-SDS Running Buffer (Bioworld) and transferred to a PVDF membrane (EMD Millipore) at 
100 V for 1 h. Membrane was blocked with 5% milk for 1 h at RT. Primary antibodies were incubated overnight 
at 1:1000–1:5000 dilutions. Membranes were washed with 1 × TBST and incubated with secondary antibody 
conjugated to HRP for 1 h at RT. Membranes were imaged using the ChemiDoc (Bio-Rad) with Clarity™ Western 
ECL Substrate (Bio-Rad), ECL Select™ Western Blotting Detection Reagent (Cytiva), or SuperSignal™ West Femto 
Maximum Sensitivity Substrate (Thermo Scientific). Detected bands were quantified using ImageLab (Bio-Rad).

Antibodies. The following antibodies were used for this study: anti-Vinculin (Invitrogen, # 700,062), 
OxPhos Human WB Antibody Cocktail (Invitrogen, # 45-8199), OxPhos Rodent WB Antibody Cocktail (Invit-
rogen, #45-8099), anti-TFAM (Sigma-Aldrich, #ABE483), anti-GAPDH (Sigma-Aldrich, #G9545), anti-COXII 
(Abcam, #ab198286), MTCO1 Monoclonal Antibody (Invitrogen, # 459,600), goat anti-mouse IgG (H + L) HRP 
conjugated (Jackson ImmunoResearch), and goat anti-rabbit IgG Antibody, (H + L) HRP conjugated (Jackson 
ImmunoResearch).

DNA extraction. DNA extraction for Mv1Lu pellets were performed using the Quick-DNA™ Miniprep Kit 
according to the manufacturer’s instructions (Zymo). DNA extraction for tissue began with homogenization in 
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1 × PBS with Pierce™ protease and phosphatase inhibitors (Thermo Scientific). Samples were incubated overnight 
at 37 °C in RSB Buffer (10 mM Tris–HCl pH 7.4, 10 mM NaCl, 25 mM EDTA pH 8.0) in addition to 1 mg/
mL Proteinase K (ApexBio), 1% SDS, and 0.2 mg/mL RNAseA (Fisher Scientific). DNA was extracted using 
phenol:chloroform and precipitated in 100% isopropanol (Fisher Scientific). 70% ethanol was added to pelleted 
DNA and spun down at 13,000 × g for 5 min. Pellets were dried at RT for 20 min. DNA was resuspended in 
nuclease-free water. DNA was then cleaned using the DNA Clean and Concentrator Kit (Zymo) according to the 
manufacturer’s instructions.

qPCR for mtDNA copy number. 10 ng of genomic DNA and 0.4 μM of each primer set was mixed in a 
10 μL qPCR reaction that was run on the CFX96 System (Bio-Rad). Reactions were performed using PowerUp™ 
SYBR™ Green Master Mix (Applied Biosystems). The primers that were used are as follows: ACTG1 (gDNA) (F: 
CGC AAG TAC TCC GTG TGG AT, R: CAA CTG CTA CTC CGG GTT CG) ND4 (mtDNA) (F: AGC CTT TAC TCT 
ATC TTT TAT GGG A, R: ATA AGC CCA GTG CTG CTT CA) ND6 (mtDNA) (F: CAA TTC CAC AGC CAA TAG 
CCC, R: ACA ACG GTG ATT TTT CAT GTC ACT ). β-Actin (F: GCG CAA GTA CTC TGT GTG GA, R: CAT CGT 
ACT CCT GCT TGC TG), COX1 (mtDNA) (F: AGG CTT CAC CCT AGA TGA CACA, R: GTA GCG TCG TGG TAT 
TCC TGAA) and ND1 (mtDNA) (F: CAG CCT GAC CCA TAG CCA TA, R: ATT CTC CTT CTG TCA GGT CGAA).

PCR was performed in technical triplicates. Data was collected from at least three independent experiments 
or the number of animals noted in the figure legend. Expression levels were normalized to genomic DNA and 
fold change was determined by comparative CT  method62.

Cytochrome c oxidase assay. Complex IV activity was measured as previously  described63. A buffer com-
prised of 10 mM potassium phosphate pH 7.0, 1 mg/ml BSA (Gold Biotechnology), and 120 mM lauryl malto-
side (Sigma-Aldrich) was added to tissue homogenates and cell pellets. 2 mM cytochrome c (Sigma-Aldrich) 
reduced with sodium dithionite (Fisher) was added to catalyze the reaction. Measurements were taken at 550 nm 
at 30 s intervals for 20 min at 37 °C. Potassium cyanide (240 μM) was used to inhibit the reaction to ensure 
slope was specific to COX. Results were normalized to protein concentration using the DC™ Protein Assay Kit 
II (Bio-Rad).

Citrate synthase assays. Citrate synthase activity was measured in tissue and cell samples using the Cit-
rate Synthase Assay Kit according to the manufacturer’s instructions (Abcam). Results were normalized to pro-
tein concentration using the DC™ Protein Assay Kit II (Bio-Rad).

Cell viability. Approximately 300 to 600 Mv1Lu cells were plated (4 wells/treatment) in white-coated 96-well 
plates (Brand Tech Scientific) in growth media. Cell growth curve was obtained by CellTiter-Glo® Luminescent 
Cell Viability Assay (Promega) using a luminescence reader every 24 h. Mean cell number corresponding to the 
luminescence on each day was normalized to the first day in the graph.

Liver enzymes. Blood from mice was collected via cardiac puncture. Mice were deeply anesthetized with 
an intraperitoneal injection of ketamine (500 mg/kg) and xylazine (10 mg/kg) prior to collection. 400 uL of 
blood from each mouse placed in a Microtainer Blood Collection Tube with Lithium Heparin (BD) was sent to 
Virginia-Maryland College of Veterinary Medicine for AST and ALT testing.

Histological scoring. Liver and lung were collected after transcardial perfusion, fixed in 10% formalin 
(VWR) and embedded in paraffin blocks. Sections of 5 μm were stained with hematoxylin and eosin by the 
ViTALS group at Virginia-Maryland College of Veterinary Medicine. The control group contained 5 slides with 
1 tissue section of liver, and 4 slides with 1–3 sections of lung. The treatment group contained 4 slides with 1 
section of liver and 2 slides with 1 section of lung. Tissue sections were analyzed in a post-examination method 
of masking by an anatomic pathologist following adapted guidelines from the INHAND-recommended grad-
ing  scheme64 for sections of the liver, and reported grading system that asses the qualitative presence of lesions 
based on distributions of the  lung65. Briefly, tissue sections were screened for evidence of cellular degeneration, 
injury, cell death, or proliferative lesions. Findings from sections of the liver are categorized as within expected 
limits (no lesions), marginal (very small amount), slight (small amount), moderate (medium amount), marked 
(large amount), and severe (very large amount). Whereas findings from lung sections are categorized as 0% 
(none), < 25% (1), 26–50% (2), 51–75% (3), and > 75% (4), based on lung fields. Slides were digitally scanned 
using MoticEasy Scan (Motic) Infinity 60, and representative tissue sections were used for figure generation.

Echocardiography. Echocardiography was performed using a Vevo 3100 ultrasound system (Fujifilm Vis-
ualSonics), equipped with a MS550S transducer, B-mode and M-mode datasets as previously  described66.

Trichrome staining. Mouse hearts were collected, fixed in 10% formalin (Leica Biosystems) overnight and 
embedded in paraffin. We prepared 7 μM sections and carried out trichrome staining as previously  reported67.

Next-generation sequencing. Mitochondrial DNA was purified from whole genome DNA from CD-1 
liver tissue using KAPA HiFi HotStart ReadyMix (Roche) with 10 ng/μL DNA using two mitochondria primer 
sets that spanned the mtDNA genome: 4075F: AGC AGC AAC AAA ATA CTT CGT CAC AC, 12886R: GTG AGG 
GCG AGG TTC CGA TTAC; 12728F: CTG TAC CCA CGC ATT CTT CA, 4200R: GGA TAG GCC TAT TAA TGT 
TATGT. PCR products were extracted using the GeneJET Gel Extraction Kit (Thermo Scientific).
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Sequencing was performed at the Genomics Sequencing Center which is part of the Fralin Life Science 
Institute at Virginia Tech. DNA-seq libraries were constructed using KAPA HyperPrep Kit (Roche). For library 
preparation, input mtDNA was quantitated using a Qubit 3.0 (Thermo Fisher). Samples were then sheared using 
a Covaris M220 incident power of (W) 50, duty factor of 20%, cycles per burst of 200, and treatment time of 
130 s in 50 μl. End repair and A tailing were performed on the roughly 100 ng of input DNA. Adapter ligation 
and barcoding were performed followed by a bead clean up and PCR (4 cycles). Agilent TapeStation was used to 
visualized the final libraries which were quantitated using Quant-iT dsDNA HS Kit (Invitrogen). Libraries were 
then normalized and pooled and sequenced on a MiSeq Nano 500 cycle, 250 paired end.

Next-generation sequencing data analysis. All pipeline for NGS data analysis were performed using 
the usegalaxy.org public  server68. Illumina universal adaptor sequences were removed from the fastq files 
using Cutadapt (Galaxy Version 4.0_galaxy1). Quality of the reads in all paired end fastq files were checked 
using FastQC (Galaxy Version 0.73 + galaxy0) before proceeding for read mapping. The reads were mapped 
using BWA-MEM2 (Galaxy Version 2.2.1 + galaxy0) to the reference mouse mitochondrial genome sequence 
(NC_005089.1). Depth and coverage quality for each sorted bam files were visualized using IGV_2.16.0 tool. 
FreeBayes Bayesian genetic variant detector (Galaxy Version 1.3.6 + galaxy0) with minimum depth of coverage 
of 10 was used for frequency-based pooled calling with filtering. Variant annotation with mouse genome build 
mm10 was done using SnpEff eff (Galaxy Version 4.3 + T.galxy2) tool.

Statistical analysis. For comparisons between two groups, student’s t-test was used to determine statisti-
cal significance. Ordinary one-way ANOVA followed by Tukey’s multiple comparisons were used for three or 
more groups. All the graphs were plotted using Prism software. Differences in means were considered significant 
if p < 0.05 and designated as the following p < 0.05—*; p < 0.01—**; p < 0.001—***. The number of experimen-
tal replicates are included in the figure legends. One dot represents an individual animal or an experimental 
replicate.

Data availability
The western blot data generated during this study are available at Mendeley Data https:// doi. org/ 10. 17632/ 
phcxk 2fw42.1. Next-generation sequencing data generated is available at NCBI BioSample database under 
SUB12974528, released upon publication. Any other raw datasets generated during this study are currently 
being used for future studies and to obtain grant funding, but data is available upon request.
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