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Deep convolutional neural network 
with fusion strategy for skin cancer 
recognition: model development 
and validation
Chao‑Kuei Juan 1,2,7, Yu‑Hao Su 3,7, Chen‑Yi Wu 2,4, Chi‑Shun Yang 5, Chung‑Hao Hsu 1, 
Che‑Lun Hung 3* & Yi‑Ju Chen 1,2,6*

We aimed to develop an accurate and efficient skin cancer classification system using deep‑learning 
technology with a relatively small dataset of clinical images. We proposed a novel skin cancer 
classification method, SkinFLNet, which utilizes model fusion and lifelong learning technologies. The 
SkinFLNet’s deep convolutional neural networks were trained using a dataset of 1215 clinical images 
of skin tumors diagnosed at Taichung and Taipei Veterans General Hospital between 2015 and 2020. 
The dataset comprised five categories: benign nevus, seborrheic keratosis, basal cell carcinoma, 
squamous cell carcinoma, and malignant melanoma. The SkinFLNet’s performance was evaluated 
using 463 clinical images between January and December 2021. SkinFLNet achieved an overall 
classification accuracy of 85%, precision of 85%, recall of 82%, F‑score of 82%, sensitivity of 82%, and 
specificity of 93%, outperforming other deep convolutional neural network models. We also compared 
SkinFLNet’s performance with that of three board‑certified dermatologists, and the average overall 
performance of SkinFLNet was comparable to, or even better than, the dermatologists. Our study 
presents an efficient skin cancer classification system utilizing model fusion and lifelong learning 
technologies that can be trained on a relatively small dataset. This system can potentially improve 
skin cancer screening accuracy in clinical practice.

Skin cancer is one of the most common cancers in Western populations, which includes malignant melanoma 
(Mel) and non-melanoma skin cancer (NMSC), such as basal cell carcinoma (BCC) and squamous cell carci-
noma (SCC)1,2. Mel is responsible for most skin cancer-related deaths  worldwide1. Early diagnosis of skin cancer 
is pivotal for better outcomes, boasting a 99% overall survival rate when detected earlier, however, when skin 
cancer spreads beyond the skin or metastasizes, the survival rate declines  markedly2–4. Currently, dermatologists 
use visual inspection with the assistance of polarized light magnification via dermoscopy to examine patients. 
Despite their training and the use of dermoscopy, dermatologists rarely achieve diagnosis accuracy or sensitivi-
ties greater than 80% without pathologic  support5. Medical diagnosis depends on various factors, such as the 
patient’s history, ethnicity, social habits, and exposure to the sun. Suspicious lesions are biopsied in an office 
setting and sent to the laboratory, where they are processed and examined by a pathologist to render a diagnosis.

Convolutional Neural Networks (CNNs) models have demonstrated remarkable efficiency, accuracy, and 
reliability in image classification tasks, achieving near-human performance levels in many challenging image 
stratification  tasks6–10. Additionally, CNNs have been successfully utilized in the medical field to classify diseases 
from medical  images11,12. In 2017, Esteva et al.13 first reported a deep-learning convolutional neural network 
(DCNN) image classifier that performed as well as 21 board-certified dermatologists in identifying images with 
malignant lesions. The DCNN was trained on clinical and dermoscopic images of skin lesions and generated 
its diagnostic criteria for melanoma detection. Subsequent publications have demonstrated similar results, with 
DCNNs achieving dermatologist-level skin cancer  classification14–16. However, it is worth noting that most stud-
ies in this area have focused on testing only two critical binary classifications, such as benign nevus and Mel.
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The current skin disease datasets are biased toward fair-skinned individuals, with fewer cases from brown or 
dark-skinned  people17. People with darker skin have a lower risk of skin cancer than the fair-skinned population, 
but they are often diagnosed at later  stages18. Therefore, deep learning frameworks validated using fair-skinned 
populations may not accurately diagnose skin cancer in people with darker skin, leading to misdiagnosis and 
vice  versa19. This underscores the need for more diverse datasets that represent different skin types to improve 
the accuracy of deep learning algorithms in diagnosing skin diseases across all populations.

While machine learning methods have made significant improvements in various applications, no single 
algorithm can outperform all other machine learning algorithms across all applications. To improve prediction 
and classification tasks, ensemble learning techniques have emerged as an effective approach, which involves 
creating and combining multiple  models20,21. This approach differs from conventional machine learning tech-
niques that train a single model using training  data22,23. Ensemble learning algorithms can enhance the accuracy 
of prediction results and reduce the overfitting problem by combining the contributions of multiple  models21–24.

Unlike human dermatologists, who can continually improve their learned skills through clinical practice, 
most machine learning algorithms, such as neural networks, have fixed parameters once the training process is 
complete, limiting their flexibility. This inflexibility poses a challenge in real-world applications as a model with 
fixed parameters may not be adequate for handling a variety of unseen data. Lifelong learning techniques address 
this challenge by enabling trained models to learn sequentially without requiring the re-training of all data again.

In this study, we proposed a novel system that combines fusion strategy and lifelong learning technologies to 
improve skin cancer classification accuracy. Our approach leverages the fusion strategy to achieve better clas-
sification accuracy by combining the predictions of two CNN models instead of relying on a single CNN model. 
We also utilized lifelong learning to train an updated model using misclassified images, which is crucial for 
improving the model’s accuracy continually, making it suitable for clinical practice. Our findings demonstrate 
that using less than 2000 clinical images for DCNN training in the Fitzpatrick skin type III-IV population in 
Taiwan, our DCNN model performed as well as dermatologists in skin cancer classification.

Results
Dataset
The study was conducted at the Department of Dermatology of the Taichung Veterans General Hospital, and it 
was approved by the institutional review board (no. CE21044A-1). The study involved digital clinical images of 
skin tumors diagnosed between 2015 and 2020. The demographic information was collected. The images were 
extracted from the hospital’s database, and only images with the following diagnoses were included: Malignant 
epithelial tumors (BCC and SCC), Malignant melanoma (Mel), Benign epithelial tumors (seborrheic keratosis, 
SK), and Benign melanocytic tumors (Nevus).

All clinical images were taken using digital cameras with at least 8 million pixels, a macro lens, and a macro 
ring flash. Dermoscopic images were not included in the study. All diagnoses were based on pathological exami-
nation. A total of 2078 images were included in the study, and the number of images in each classification is 
listed in Table 1.

Of the 2078 images, 75.2% (1215 images) were used for the DCNN training, and 18.8% (400 images) were 
allocated for validation. To address the class imbalance, 55, 200, 280, and 50 images of Mel, BCC, SCC, and 
seborrheic keratosis were included for augmentation. The images were divided by the person to prevent images 
from the same patient from being used in both training and testing.

Performance of the deep convolutional neural network
The study utilized a diagnostic algorithm of DCNN to output the probability of different skin tumors based on 
clinical images, as shown in Fig. 1. The most likely diagnosis is presented as the final diagnosis. To evaluate the 
performance of the DCNN system, 463 clinical images of skin tumors from 270 patients who visited the derma-
tologic outpatient department at Taichung Veterans General Hospital and had skin tumors biopsy or excision 
performed between January 1 and December 1, 2021, were used. The performance of the seven trained DCNN 
models was compared, and the results are shown in Table 2.

According to the results, the ResNet50 model had the best overall diagnostic accuracies for weight precision 
(WP) (0.84), weight recall (WR) (0.79), weight F-score (WF) (0.81), weight sensitivity (WS) (0.79), and weight 
specificity (WSP) (0.93). It is important to note that the evaluation was based on a limited dataset, and further 
studies are required to validate the results.

Table 1.  Skin cancer training dataset. BCC basal cell carcinoma, SCC squamous cell carcinoma, SK seborrheic 
keratosis.

Skin tumor types

Training, number of images

Testing, N, imagesOriginal Augmentation Validation

Melanoma 145 55 80 12

Malignant epithelial (BCC) 200 200 80 74

Malignant epithelial (SCC) 120 280 80 26

Benign melanocytic (Nevi) 400 0 80 287

Benign epithelial (SK) 350 50 80 64
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Performance of model fusion
In the study, seven DCNN algorithms were used to produce 21 combinations to evaluate the performance of dif-
ferent combinations in SkinFLNet. The performance of all 21 combinations is shown in Table 3. The combination 
of InceptionV3 and ResNet50 achieved the best WP and WSP. Meanwhile, the combination, InceptionResNetV2 
and MobileNet achieved the best WR, WF, and WS.

Table 4 compares the performance of the proposed model fusion algorithm and the individual DCNN algo-
rithms. The proposed fusion model outperformed other DCNN algorithms, indicating that combining multiple 
DCNN algorithms can improve the accuracy of skin tumor classification.

Performance of lifelong learning
To evaluate the performance of continuous learning of SkinFLNet, a dataset of 240 images was used for continu-
ous training, including 80 images for tumors of Mel, BCC, and SCC (MBS), 80 for Nev, and 80 for SK. Of these 
images, 50% were randomly selected from the original dataset, and the rest were unseen data. A test dataset of 
48 images was used, including ten images for MBS, 15 for Nev, and 13 for SK.

Table 5 shows the performance metrics of the classification results by SkinFLNet before and after lifelong 
learning. The lifelong learning algorithm achieved WP, WR, WF, WS, and WSP scores of MBS, SK, and Nevus 
of 0.89, 0.90, 0.90, 0.90, and 0.92, respectively. Therefore, SkinFLNet is suitable for clinical practice to improve 
classification accuracy by adjusting the weights of the CNN models used in SkinFLNet.

Performance comparison between SkinFLNet and dermatologists
To further compare the performance of SkinFLNet with dermatologists, 68 BCC, 12 Mel, 25 SCC, 48 SK, and 122 
Nev images were randomly selected from the testing dataset listed in Table 1. Three board-certified dermatologists 

Figure 1.  The micro-average ROC curves of SkinFLNet. The evaluation results of three dermatologists are 
plotted with their average performance (green and orange cross symbols).

Table 2.  Performance of the deep convolutional neural networks. WP weight precision, WR weight recall, WF 
weight F-score, WS weight sensitivity, WSP weight specificity.

WP WR WF WS WSP

ResNet50 0.84 0.79 0.81 0.79 0.93

InceptionResNetV2 0.83 0.78 0.80 0.78 0.92

InceptionV3 0.83 0.76 0.80 0.76 0.93

VGG16 0.85 0.75 0.80 0.75 0.94

VGG19 0.82 0.73 0.77 0.73 0.93

MobileNet 0.84 0.78 0.81 0.78 0.94

MobileNetV2 0.83 0.78 0.80 0.78 0.9
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from the society of the Taiwanese Dermatological Association blindly examined the same images tested for the 
fusion model of DCNNs, as depicted in Fig. 2. The SkinFLNet fusion model used the pair algorithms of Incep-
tionV3 & ResNet50. The micro-average ROC curves of SkinFLNet for BCC, Mel, Nev, SCC, and SK are shown 
in Fig. 1. The results demonstrate that SkinFLNet’s performance is comparable to, or even better than, that of 
board-certified dermatologists.

Table 3.  Performance of model fusion with different combinations in SkinFLNet. WP weight precision, WR 
weight recall, WF weight F-score, WS weight sensitivity, WSP weight specificity. Significant values are in bold.

WP WR WF WS WSP

InceptionResNetV2 + InceptionV3 0.85 0.82 0.82 0.82 0.93

InceptionResNetV2 + ResNet50 0.85 0.82 0.82 0.82 0.93

InceptionResNetV2 + VGG16 0.82 0.80 0.80 0.80 0.91

InceptionResNetV2 + VGG19 0.84 0.79 0.79 0.79 0.93

InceptionResNetV2 + MobileNet 0.84 0.83 0.83 0.83 0.93

InceptionResNetV2 + MobileNetV2 0.84 0.80 0.80 0.80 0.93

InceptionV3 + Res50 0.85 0.82 0.82 0.82 0.93

InceptionV3 + VGG16 0.84 0.82 0.82 0.82 0.93

InceptionV3 + VGG19 0.85 0.79 0.79 0.79 0.94

InceptionV3 + MobileNet 0.84 0.81 0.81 0.81 0.93

InceptionV3 + MobileNetV2 0.85 0.80 0.80 0.80 0.93

ResNet50 + VGG16 0.83 0.81 0.81 0.81 0.93

ResNet50 + VGG19 0.86 0.81 0.81 0.81 0.94

ResNet50 + MobileNet 0.84 0.81 0.81 0.81 0.93

ResNet50 + MobileNetV2 0.86 0.82 0.82 0.82 0.93

VGG16 + VGG19 0.83 0.77 0.77 0.77 0.94

VGG16 + MobileNet 0.84 0.80 0.80 0.80 0.93

VGG16 + MobileNetV2 0.84 0.80 0.80 0.80 0.93

VGG19 + MobileNet 0.85 0.79 0.79 0.79 0.94

VGG19 + MobileNetV2 0.85 0.78 0.78 0.78 0.94

MobileNet + MobileNetV2 0.85 0.78 0.78 0.78 0.94

Table 4.  Performance of comparison among SkinFLNet and deep convolutional neural network models. 
WP weight precision, WR weight recall, WF weight F-score, WS weight sensitivity, WSP weight specificity. 
Significant values are in bold.

WP WR WF WS WSP

ResNet50 0.84 0.79 0.81 0.79 0.93

InceptionResNetV2 0.83 0.78 0.80 0.78 0.92

InceptionV3 0.83 0.76 0.80 0.76 0.93

VGG16 0.85 0.75 0.80 0.75 0.94

VGG19 0.82 0.73 0.77 0.73 0.93

MobileNet 0.84 0.78 0.81 0.78 0.94

MobileNetV2 0.83 0.78 0.80 0.78 0.9

SkinFLNet 0.85 0.82 0.82 0.82 0.93

Table 5.  Performance of comparison of SkinFLNet before and after lifelong learning. WP weight precision, 
WR weight recall, WF weight F-score, WS weight sensitivity, WSP weight specificity.

WP WR WF WS WSP

SkinFLNet (before lifelong learning) 0.81 0.75 0.78 0.75 0.85

SkinFLNet (after lifelong learning) 0.89 0.90 0.90 0.90 0.92
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Discussion
In this study, we presented an efficient skin tumor classification system that combines model fusion and lifelong 
learning technology. Unlike prior studies that mostly focused on classifying melanoma and benign nevus, our 
system is capable of efficiently differentiating among five different skin tumor types simultaneously. Moreover, 
our system achieved satisfactory accuracy in skin tumor diagnosis by utilizing only clinical images, which is 
comparable to or even outperforms board-certified dermatologists.

Considerable efforts are underway to develop automated image analysis systems that accurately detect dis-
eases. In recent years, DCNNs have become popular for their ability to learn features and classify objects effec-
tively. Esteva et al.13 show that a DCNN trained on a large dataset (> 120,000 images) could achieve dermatologist-
level classification accuracy in differentiating between melanoma and benign nevi. Similarly, Yang et al.25 used a 
dermatologist criteria-inspired representation to diagnose clinical skin lesions based on the SD-198 dataset. Their 
proposed method outperformed other deep learning methods but not dermatologists, achieving an accuracy of 
57.62%. Moreover, experts in dermatology achieved an average accuracy of 83.29%25. Han et al.19 classified clini-
cal images of 12 skin diseases using ResNet-152 on three datasets, totaling 19,398 images, and their algorithm 
performed similarly to 16 dermatologists. However, a lower tested algorithm performance was reported using a 
relatively limited dataset of 6009 clinical images for 14  diagnoses26. In a different study, Brinker et al.27 compared 
the performance of a dermoscopy-trained ResNet50 algorithm with 145 dermatologists for melanoma detection 
on clinical skin lesion images (MClass-ND). The deep learning method achieved a similar sensitivity and better 
specificity score than dermatologists. Our study demonstrates that our DCNN-based skin tumor classification 

Figure 2.  Skin cancer identification system.
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systems, using a fusion model and lifelong technologies, can achieve similar performance levels, using almost 
50-fold fewer clinical images (< 2000 images for training), without dermoscopic images.

Our approach involves model fusion and combines classification outcomes from paired models to identify the 
optimal result. The method we propose employs a model fusion-based approach, where we merge the classifica-
tion results from multiple models and subsequently select the most accurate one. Prior studies have proposed 
ensemble learning based methods, such as fusion techniques and methods related to boosting  techniques28,29. The 
"Cost-sensitive Boosting Pruning Trees" methodology involves feature extraction from diverse data  sources28. 
This technique leverages boosting pruning trees to enhance classification accuracy. However, this method is 
not tailored for image classification. Conversely, "AdaD-FNN" employs a fuzzy stacking approach to enhance 
features extracted from Chest Computed Tomography (CCT) images, improving classification  accuracy29. Both 
these approaches are geared towards augmenting classification accuracy through data feature extraction or 
enhancement. In contrast, our method places emphasis on model fusion, wherein we integrate classifications 
from disparate models/algorithms to achieve heightened accuracy. It is noteworthy that the images we work with 
are colorful, captured using digital cameras and mobile phones, thus differing from the data sources included in 
the previous studies. Moreover, the algorithms used in their studies are not available as open-source solutions, 
rendering a direct comparison in our experiments unfeasible.

There are some advantages in the present study. Many studies in this field have primarily examined two essen-
tial binary distinctions, such as differentiating between malignant melanoma and benign nevus. Our method 
can concurrently distinguish among the five types of malignant and benign tumors, and that holds significant 
relevance in clinical settings. Our contribution also lies in introducing a combinatorial approach, employing 
multi-model fusion to enhance classification accuracy. This methodology surpasses the performance of renowned 
image classification algorithms, including but not limited to VGG, ResNet, and Inception. Furthermore, we have 
embraced a lifelong learning strategy, ensuring the adaptability of our method to real-world clinical practice 
where symptoms can exhibit variability. This method allows the model to self-update, maintaining its continu-
ous relevance and user-friendliness.

Our study has a few limitations that must be acknowledged. Firstly, the limited number of clinical images 
used to train our model may have restricted its generalization to a wider population. Therefore, we utilized 
image augmentation to reduce the bias caused by the imbalance. Additionally, we have deployed our model in 
real-world clinics to enable lifelong training and improve its accuracy. Secondly, due to the low incidence of 
melanoma among Asians, we had an insufficient number of cases to validate our model’s accuracy. Thirdly, due to 
its diverse clinical presentations, SK was frequently misclassified as either malignant or other benign conditions. 
This highlights the limitations of relying solely on clinical images as the input source for our work. Therefore, 
we have also incorporated demographic covariates such as age, sex, and locations of lesions, which may enhance 
the model’s performance. Our study’s strength lies in using the DCNN’s output to calculate the probability of 
malignancy, providing useful information for clinicians in their decision-making process regarding the necessity 
of a biopsy. While AI systems, including our DCNN, have shown promising results in skin cancer diagnosis, it 
is crucial to note that a biopsy and histological examination remain the gold standard for confirmation of the 
algorithm’s diagnosis. Presently, the SkinFLNet has been successfully implemented at Taichung Veterans General 
Hospital in Taichung, Taiwan, as displayed in Fig. 2.

Conclusion
SkinFLNet has shown promising performance in classifying different skin tumors and even outperformed board-
certified dermatologists in some cases. This could be a valuable tool for assisting general practitioners or der-
matologists in diagnosing skin tumors and improving accuracy. However, it’s important to note that this study 
was conducted in a specific setting with a relatively limited dataset, so further research is needed to evaluate the 
generalizability and reliability of SkinFLNet in other populations.

Methods
System architecture
Recently, ensemble methods combining multiple deep learning neural networks have been proposed to enhance 
the performance of physical examination data. Moreover, "lifelong learning" has been adopted to update the 
trained model with new data, preventing it from becoming frozen. In this study, we propose the SkinFLNet 
system, which combines two main strategies: model fusion and lifelong learning. Seven convolutional neural 
network algorithms were used to train the classification models, and the system architecture is depicted in Sup-
plementary Fig. S1.

Deep neural network models
The SkinFLNet system utilizes seven convolutional neural network algorithms, including  VGG1630, VGG19, 
 InceptionResNetV231,  InceptionV332,  ResNet5033,  MobileNet34, and MobileNetV2, to train the classification 
models. Among these algorithms, ResNet50 is notable for its residual block architecture. In comparison to 
ordinary network structures, the residual block includes an additional connection between the input and output 
of the block, which consists of three stacked convolution layers. This connection is known as a shortcut con-
nection, and it directly links the input of the residual block to the output layer. This architecture addresses the 
degradation issue in deep networks.

InceptionV3 is the third iteration of the GoogLeNet architecture and utilizes the Inception Module. The 
module is designed to address the issue of overfitting and computational resource consumption caused by a 
large number of parameters in the network. In Inception Module V2, two 3 × 3 convolutions replaced the 5 × 5 
convolutions used in Inception Module V1 to decrease the number of parameters, and Batch Normalization was 
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added to speed up convergence. In Inception Module V3, the Factorization method is introduced, which splits 
a two-dimensional convolution into two one-dimensional convolutions to decrease the number of parameters.

InceptionResNetV2 is a neural network architecture that utilizes the Inception-ResNet module, Reduction 
module, and Stem module. The Inception-ResNet module combines the Inception and ResNet architectures and 
includes three variations: Inception-ResNet-A, Inception-ResNet-B, and Inception-ResNet-C. The Reduction 
module is designed to reduce the size of the feature map and incorporates parallelism, Factorization, and a 1 × 1 
convolution layer to minimize computation. The Stem module is used at the front of the network for feature 
extraction.

The VGG is a deep network architecture proposed by the Visual Geometry Group, which won first place 
in the Localization Task and second place in the Classification Task in the 2014 ILSVRC competition. VGG16 
consists of 13 convolutional layers and three fully connected layers, whereas VGG19 has 16 convolutional layers 
and three fully connected layers.

MobileNet is a neural network architecture introduced by Google in 2017 that reduces the computational load 
of traditional convolutional neural networks through the use of Depthwise Separable Convolution and Pointwise 
Convolution. The MobileNet network structure consists of 29 layers. In addition to the standard convolutional 
kernel used in the first layer, the remaining convolutional layers use Depthwise Separable Convolution and 
Pointwise Convolution. MobileNetV2 further reduces the number of parameters and computation by introduc-
ing Inverted Residuals and Linear Bottlenecks to the MobileNet architecture.

Lifelong learning
Lifelong learning focuses on developing techniques and architectures that enable models to learn sequentially 
without retraining from scratch. The proposed lifelong learning algorithm is based on transfer learning, where 
images with classification errors are used as input for transfer learning. To improve the model’s classification 
accuracy, we propose a lifelong learning algorithm that retrains the model with a combined dataset, including 
newly collected data and part of the original data. The procedure and pseudo code for the proposed lifelong 
learning algorithm is shown in Supplementary Figs. S2 and S3, respectively.

Model fusion
The sum of absolute values is obtained by subtracting the predictions of any two different models from the seven 
models above, as shown in Eq. (1). In this equation, C represents the total number of categories, i represents the 
category, A and B represent any two of the seven CNN models, PiA represents the probability of class i in model 
A, and PiB represents the probability of class i in model B. Next, we determine the two CNN models with the 
largest sum, representing the best complementarity of the two CNN models. We then average their prediction 
probability, as shown in Eq. (2). The procedure and pseudo code of algorithm are illustrated in Supplementary 
Figs. S4 and S5.

Evaluation methods
To compare different methods, accuracy alone is often insufficient, and multiple other metrics should be used to 
provide an overall evaluation. For instance, one method may have a high accuracy rate, but the dataset may be 
imbalanced, with the model being biased toward a particular class that dominates the data. This can lead to the 
model simply selecting the dominant class as the prediction without actually learning anything about the data. 
Therefore, other measures such as precision, recall, F1-score, and confusion matrix should also be considered 
to gain a more comprehensive understanding of the performance of a method.

The metrics used to compare different methods are weight precision (WP), weight recall (WR), weight F-score 
(WF), weight sensitivity (WS), and weight specificity (WSP). True positive (TP), true negative (TN), false positive 
(FP), and false negative (FN) are denoted as TP, TN, FP, and FN, respectively. Precision determines the repro-
ducibility of the measurement or the number of predictions that were correctly labeled as positive, TP

TP+FP and 
weight precision is the weighted mean of precision with weights equal to class probability, as shown in Eq. (3). 
Recall shows how many positive instances were correctly identified, TP

TP+FN  and the weight recall is the weighted 
mean of recall with weights equal to class probability, as shown in Eq. (4). F-score combines precision and recall 
to calculate a score that can be interpreted as an average of both, as shown in 2 ∗ Precision∗Recall

Precision+Recall
 . Weight F-score 

is the weighted mean of recall with weights equal to class probability, as shown in Eq. (5). Weight sensitivity is 
the weighted mean of sensitivity with weights equal to class probability, as shown in Eq. (6). Weight specificity 
is the weighted mean of specificity with weights equal to class probability, as shown in Eq. (7).

(1)argmaxA,B

(
C∑

i=1

|PiA − PiB|

)

(2)argmaxi

(
PiÂ + PiB̂

2

)
fori ≤ C and i ≥ 1

(3)

weight precision

=
∑

i=BCC...SK

(
num_of _datai

num_of _dataBCC + num_of _dataMel + num_of _dataNev + num_of _dataSCC + num_of _dataSK
∗ pricisioni

)
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approved by the Ethics Committee of Taichung Veterans General Hospital (CE21044A-1) and Taipei Veterans 
General Hospital (2021-07-021CC).
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The datasets used and/or analyzed during the current study are available from the corresponding author upon 
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