
1

Vol.:(0123456789)

Scientific Reports |        (2023) 13:15757  | https://doi.org/10.1038/s41598-023-42692-z

www.nature.com/scientificreports

A decade of human 
metapneumovirus in hospitalized 
children with acute respiratory 
infection: molecular epidemiology 
in central Vietnam, 2007–2017
Hirono Otomaru 1, Hien Anh Thi Nguyen 2, Hien Minh Vo 3, Michiko Toizumi 1, 
Minh Nhat Le 4,5, Katsumi Mizuta 6, Hiroyuki Moriuchi 7, Minh Xuan Bui 8, Duc Anh Dang 9 & 
Lay‑Myint Yoshida 1,10*

Human metapneumovirus (hMPV) can cause severe acute respiratory infection (ARI). We aimed to 
clarify the clinical and molecular epidemiological features of hMPV. We conducted an ARI surveillance 
targeting hospitalized children aged 1 month to 14 years in Nha Trang, Vietnam. Nasopharyngeal 
swabs were tested for respiratory viruses with PCR. We described the clinical characteristics of hMPV 
patients in comparison with those with respiratory syncytial virus (RSV) and those with neither 
RSV nor hMPV, and among different hMPV genotypes. Among 8822 patients, 278 (3.2%) were 
hMPV positive, with a median age of 21.0 months (interquartile range: 12.7–32.5). Among single 
virus‑positive patients, hMPV cases were older than patients with RSV (p < 0.001) and without RSV 
(p = 0.003). The proportions of clinical pneumonia and wheezing in hMPV patients resembled those 
in RSV patients but were higher than in non‑RSV non‑hMPV patients. Seventy percent (n = 195) 
were genotyped (A2b: n = 40, 20.5%; A2c: n = 99, 50.8%; B1: n = 37, 19%; and B2: n = 19, 9.7%). The 
wheezing frequency was higher in A2b patients (76.7%) than in those with other genotypes (p = 0.033). 
In conclusion, we found a moderate variation in clinical features among hMPV patients with various 
genotypes. No seasonality was observed, and the multiple genotype co‑circulation was evident.

Human metapneumovirus (hMPV), a member of the Pneumoviridae family, was first discovered in 2001 as a 
causative agent of acute respiratory infection (ARI)1. A study with meta-analysis reported that a hMPV preva-
lence in hospitalized ARI patients was estimated to be 6.24% (95% confidence interval: 5.25–7.30)2 with a signifi-
cant heterogeneity  worldwide3. HMPV seropositivity is reported to exceed 90% by 2 years  old4. Previous studies 
have shown elevated neutralizing serum antibody titers with infection in both  children5 and  adults6; however, 
antibodies are not maintained at sufficiently high levels to prevent reinfection. In children, upper respiratory 
tract infection symptoms, hypoxia, and wheezing are common. Clinical characteristics of children with hMPV 
infection have been reported to be indistinguishable from those of children infected with respiratory syncytial 
virus (RSV), a common respiratory pathogen, another member of the Pneumoviridae family. Although children 
with hMPV tend to be older than those with  RSV7,8, a significant number of children are hospitalized with severe 
symptoms of lower respiratory tract infection, such as bronchiolitis and  pneumonia9. A cohort study in adults has 
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reported that older adults often develop bronchitis and  pneumonia10, which place an hMPV-associated disease 
burden on individuals and public health.

Of the two main immunogenic surface proteins of hMPV, attachment glycoprotein (G) and fusion (F) pro-
teins, the F protein has been shown to possess antibody-neutralization  epitopes11,12. Although neither vaccine 
nor monoclonal antibody has yet been developed, F protein can induce neutralizing antibodies in vitro and in 
animal  experiments13–16, and a human anti-F protein antibody cross-neutralizing RSV and hMPV has been also 
 identified17; hence, the F protein is expected to be a promising useful target for the development of vaccines or 
monoclonal antibody. HMPV is classified into two subgroups, A and B, based on its genetic and antigenic dif-
ferences, and further classified into genotypes A1, A2, B1, and B2 according to genetic  differences18,19. HMPV 
genotype-specific neutralizing antibody titers in children are thought to fluctuate, influenced by the prevalent 
 genotype5. Monitoring hMPV variants and determining their evolutionary dynamics are therefore important 
in devising preventive measures against hMPV.

Long-term surveillance data are yet to be thoroughly analyzed to describe the molecular evolutionary pat-
tern of hMPV. Baseline data of hMPV, such as disease burden, evolutionary characteristics, and clinical features, 
are necessary to evaluate the impact of therapeutic or preventive strategies on public health. The present study 
aimed to describe the demographic and clinical characteristics of patients with single detection of hMPV, in 
comparison with patients with and without RSV infection. We also aimed to elucidate the evolutionary aspects 
of the hMPV F gene and concurrent changes in clinical and epidemiological features by integrating surveillance 
data and the genotype of hMPV.

Results
Yearly detection of hMPV among hospitalized pediatric patients with ARI
In total, 8868 children hospitalized with ARI were eligible and enrolled in surveillance during the study period. 
After excluding 46 children whose viral screening results were unavailable, 8822 children were included in the 
analysis (Fig. 1). As a result of PCR screening and hemi-nested PCR confirmation, 278 (3.2%) patients were 
positive for hMPV, including those positive for both hMPV and RSV (n = 5). Annual hMPV-positive cases ranged 
between 0 and 6.2%, indicating continuous circulation of hMPV, other than during 2009–2010; when only five 
hMPV-positive cases were detected (Table 1). The monthly number of hMPV cases is summarized in Fig. 2 and 
Supplementary Fig. 1. These described that there was no remarkable seasonal circulation trend of hMPV infec-
tion. In contrast, clear seasonality was shown for RSV infection (Supplementary Fig. 1), although RSV cases 
were also fewer in 2009 all year round than in other years.

Genotype distribution
Among 278 hMPV-positive cases, the partial F gene was successfully amplified in 195 (70.1%) and 101 had unique 
sequences, defined as sequences that were not found to be identical each other. Sequences were not successfully 
readable in the remaining cases which may be due to low viral copies. The time-scaled phylogenetic tree showed 
that detected hMPV were classified into known genotypes and sublineages (Fig. 3). Of all obtained sequences, 139 
(71.3%) cases were classified into subgroup A and 56 (28.7%) were classified into B. Of these, A2c predominated 
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Figure 1.  Schematic flowchart of the study participants. hMPV human metapneumovirus.
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(n = 99), followed by A2b (n = 40), B1 (n = 37), and B2 (n = 19). A2b predominated before 2009 whereas A2c and 
B1 began to be detected after 2009 (Fig. 4). A2b continued to be detected even after 2012, although it was not a 
predominant sublineage. A2a was not identified in this study. Overall, the results showed that alternating hMPV 
sublineages circulated continuously over the 10-year study period.

Molecular evolutionary characteristics of hMPV fusion (F) glycoprotein
We calculated the pairwise distances to obtain nucleotide identity between the sequences. The median nucleotide 
identity between all hMPV sequences was 94.0%. The median nucleotide identity of 95.2% in subgroup B was 
lower than that in subgroup A (98.2%), indicating that circulating hMPV subgroup B was more diverse than 
subgroup A. The median nucleotide identities were high in each genotype and sublineage (99.1% in A2b, 98.6% 
in A2c, 99.1% in B1, and 99.1% in B2).

We estimated the molecular evolutionary rate of the hMPV F gene using the Bayesian Markov Chain Monte 
Carlo (MCMC) method. The evolutionary rate of the F gene of hMPV subgroup A and B was estimated to be 
1.2 ×  10−3 substitutions/site/year (95% highest posterior density [HPD]: 8.9 ×  10−4 to 1.5 ×  10−3).

Clinical signs and symptoms in hMPV‑positive patients
Next, we described the clinical characteristics of patients with hMPV (Supplementary Table 1). Of 278 hMPV-
positive children, the median age was 21.0 months (interquartile range [IQR] 12.7–32.5, and 45.3% of the children 
were female. Among them, 72.3% experienced tachypnea, 54.0% developed wheezing, and 29.1% developed 

Table 1.  The yearly number of casess with hMPV during 2007–2017. hMPV human metapneumovirus, CI 
confidence interval.

Year
No. of eligible cases 
(n = 8822)

No. of hMPV positive 
cases (n = 278)

Percent of hMPV positive 
(95% CI)

No. of eligible cases under 
five (n = 8207)

No. of hMPV positive 
cases under five (n = 265)

Percent of hMPV positive 
cases under five (95% CI)

2007 782 35 4.5 (3.2–6.2) 748 33 4.4 (3.1–6.2)

2008 600 15 2.5 (1.5–4.2) 554 15 2.7 (1.6–4.5)

2009 715 0 0.0 (0.0–0.7) 667 0 0.0 (0.0–0.7)

2010 522 5 1.0 (0.4–2.4) 495 5 1.0 (0.4–2.5)

2011 498 31 6.2 (4.3–8.8) 453 27 6.0 (4.0–8.7)

2012 762 28 3.7 (2.5–5.3) 708 26 3.7 (2.5–5.4)

2013 972 34 3.5 (2.5–4.9) 907 33 3.6 (2.6–5.1)

2014 939 44 4.7 (3.5–6.3) 869 44 5.1 (3.7–6.8)

2015 1197 29 2.4 (1.7–3.5) 1090 26 2.4 (1.6–3.5)

2016 1070 26 2.4 (1.6–3.6) 997 26 2.6 (1.7–3.9)

2017 765 31 4.1 (2.8–5.8) 719 30 4.2 (2.9–6.0)
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Figure 2.  The monthly number of hMPV-positive cases detected through ARI surveillance in central Vietnam, 
2007–2017. The numbers of hMPV cases are described using the blue line and the left side of the y-axis. The 
numbers of ARI cases are described using the orange line and the right side of the y-axis. hMPV human 
metapneumovirus, ARI acute respiratory infection.
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clinical pneumonia. Other respiratory viruses were detected in 77 children (27.7%). The most frequently co-
detected virus was rhinovirus/enterovirus (n = 49), followed by adenovirus (n = 10). Compared with patients 
without co-detected viral infection, co-infected patients were significantly younger (p = 0.044) and 71.4% were 
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male children (Supplementary Table 2). The duration of hospitalization was longer in patients without viral 
coinfection (p = 0.022); however, their clinical features were not significantly different (p > 0.05).

To ascertain differences in the clinical features associated with detected viruses, we stratified patients into four 
groups: hMPV-single positive (n = 201), RSV-single positive (n = 1216), patients with RSV and hMPV (n = 5), 
and those with neither hMPV nor RSV (n = 6873) (Fig. 1). Patients with RSV and hMPV co-infection were not 
included in this analysis because of the small sample size. hMPV-single-positive children were older than RSV-
single-positive children and hMPV-RSV-double-negative children (p < 0.001 and p = 0.003, respectively) (Table 2). 
The proportion of female patients was higher in the hMPV-single-positive group (p = 0.005 and p = 0.004, respec-
tively). In a comparison with the hMPV-RSV-double-negative group, significantly increased risks of difficulty 
breathing, wheezing, crackling, and clinical pneumonia (p < 0.05), decreased risk of tachypnea (p = 0.006), and 
longer duration of hospitalization (p < 0.001) were observed in the hMPV-single-positive group (Table 2). There 
were no significant differences in a comparison of the hMPV-single-positive and RSV-single-positive groups 
in clinical characteristics; however, onset to hospitalization and onset to discharge in the hMPV-single-positive 
group were shorter than those in the RSV-single-positive group (p < 0.05).

Lastly, to detect any differences between hMPV cases with the various subgroups, genotypes, and subline-
ages, we compared demographic and clinical characteristics between patients with hMPV (Table 3). Excluding 
co-detected cases and those whose hMPV genotype could not be determined, we summarized the remaining 
145 hMPV cases. The median patient age (in months) was not significantly different according to genotype and 
sublineage. The frequency of developing wheezing was significantly higher in cases with A2b (76.7%) compared 
with those with other genotypes and sublineages (48.7%, 42.3%, and 46.2% for A2c, B1, and B2, respectively; 
p = 0.033). To clarify the relationship between the developing wheezing to age, we conducted multiple logistic 
regression analysis with age adjustment. As a result, the adjusted odds ratio of developing wheezing was signifi-
cantly higher in cases with A2b (adjusted odds ratio = 4.48, 95% confidence interval: 1.46, 14.9, p = 0.011) than 
cases with A2c, B1, or B2 (Supplementary Table 3). Additionally, the duration from onset to hospitalization in 
patients with A2b was significantly longer than the duration in patients with other genotypes and sublineages 
(p = 0.039), although more than half (18/30) of the onset dates in patients with A2b were unavailable. There was 
no significant difference regarding the presence of other clinical features among the subgroups, genotypes, and 
sublineages.

Two patients were admitted twice for hMPV infection during the study period. One of them was infected 
with B1 in 2010 and with A2c in 2012. The F gene sequences were undetermined in the other patient.
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Discussion
We conducted ARI surveillance among hospitalized children in central Vietnam over 10 years and detected 
hMPV together with other common respiratory viruses. This study revealed the continuous circulation of hMPV, 
the predominant hMPV genotype, the genetic diversity, and clinical manifestations in pediatric ARI patients with 
hMPV. Specifically, we focused on the evolutionary characteristics of the hMPV F gene to help inform hMPV 
vaccine development and monoclonal antibodies discovery.

A global comparative review revealed that 80% of tropical locations experience distinct RSV  seasons20. We 
also observed apparent seasonality of RSV whereas hMPV circulated without apparent seasonal forcing. Previ-
ous studies have reported that the seasonality of hMPV outbreaks varies among tropical and Asian countries. In 
 Kenya21, occurrences of hMPV correspond to the season with lower rainfall and high temperatures. In  Senegal22, 
clear seasonality related to the rainy season has been observed. In South  Korea23 and  Japan24, seasonality has 
been found from winter to spring, and in  China25, seasonality was observed from spring to early summer. How-
ever, no clear seasonality of hMPV has been found in  Bangladesh26, or  Cambodia27. Although previous research 
has suggested a correlation between the prevalence of hMPV and meteorological factors such as high relative 
humidity and rainy days in  Malaysia28, the dynamics of hMPV in tropical regions are not yet well understood. 
Differences in the circulating genotype and surveillance methods among countries and regions may affect study 
findings; therefore, comprehensive data collection and meta-analysis are necessary.

We only identified five hMPV-positive cases in 2009–2010. Regarding this period, we reported that influenza 
A and B activities were also suppressed from December 2009 to February 2010 after the start of the influenza A 
H1N1 pandemic 2009 at the study site in July  200929. Additionally, a German study reported that the 2009/2010 

Table 2.  Clinical features of hMPV-single-positive patients compared with RSV-single-positive patients 
and hMPV-RSV-double-negative patients. IQR interquartile range, hMPV human metapneumovirus-single-
positive group, RSV respiratory syncytial virus-single-positive group, Non-RSV human metapneumovirus–
respiratory syncytial virus double-negative group. a Kruskal–Wallis rank sum test; Fisher’s Exact Test for 
Count Data with simulated p-value (based on 2000 replicates); Pearson’s Chi-squared test; Fisher’s exact 
test; Wilcoxon rank sum test. b Kruskal–Wallis rank sum test; Pearson’s Chi-squared test; Fisher’s exact test; 
Wilcoxon rank sum test.

Characteristics

hMPV vs RSV hMPV vs Non-RSV

hMPV, N = 201 RSV, N = 1,216 p-valuea hMPV, N = 201 Non-RSV, N = 6,873 p-valueb

Age month (Median (IQR)) 22.9 (12.7, 35.0) 12.9 (6.3, 22.6)  < 0.001 22.9 (12.7, 35.0) 17.9 (9.6, 30.1) 0.003

Age group (n (%))  < 0.001  < 0.001

 1–5 month 11 (5.5%) 17 (1.4%) 11 (5.5%) 578 (8.4%)

 6–11 month 20 (10.0%) 286 (23.5%) 20 (10.0%) 926 (13.5%)

 12–23 month 56 (27.9%) 383 (31.5%) 56 (27.9%) 2,252 (32.8%)

 24–35 month 53 (26.4%) 175 (14.4%) 53 (26.4%) 1,111 (16.2%)

 36–47 month 19 (9.5%) 57 (4.7%) 19 (9.5%) 485 (7.1%)

 48–59 month 14 (7.0%) 13 (1.1%) 14 (7.0%) 242 (3.5%)

 ≧ 60 month 28 (13.9%) 285 (23.4%) 28 (13.9%) 1,279 (18.6%)

Sex (n (%)) 0.005 0.004

 Male 97 (48.3%) 716 (58.9%) 97 (48.3%) 4,023 (58.5%)

 Female 104 (51.7%) 500 (41.1%) 104 (51.7%) 2,850 (41.5%)

Cough (n (%)) 200 (99.5%) 1,213 (99.8%) 0.5 200 (99.5%) 6,847 (99.6%) 0.5

Difficulty of breathing (n (%)) 68 (33.8%) 421 (34.6%) 0.8 68 (33.8%) 1,729 (25.2%) 0.005

Tachypnea (n (%)) 150 (74.6%) 955 (78.5%) 0.2 150 (74.6%) 5,653 (82.2%) 0.006

Chest indrawing (n (%)) 11 (5.5%) 100 (8.2%) 0.2 11 (5.5%) 299 (4.4%) 0.4

Stridor (n (%)) 3 (1.5%) 12 (1.0%) 0.5 3 (1.5%) 111 (1.6%)  > 0.9

Wheeze (n (%)) 105 (52.2%) 687 (56.5%) 0.3 105 (52.2%) 3,017 (43.9%) 0.019

Crackle (n (%)) 38 (18.9%) 231 (19.0%)  > 0.9 38 (18.9%) 785 (11.4%) 0.001

Clinical pneumonia (n (%)) 0.6 0.010

 No pneumonia 148 (73.6%) 915 (75.2%) 148 (73.6%) 5,559 (80.9%)

 Pneumonia 53 (26.4%) 301 (24.8%) 53 (26.4%) 1,314 (19.1%)

Presence of danger sign (n (%)) 5 (2.5%) 37 (3.0%) 0.7 5 (2.5%) 162 (2.4%) 0.8

Body temperature (mean (SD)) 38.0 (0.9) 38.0 (0.8) 0.5 38.0 (0.9) 38.1 (0.9) 0.8

Duration of hospitalization (days, median 
(IQR)) 5.0 (4.0, 6.0) 5.0 (4.0, 6.0) 0.8 5.0 (4.0, 6.0) 4.0 (3.0, 6.0)  < 0.001

Onset to hospitalization (days, Median 
(IQR)) 2.0 (1.0, 3.0) 3.0 (2.0, 4.0) 0.016 2.0 (1.0, 3.0) 2.0 (1.0, 4.0) 0.7

 Unknown 33 151 33 806

Onset to discharge (days, median (IQR)) 7.0 (6.0, 9.0) 8.0 (6.0, 10.0) 0.015 7.0 (6.0, 9.0) 7.0 (5.0, 10.0) 0.2

 Unknown 33 151 33 806
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hMPV epidemic started with a delay; the authors believed that this was possibly because hMPV and influenza 
A H1N1/pdm2009 virus were competing for human  hosts30. Moreover, a recent finding showed that social dis-
tancing measures implemented for coronavirus disease 2019 might be associated with reductions in common 
respiratory  viruses31. Taking these observations into account, we speculate that human behavioral changes, such 
as reducing close contacts, may have contributed to the decreased activities of hMPV as well as RSV during the 
influenza A H1N1 pandemic 2009.

Table 3.  Clinical features of patients with hMPV stratified by subgroups, genotypes, and sublineages. hMPV 
human metapneumovirus, IQR interquartile range, SD standard deviation. a Kruskal–Wallis rank sum test; 
Fisher’s Exact Test for Count Data with simulated p-value (based on 2000 replicates); Pearson’s Chi-squared 
test; Fisher’s exact test; Wilcoxon rank sum test, b Kruskal–Wallis rank sum test; Fisher’s Exact Test for Count 
Data with simulated p-value (based on 2000 replicates); Pearson’s Chi-squared test; Fisher’s exact test.

Characteristics

A versus B A2 versus B1 versus B2 A2b versus A2c versus B1 vs B2

A, N = 106 B, N = 39 p-valuea A2, N = 106 B1, N = 26 B2, N = 13 p-valueb A2b, N = 30 A2c, N = 76 B1, N = 26 B2, N = 13 p-valueb

Age Month 
(median (IQR))

24.0 (13.5, 
31.3)

23.7 (8.9, 
35.3) 0.8 24.0 (13.5, 

31.3)
23.2 (8.8, 
35.5)

25.0 (10.0, 
34.6)  > 0.9 23.9 (15.6, 

31.3)
24.0 (13.4, 
30.9)

23.2 (8.8, 
35.5)

25.0 (10.0, 
34.6)  > 0.9

Age group (n 
(%)) 0.13 0.3 0.5

 1–5 month 3 (2.8%) 0 (0.0%) 3 (2.8%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 3 (3.9%) 0 (0.0%) 0 (0.0%)

 6–11 month 10 (9.4%) 4 (10.3%) 10 (9.4%) 4 (15.4%) 0 (0.0%) 2 (6.7%) 8 (10.5%) 4 (15.4%) 0 (0.0%)

 12–23 month 31 (29.2%) 7 (17.9%) 31 (29.2%) 5 (19.2%) 2 (15.4%) 9 (30.0%) 22 (28.9%) 5 (19.2%) 2 (15.4%)

 24–35 month 35 (33.0%) 11 (28.2%) 35 (33.0%) 6 (23.1%) 5 (38.5%) 11 (36.7%) 24 (31.6%) 6 (23.1%) 5 (38.5%)

 36–47 month 7 (6.6%) 7 (17.9%) 7 (6.6%) 5 (19.2%) 2 (15.4%) 3 (10.0%) 4 (5.3%) 5 (19.2%) 2 (15.4%)

 48–59 mo 8 (7.5%) 1 (2.6%) 8 (7.5%) 1 (3.8%) 0 (0.0%) 1 (3.3%) 7 (9.2%) 1 (3.8%) 0 (0.0%)

 ≧ 60 month 12 (11.3%) 9 (23.1%) 12 (11.3%) 5 (19.2%) 4 (30.8%) 4 (13.3%) 8 (10.5%) 5 (19.2%) 4 (30.8%)

Sex (n (%)) 0.12 0.3 0.5

 Male 56 (52.8%) 15 (38.5%) 56 (52.8%) 10 (38.5%) 5 (38.5%) 16 (53.3%) 40 (52.6%) 10 (38.5%) 5 (38.5%)

 Female 50 (47.2%) 24 (61.5%) 50 (47.2%) 16 (61.5%) 8 (61.5%) 14 (46.7%) 36 (47.4%) 16 (61.5%) 8 (61.5%)

Cough (n (%)) 105 (99.1%) 39 (100.0%)  > 0.9 105 (99.1%) 26 (100.0%) 13 (100.0%)  > 0.9 30 (100.0%) 75 (98.7%) 26 (100.0%) 13 (100.0%)  > 0.9

Difficulty of 
breathing (n 
(%))

39 (36.8%) 14 (35.9%)  > 0.9 39 (36.8%) 11 (42.3%) 3 (23.1%) 0.5 11 (36.7%) 28 (36.8%) 11 (42.3%) 3 (23.1%) 0.7

Tachypnea (n 
(%)) 78 (73.6%) 28 (71.8%) 0.8 78 (73.6%) 17 (65.4%) 11 (84.6%) 0.4 21 (70.0%) 57 (75.0%) 17 (65.4%) 11 (84.6%) 0.6

Chest indrawing 
(n (%)) 7 (6.6%) 2 (5.1%)  > 0.9 7 (6.6%) 2 (7.7%) 0 (0.0%) 0.9 2 (6.7%) 5 (6.6%) 2 (7.7%) 0 (0.0%)  > 0.9

Stridor (n (%)) 1 (0.9%) 0 (0.0%)  > 0.9 1 (0.9%) 0 (0.0%) 0 (0.0%)  > 0.9 0 (0.0%) 1 (1.3%) 0 (0.0%) 0 (0.0%)  > 0.9

Wheeze (n (%)) 60 (56.6%) 17 (43.6%) 0.2 60 (56.6%) 11 (42.3%) 6 (46.2%) 0.4 23 (76.7%) 37 (48.7%) 11 (42.3%) 6 (46.2%) 0.033

Crackle (n (%)) 20 (18.9%) 8 (20.5%) 0.8 20 (18.9%) 5 (19.2%) 3 (23.1%)  > 0.9 7 (23.3%) 13 (17.1%) 5 (19.2%) 3 (23.1%) 0.8

Clinical pneu-
monia (n (%))  > 0.9 0.5 0.7

 No pneumonia 76 (71.7%) 28 (71.8%) 76 (71.7%) 17 (65.4%) 11 (84.6%) 21 (70.0%) 55 (72.4%) 17 (65.4%) 11 (84.6%)

 Pneumonia 30 (28.3%) 11 (28.2%) 30 (28.3%) 9 (34.6%) 2 (15.4%) 9 (30.0%) 21 (27.6%) 9 (34.6%) 2 (15.4%)

Presence of 
danger sign (n 
(%))

1 (0.9%) 2 (5.1%) 0.2 1 (0.9%) 2 (7.7%) 0 (0.0%) 0.10 0 (0.0%) 1 (1.3%) 2 (7.7%) 0 (0.0%) 0.2

Body tem-
perature (mean 
(SD))

38.0 (0.9) 38.1 (0.7) 0.4 38.0 (0.9) 38.0 (0.7) 38.3 (0.7) 0.3 38.1 (0.9) 38.0 (0.9) 38.0 (0.7) 38.3 (0.7) 0.5

Respiratory rate 
(per min, mean 
(SD))

36 (9) 37 (10)  > 0.9 36 (9) 39 (11) 34 (6) 0.4 36 (11) 37 (9) 39 (11) 34 (6) 0.4

Duration of 
hospitalization 
(days, median 
(IQR))

5.0 (4.0, 6.0) 6.0 (4.0, 7.0) 0.15 5.0 (4.0, 6.0) 5.0 (4.0, 6.0) 6.0 (5.0, 7.0) 0.2 5.0 (4.0, 6.0) 5.0 (3.0, 6.0) 5.0 (4.0, 6.0) 6.0 (5.0, 7.0) 0.4

Onset to hospi-
talization (days, 
median (IQR))

2.5 (2.0, 4.0) 2.0 (1.0, 3.0) 0.2 2.5 (2.0, 4.0) 2.0 (1.0, 3.0) 2.0 (1.0, 3.0) 0.4 4.0 (2.8, 5.0) 2.0 (1.8, 3.0) 2.0 (1.0, 3.0) 2.0 (1.0, 3.0) 0.039

 Unknown 18 3 18 0 3 18 0 0 3

Onset to 
discharge (days, 
median (IQR))

8.0 (6.0, 9.0) 8.0 (6.0, 9.0) 0.8 8.0 (6.0, 9.0) 7.5 (6.0, 9.0) 8.0 (7.0, 8.8) 0.9 8.5 (7.0, 
10.2) 8.0 (5.0, 9.0) 7.5 (6.0, 9.0) 8.0 (7.0, 8.8) 0.5

 Unknown 18 3 18 0 3 18 0 0 3
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In our study, hMPV subgroups were detected simultaneously, with the predominant circulating genotype and 
sublineages consistently alternating during the study period. Specifically, A2b was predominately seen before 
2009, whereas A2c predominated in and after 2011. Notably, A2a was not observed through the study period in 
our study. However, the study by Yi et al.25, which summarized the continental distribution of hMPV genotypes, 
indicated that A2a continued to be observed in America from 2006 to  201725.

It is worth noting that A2c may have been introduced into the study area and became predominant despite 
the A2b was continued to be detected. Concurrent circulation of multiple genotypes and sublineages is a com-
mon feature in other parts of the world where hMPV genetic diversity has been monitored for five or more 
 years21,25,32–34. It is unclear whether A2c has antigenicity that differs enough to escape A2b-specific immunity. 
Small animal models have shown a high degree of cross-neutralization between genotypes but a low degree of 
cross-neutralization between  subgroups19. Taken together, A2c became predominant over A2b because it might 
be advantageous to its circulation in respect of transmissibility or proliferation. Further serological and virologi-
cal analyses are necessary to clarify this point.

A high nucleotide identity of hMPV F gene sequences was found in our study, which is in agreement with 
another study spanning 20  years33. Both overall and in several sites were reported to be under negative (i.e., 
purifying) selection in the F  gene32. Our estimated evolutionary rate of the F gene was comparable to those of 
previous estimations for the F gene of human and avian metapneumovirus: (6.0 ×  10−4 to 1.3 ×  10−3substitution/
site/year)35, although viral substitution rates can be underestimated under purifying  selection36. A larger genetic 
 diversity18 and a faster evolutionary rate (3.2–5.4 ×  10−3 substitution/site/year) in the G gene than in the F gene 
have been  reported37. This difference may arise from the roles of these coding proteins in response to the host 
immune system. A previous study hypothesized that the extracellular ectodomain of the G protein sterically 
masks the pre-fusion hMPV-F from the host immune response, which may explain why infection only confers 
transient immunity resulting in reinfection despite relatively low evolutionary rates in the F gene of  hMPV38. 
A recent study characterizing antibodies specific for the hMPV F protein identified neutralizing antibodies 
that recognize pre-fusion-specific epitopes in adult donors, and these provided robust protection against lower 
respiratory infection in a small animal  model39. Hence, the F gene may offer a useful target for monoclonal 
antibodies or vaccines in terms of its genetic stability and antigenicity.

We illustrated that clinical manifestations of hMPV patients are indistinguishable from those with RSV and 
those with co-infection of other viruses, which is consistent with a previous  study8. We found that 52% of patients 
in the hMPV-single-positive group showed wheezing, which had good concordance with a previous large study 
reporting a proportion of 52%40. We also found an increased frequency of developing wheezing among cases 
with A2b compared with A2c, B1, and B2 cases. An association between genotype and clinical features remains 
elusive and various insights have been obtained in previous studies. Infection with subgroup A was associated 
with severe disease in a Spanish  study41, and infection with B1 or B2 was associated with an increased risk of 
wheezing compared with A2 in a Japanese  study5. Whereas, hMPV viral loads, which have been reported to 
be associated with the disease  severity42, estimated by cycle threshold values were not different between those 
with detected genotypes nor subgroups in a Nepalese  study21. A hospital study in Taiwan also did not find any 
difference in clinical features among genotypes or  subgroups43. The variations may be influenced by the occur-
rence of sublineages, previous outbreaks, the generally limited sample sizes in hospital-based surveillance, and 
the timing when clinical features were evaluated in the course of the disease. Although we found a few cases of 
hMPV reinfection in this study, the frequency of reinfections may be also associated with the variation. These 
points should be clarified in studies among an hMPV-naive population, such as a birth cohort, and to identify 
the underlying mechanism causing the variation.

This study had some limitations. First, we did not examine bacterial infection. An increased hMPV serocon-
version rate was reported to be associated with a greater frequency of S. pneumoniae colonization in epidemio-
logical  study44. The study also demonstrated that the prior exposure to S. pneumoniae was found to be associated 
with greater susceptibility of cell to hMPV infection in vitro experiments. We believe it is unlikely that the co-
infecting S. pneumoniae affects the hMPV genotype-specific clinical features. However, the circulation level of 
S. pneumoniae may have temporarily influenced the hMPV incidence. Future studies will clarify this point when 
influences of S. pneumoniae on the hMPV disease are available. Second, a general caveat of molecular epidemi-
ology studies is applicable, namely, the possibility of a false negative test result in samples with an undetected 
variant. To clarify the effect on our results, hMPV-negative samples tested using the present method should be 
tested using whole-genome sequencing to identify any undetected variants. A study that conducted a metagen-
omic sequencing analysis of 190 samples that were negative in a standard virus diagnostic panel revealed that 
3.2% of the samples were hMPV positive but the positive results had been  missed45. We used a genetically stable 
hMPV gene to screen samples; thus, we believe the likelihood of missed positive samples is minimal. Although 
we could not clarify this point due to the limited availability of clinical specimen volume, further investigation 
can provide greater insight into hMPV genomic diversity and its incidence in central Vietnam. Third, only NPS 
specimens were collected in this study. However, a previous study recommended bronchoalveolar lavage fluid 
(BALF) for diagnosing lower respiratory infections, especially in severe  cases46. Since no patient was severe 
enough to receive invasive respiratory support in this study, BALF specimens were not collected. Further analyses 
of severe cases using BALF specimens may allow us to identify causative agents of lower respiratory infections 
more accurately and specifically.

Despite these limitations, we can conclude that hMPV infection significantly affects public health among 
hospitalized children with ARI in central Vietnam, as it can cause severe illness that is comparable in severity 
to RSV, despite affecting older age groups. We found the year-round continuous occurrence of hMPV infec-
tion and limited genetic diversity of the F gene in long-term monitoring, along with moderate variation in the 
clinical features of patients with hMPV infection. Future interventional studies that include the introduction of 
vaccines or monoclonal antibodies will help to ease the impact of hMPV-associated infection on public health.
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Methods
Study site, study period, and participant enrollment
We initiated a pediatric ARI surveillance at Khanh Hoa Provincial General Hospital (KHGH) in Nha Trang, Viet-
nam beginning in February  200747. Briefly, children aged 1 month to 14 years who were residing in 16 communes 
in Nha Trang, admitted to the KHGH pediatric ward presenting ARI symptoms from February 2007 through 
December 2017 were invited to participate in the current study. The study area covered approximately 20,037 and 
20,174 children under five in 2009 and 2015, respectively (personal communication with Dr. Minh Xuan Bui, 
Khanh Hoa Health Service). ARI symptoms were defined as the presence of cough or difficulty breathing. The 
presence of difficulty in breathing was determined through pediatrician observations when the child exhibited 
abnormal respiratory patterns such as noisy, interrupted, or irregular respiratory rates. Before the study enroll-
ment, written informed consent was obtained from the legal guardians of all children. The research protocol to 
run the study was approved by the institutional ethical review boards of both the National Institute of Hygiene 
and Epidemiology, Vietnam (IRB-VN 01057) and the Institute of Tropical Medicine, Nagasaki University, Japan 
(09031837-3). The study was conducted in accordance with approved guidelines and regulations.

Data collection
Upon study enrollment, nasopharyngeal swab (NPS) samples and clinical and epidemiological information 
were collected. For clinical categorization, we used the definition of the modified World Health Organization 
Integrated Management of Childhood Illnesses algorithm, in which the presence of tachypnea (respiratory rate ≥ 
60/min for children aged < 2 months, ≥ 50/min for ages 2–11 months, ≥ 40/min for ages 1–5 years, ≥ 30/min for 
ages 6–11 years, and ≥ 20/min for children aged 12 years or older) or chest indrawing was categorized as clinical 
 pneumonia48,49. We re-defined the presence of difficulty in breathing in our analysis to include the presence of 
tachypnea or chest indrawing. Furthermore, children with general danger signs (situations in which the child 
is either unable to drink or has altered consciousness, convulsions, lethargy, poor sucking, toxic appearance, or 
irritability) were also recorded.

Respiratory virus screening using multiplex PCR and hMPV F gene sequencing
Viral nucleic acids were extracted from NPS samples using a QIAamp viral RNA Mini kit (QIAGEN Inc., Valen-
cia, CA, USA). Four sets of multiplex PCR assays were used for screening 13 respiratory viruses, separately test-
ing for RSV, hMPV, influenza virus A, influenza virus B, parainfluenza viruses (types 1, 2, 3, and 4), rhinovirus/
enterovirus, human coronaviruses (229E and OC43), adenovirus, and  bocavirus47. All positive specimens for 
each virus were confirmed with hemi-nested  PCR47. For hMPV-positive samples, we amplified the partial F gene 
by PCR and performed sequencing reactions. Briefly, we amplified the gene coding partial F protein (527 base 
pairs) of hMPV-positive samples using primers as previously  described50, and performed sequencing reactions 
with a BigDye Terminator v1.1 or v3.1 cycle sequencing kit (Applied Biosystems, Foster City, CA, USA) after 
purification of the PCR product using ExoSAP-IT Express (Thermo Fisher Scientific, Waltham, MA, USA). We 
conducted nucleotide sequence analysis using either a 3130 or 3730XL DNA Analyzer (Applied Biosystems).

Phylogenetic and molecular evolutionary analysis
To characterize the influence of viral genomic diversity on changes in the circulation patterns and clinical 
manifestations of hMPV, we conducted phylogenetic and molecular evolutionary analysis for obtained F gene 
sequences. HMPV subgroups A and B were further classified into genotypes A1, A2, B1, and B2 based on genetic 
 differences18. A2 can be further categorized into several branches, A2a, A2b, and A2c, according to F gene phy-
logenetic  analysis51. We, therefore, differentiated hMPV A2a, A2b, and A2c as sublineages of genotype A2 in our 
analysis. To classify the obtained sequences into these genotypes and sublineages, we conducted a phylogenetic 
analysis with reference sequences. The accession numbers of representative reference sequences used for the 
analysis were described in Supplementary Material.

In addition, we estimated the evolutionary rate of the partial F gene. Briefly, the time-scaled phylogenetic tree 
was inferred using Bayesian Markov Chain Monte Carlo (MCMC) with BEAST software version 2.6.6 under a 
coalescent constant population on the tree and strict clock  model52. The best fit substitution model was selected 
using bModeltest implemented in BEAST  software53. The MCMC chains were run for sufficient steps to achieve 
convergence. Tracer version 1.7.2 was used to assess the convergence based on effective sample size (ESS) after 
10% burn-in; parameters with ESS greater than 200 were accepted. The time-scaled maximum clade credibility 
(MCC) tree was generated with Tree Annotator version 1.8.3 after excluding the first 10% of trees as a burn-in, 
and was viewed with R ggtree  package54. The nucleotide identity was also calculated based on pairwise distances 
between each sequence to evaluate the genetic variation within hMPV subgroups, genotypes and sublineages 
using R ape  package55. The hMPV sequences with 100% nucleotide identity were intentionally excluded from 
these analyses.

Clinical data analysis
We recorded information on the children’s age, sex, and clinical symptoms, including cough, difficulty breath-
ing, tachypnea, chest indrawing, stridor, wheezing, crackle, clinical pneumonia, presence of danger signs, body 
temperature, and respiratory rate. To determine those characteristics that are attributable to the detected virus, 
we stratified patients into four groups according to the results of viral screening: patients with hMPV infection 
only (hMPV-single-positive group), patients with RSV infection only (RSV-single-positive group), patients with 
both hMPV and RSV infections (hMPV-RSV-double-positive group), and patients with neither hMPV nor RSV 
(hMPV-RSV-double-negative group). Detailed information on RSV patients in this surveillance in 2010–2012 
was previously  reported56. We compared the clinical characteristics of the hMPV-single-positive group to those 
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with hMPV and viral coinfection, including the hMPV-RSV-double-positive group, however, those were not 
included in further analysis. The characteristics of hMPV-single-positive patients were compared with those of 
RSV-single-positive patients and those of hMPV-RSV-double-negative patients using simple statistical tests. We 
then compared the characteristics of hMPV according to subgroup, genotype, and sublineage using simple statis-
tical tests. To further investigate the relationship between age and variables associated with subgroup, genotype, 
and sublineage, we conducted multiple logistic regression analysis with age adjustment. Moreover, we described 
patients who were repeatedly hospitalized for hMPV infection during the study period.

For comparisons of categorical variables between two or three independent groups, we used either the two-
tailed Pearson’s chi-squared or Fisher’s exact test. For continuous variables, we used the Wilcoxon rank sum test 
for comparisons between two independent groups and the Kruskal–Wallis test for comparisons among three 
or more independent groups. All statistical analyses were performed with R version 4.1.257. A p-value less than 
0.05 was taken as statistically significant.

Data availability
The nucleotide sequences for each genotype and sublineage have been registered in GenBank. The accession 
numbers in GenBank are OP947591–OP947594.
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