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Enhancing scientific transparency 
in national CO2 emissions reports 
via satellite‑based a posteriori 
estimates
Masataka Watanabe 1*, Akihiro Oba 1, Yoko Saito 1, Gomboluudev Purevjav 2, 
Batjargal Gankhuyag 2, Munkhbat Byamba‑Ochir 2, Batjargal Zamba 3 & Tomohiro Shishime 4

Biennial Update Reports (BURs) are essential requirements from the United Nations Framework 
Convention on Climate Change (UNFCCC). However, many non-Annex I countries have not submitted 
these reports due to difficulties in compiling the inventories. We developed a satellite-based 
method for the top-down inverse estimation of CO2 emissions using partial-column data in the 
lower troposphere obtained by the Greenhouse Gases Observing Satellite, adopted to validate the 
Mongolian 2nd BUR (BUR2) for the energy sector in 2018. The estimated CO2 emissions were only 1.5% 
higher than those reported in the BUR2; these were also very close (4.2% smaller) to estimates from 
the Emission Database for Global Atmospheric Research. Mongolia is the first country to introduce 
an independent inverse estimate in its BUR, thereby increasing scientific transparency. Our method 
could be applied into other countries and could be incorporated into UNFCCC reporting guidelines, 
significantly improving global CO2 emission estimates.

Anthropogenic CO2 is the most significant contributor to climate change. An increase in global temperature of 
more than 1.5–2 °C will occur during the twenty-first century unless a considerable reduction in CO2 and other 
greenhouse gas (GHG) emissions occurs in the coming decades1. National GHG inventories are an essential 
input to the Global Stocktake (GST), which was established in 2021 by the 26th Conference of the Parties. The 
GST aims to assess the collective progress towards achieving the aims of the Paris Agreement and its long-term 
goals. All parties are required to submit a GHG inventory as part of the Biennial Transparency Report (BTR) 
under the Enhanced Transparency Framework2,3. Countries under the United Nations Framework Convention 
on Climate Change (UNFCCC) calculate CO2 emissions based on a bottom-up approach according to standard 
guidelines developed by the Intergovernmental Panel on Climate Change (IPCC)4. IPCC guidelines for National 
Greenhouse Gas inventories provide comprehensive information for each GHG emission and sink, including 
standard calculation methods along with parameters for standardized emission and absorption factors. Moreo-
ver, individual countries determine their own calculation methods, considering the actual domestic situation, 
data availability, and scientific knowledge of each emission and sink. However, such bottom-up approaches can 
lead to significant uncertainties in relation to missing social and economic information and inaccurate emission 
factors. In 2022 the National Academies of Sciences, Engineering, and Medicine published an assessment of the 
current capabilities of the inverse top-down, bottom-up, and hybrid approaches against the six evaluation pil-
lars, including transparency, usability and timeliness, evaluation and validation, completeness, inclusivity, and 
communication5. However, important considerations regarding cost-effectiveness and less labour requirements 
were omitted.

Since satellite data and the inversion method are features of the top-down approach, cost-effective and less 
labour-intensive methods are advantages of the top-down approach compared with the bottom-up approach.

A comparison of the inverse top-down and bottom-up approaches indicated that transparency are difficult 
to assess. Nevertheless, the former has an overwhelming advantage because it is cost-effectiveness, less labour-
intensive, and has favourable evaluation and validation5 features.
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Approximately half of non-Annex I countries have not yet submitted Biennial Update Reports (BURs) to the 
UNFCCC due to knowledge and resource (financial and labour) gaps6,7, and practical solutions for shrinking 
these gaps are necessary. Specifically, we believe it is possible to shrink these knowledge and resource gaps by 
using a cost-effective, less labour-intensive, transparent, top-down approach with a great capacity for evaluation 
and validation, and making it possible for all non-Annex I countries to submit BTRs to the UNFCCC.

In practice, hybrid approaches have a strong usability that optimizes the integration of bottom-up and top-
down approaches to provide users with the best available comprehensive GHG emissions information5. The 2019 
Refinement of the IPCC 2006 report describes an independent approach based on atmospheric observations and 
inverse analysis (top-down approach) and recommends that bottom-up emission inventories be scientifically 
validated8. A successful GST is based on a submission of validated GHG inventory from all non-Annex I coun-
tries; the critical challenge is to accelerate these independent validation efforts, close the knowledge and resource 
gaps so that all participating countries can submit reports, and improve the transparency of emission inventories 
in each country. In this direction, an ambitious project was carried out in Mongolia, which entailed the use of 
position satellite-based inverse analysis results in validating the BUR. Providing information on knowledge and 
resources in the BTR will be a significant challenge. Here, considering Mongolia as a case study, we propose an 
a posteriori method that uses satellite data to verify CO2 emissions estimates contained in the BUR.

Mongolia plans to submit its 2nd BUR (BUR2) with data through 2019. We propose including our estimates, 
obtained with a top-down approach, in BUR2. Mongolia has massive coal reserves9; thus, its primary energy 
source is coal10. In addition, Mongolia’s national CO2 emissions for 201811 were the highest in the energy, con-
tributing to 97.8% of the total, followed by those relating to industrial processes and product use with 2.2%. CO2 
emissions from the energy sector amount to 20.3 Tg. Furthermore, urban areas are responsible for approximately 
70% of global fossil fuel-related emissions12 and play an essential role in mitigation strategies under the Paris 
Agreement’s action plan. Consistently, emissions from the capital Ulaanbaatar account for approximately 69% 
of anthropogenic CO2 emissions in Mongolia (Supplementary Table S1). Therefore, we define Ulaanbaatar as 
our target city for obtaining CO2 emission estimates using the top-down approach.

Approximately 60% of CO2 emissions in Ulaanbaatar originate from coal-fired power plants, 29% from 
coal stoves in “ger” (traditional transportable dwelling) districts, and 9% from automobiles13. Coal-fired power 
plants supply electricity and hot water to the urban area in the centre of the capital. Climate change has caused 
frequent mass livestock death events (called “dzud”) owing to summer droughts and heavy winter snowfalls 
(approximately 30% of all livestock deaths in Mongolia in 2010 were caused by dzud14). Dzud forced small herd-
ing families who lost their livestock to migrate with their gers and household goods around the capital city of 
Ulaanbaatar. Due to the Mongolian tradition of pastoralism, the government allowed people to occupy a specific 
portion of land anywhere in the country, resulting in the formation of sprawling ger settlements surrounding 
Ulaanbaatar (currently, migration is restricted by the government). In addition, the severe weather in winter, with 
temperature as low as − 40 °C, and the city’s location in a topographic depression that creates an atmospheric 
inversion layer, results in the trapping smoke from ger districts below the inversion layer, causing the worst air 
pollution in the world15–17, especially in the winter season (Fig. 1).

Our approach, targeting 2018, relies on a Bayesian framework and uses data from the Greenhouse Gases 
Observation Satellite (GOSAT) and a high spatial resolution regional atmospheric transport model18–22. A high-
resolution regional atmospheric transport model is capable of capturing fine-scale variability in XCO2 distribu-
tions caused by transport and emission processes at urban scales18. Second, using the lower-layer concentrations 
from the GOSAT-based 2-layer analysis product by the Japan Aerospace Exploration Agency/Earth Observation 
Research Center (JAXA/EORC), the approach allows the quantification of an increase in observed CO2 concen-
trations within the city23,24.

We introduced independent science-based techniques to validate GHG emissions inventory reporting and 
contribute to scientific transparency25 in Mongolia. This approach could be applied to other countries and 

Figure 1.   Typical winter scenery in Ulaanbaatar, Mongolia. Copyright: 2017 Reuters/B. Rentsendorj < https://​
static.​reute​rs.​com/​resou​rces/​r/?m=​02&d=​20170​207&t=​2&i=​11717​34569​&r=​LYNXM​PED16​0TP&w=​
1920 > (Thomson Reuters permitted the use of this photograph).

https://static.reuters.com/resources/r/?m=02&d=20170207&t=2&i=1171734569&r=LYNXMPED160TP&w=1920
https://static.reuters.com/resources/r/?m=02&d=20170207&t=2&i=1171734569&r=LYNXMPED160TP&w=1920
https://static.reuters.com/resources/r/?m=02&d=20170207&t=2&i=1171734569&r=LYNXMPED160TP&w=1920


3

Vol.:(0123456789)

Scientific Reports |        (2023) 13:15427  | https://doi.org/10.1038/s41598-023-42664-3

www.nature.com/scientificreports/

regions, integrated into the Paris Agreement’s enhanced transparency framework, and may be proposed as a 
milestone in the UNFCCC’s inventory assessment for the GST.

Results
CO2 emissions from Ulaanbaatar.  Three series of satellites observe the XCO2 concentration: the GOSAT 
series, the TanSat series, and the Orbiting Carbon Observatory (OCO) series. Among them, only the GOSAT 
series can observe the vertical distribution of the XCO2 concentration by sensing shortwave infrared (SWIR) 
and thermal infrared spectral band data based on the Fourier transform method. The lower and upper partial 
columns in the troposphere are identified according to the pressure ranges of 0.6–1 and 0.2–0.6 Psurf, respectively, 
where Psurf is the pressure at the ground23,24. XCO2LT products are advantageous because they are not affected by 
thin clouds or aerosols24. For instance, XCO2LT data for Station 6 in the city centre of Ulaanbaatar are retrieved 
more than twice as frequently as National Institute for Environmental Studies (NIES) GOSAT v02.95-02.97 
products. Here, we present the analysis results for anthropogenic CO2 emissions considering the atmospheric 
environment in the city of Ulaanbaatar using GOSAT-EORC-Daily-Partial-Column-GHG data from JAXA/
EORC26.

A comparison between in-situ CO2 observations and the results of the WRF-Chem simulation is shown 
in Supplementary Fig. S1, Supplementary Table S2, and Supplementary Note 1. Figure 2 displays an observa-
tion time series of GOSAT in terms of the difference between the averaged XCO2 concentration in the lower 
troposphere (i.e., 0.6–1 Psurf in Ulaanbaatar; XCO2LT) and that in the upper troposphere (i.e., 0.2–0.6 Psurf in 
Ulaanbaatar; XCO2UT), which is defined as the XCO2LT enhancement in Ulaanbaatar. The XCO2UT concen-
tration is calculated by taking monthly average area-averaged value data as a reference; therefore, the XCO2LT 
enhancement is not affected by annual CO2 increases or seasonal changes. Furthermore, in Ulaanbaatar, the 
maximum mixed-layer height, i.e., the height of a capping temperature inversion or statically stable layer of air, 
is approximately 2000 m on a typical clear summer day. In winter, a thick temperature inversion layer (> 500 m) 
covers a weak and thin mixed layer (< 300 m)27 because radiative cooling at night lowers the near-surface tem-
perature, which is stratified in the absence of convection. Therefore, the actual boundary layer lies well below 
4 km in altitude24. In addition, CO2 emissions from the chimneys of thermal power plants and the ger districts 
move and diffuse horizontally in the layer below 4 km (Fig. 1, Supplementary Fig. S2). As CO2 emissions from 
Ulaanbaatar remain confined to the lower troposphere, a typical condition in a high latitude basin area, XCO2LT 
enhancement data can be considered representative of the CO2 emissions from the city24 (Supplementary Note 2).

In this study, the model domain is set as slightly larger than the city size (50 km × 50 km and 0.6–1 Psurf; Sup-
plementary Note 3). Fourteen target observed data from GOSAT for XCO2LT with 10.5 km resolution cover the 
model domain almost completely. Thus, we assume that such data completely capture the CO2 emissions trapped 
in the urban dome. This is especially true in winter, when CO2 emissions are more easily quantifiable than in 
summer owing to the thick inversion layer confining the gas to lower altitudes, which contributes to the amount 
of available observed data from GOSAT. Therefore, there are more available data for winter than for summer.

Figure 2 shows the XCO2LT enhancement in Ulaanbaatar. GOSAT can observe not only points along the orbit 
but also target points. The trend between the summer of 2017 and winter of 2018, when GOSAT began targeted 
observations in Ulaanbaatar, shows that CO2 concentrations in the lower troposphere were consistently higher 
than those in the upper troposphere. This confirms that the XCO2LT enhancement is closely related to the emis-
sions from the city, thereby reflecting its CO2 emissions. Furthermore, the XCO2LT enhancement, which became 
increasingly prominent from fall to winter/spring, shows a seasonal change with a decrease towards the begin-
ning of summer, consistent with a trend of increased emissions in winter and decreased emissions in summer.

Figure 3 shows the results of the inverse analysis of CO2 emissions in the energy sector in Ulaanbaatar using 
GOSAT satellite data with a top-down approach. We estimated the a posteriori CO2 emissions in the model 

Figure 2.   Area-averaged enhancement of XCO2LT in Ulaanbaatar. The enhancement (daily averaged) was 
calculated by subtracting the observed XCO2LT from the calculated monthly area-averaged XCO2UT.
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domain surrounding Ulaanbaatar in 2018 using Green’s function between the CO2 concentration estimated by 
the atmospheric WRF-Chem transport model (see the comparison between modelled and observed XCO2 values 
in Supplementary Fig. S3) and 24 h-averaged XCO2LT values from GOSAT. In 2018, GOSAT conducted targeted 
observations in the model domain at 14 target observation points with a spatial resolution of 10.5 km. We only 
considered XCO2LT concentration data at times in which GOSAT successfully observed more than 10 target 
observation points. Finally, we obtained data for 23 days that we could use for the inverse analysis.

Green’s function requires a priori errors of GOSAT observations and CO2 emissions data as inputs. An obser-
vation uncertainty for XCO2LT concentration and the prior emission uncertainty is set to 2 ppmv and 400 ton h−1 
(see Method). Additionally, a sensitivity analysis was performed on additional scenarios derived from different 
combinations with the observation and the prior emission uncertainties (Supplementary Table S3, Supplemen-
tary Note 4, and Supplementary Figs. S4–S15). Figure 4 shows the monthly-averaged CO2 emissions obtained 
from a posteriori CO2 emission estimates. The average percentage of a posteriori CO2 emissions to a priori CO2 
emissions (the modification rate) is only 1.1% throughout the year (Supplementary Table S3). The posterior 
uncertainty of the scaling factor ranges from 0.12 to 0.34 (Supplementary Table S4), which is comparable to 
that evaluated in large cities such as Riyadh (0.17–0.24), Cairo (0.10–0.25), and Los Angeles (0.11–0.16)18. We 
derived a scaling factor (± 1σ uncertainty) for all observation days throughout the year (Supplementary Table S4), 
which was approximately 3%. Our result is consistent with the study of Ye et al. (2020)18 in that utilizing satel-
lite observation over a longer time period potentially obtains emission estimates with lower uncertainty. This 

Figure 3.   Comparison of Mongolia’s bottom-up and top-down energy sector CO2 emissions in 2018. Mongolia’s 
CO2 emissions (in Tg yr−1) for BUR, top-down estimates, and EDGAR. The vertical lines in BUR and top-down 
columns correspond to 95% confidence intervals.

Figure 4.   Inversion results of monthly-averaged CO2 emissions in Ulaanbaatar using GOSAT observation data 
in 2018. Each month other than June, September, November, and December features several data points. The 
vertical lines show the posterior uncertainties.
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uncertainty underscores the value of integrating atmospheric constraints into our model, leading to more stable 
and reliable emissions estimates.

The a posteriori CO2 emissions estimates are only 0.2% higher than the value expected from a global emis-
sion inventory, the Emission Database for Global Atmospheric Research (EDGAR)28. In countries with limited 
data sources, such as Mongolia, there are cases in which BURs and National Inventory Reports use the same data 
sources as the global database to produce GHG inventories based on a bottom-up approach. Notably, although 
emissions in this study were estimated with a particular focus on the energy sector, a priori CO2 emissions and 
EDGAR values were already close to each other. Moreover, a posteriori CO2 emissions based on Green’s function 
reduce the gap to the EDGAR values even further.

CO2 emissions in Mongolia.  According to Mongolia’s GHG inventory report, the CO2 emissions in 2014 
were as follows: the energy sector accounted for 97.4% of total CO2 emissions, while industrial processes and 
product use sector, agriculture, forestry and other land use sector, and waste sector accounted for the remainder. 
There are no CO2 emission sources other than the energy sector in Ulaanbaatar. In the energy sector in Ulaan-
baatar, the largest emissions are attributed to fuel combustion activities, accounting for 99.99%. Fuel combus-
tion includes energy industries (electricity, heat, and other energy generation), manufacturing and construction 
industries, residential and commercial activities, and transport. Consequently, the top-down CO2 emission esti-
mates consist of the energy sector. According to the percentage of CO2 emissions in Ulaanbaatar to those in the 
whole of Mongolia (Supplementary Table S1), we assume that this percentage did not change between 2014 and 
2018 because economic growth in Mongolia during this period was minimal, partly owing to a conflict with the 
Mongolian government over taxation and financial agreements related to a foreign mining development project, 
which led to a pause in the project29. Thus, the economic structure of the capital city and rest of the country 
remained unchanged. Therefore, we consider that CO2 emissions from Ulaanbaatar account for 69% of CO2 
emissions in Mongolia in our study.

The top-down CO2 emissions (20.6 ± 0.3 Tg yr−1) (all reported ranges are 95 percent confidence intervals) and 
energy sector CO2 emissions (20.3 ± 1.4 Tg yr−1) in BUR2 for 2018 differed by only 1.5% (0.3 Tg yr−1) (Fig. 3). 
The top-down CO2 emissions and energy sector emissions from EDGAR v6.0 differ by 4.2% (21.5 Tg yr−1). 
EDGAR v6.0’s energy sector CO2 emissions estimates were 6% higher than Mongolia’s energy sector CO2 emis-
sions reported in BUR2. Therefore, the top-down approach presented in this study could reduce the difference 
between the estimate from the global CO2 emissions database and the value calculated in BUR2 in Mongolia.

Discussion
We showed good agreement with the CO2 emissions of the energy sector computed in the upcoming BUR2 (with 
a discrepancy of only 1.5%). In addition, Mongolia’s a posteriori CO2 emission estimate was 4.2% smaller than 
that obtained from EDGAR v6.028. The low uncertainty in our study can be primarily ascribed to the topographic 
features in Ulaanbaatar, as well as utilizing lower troposphere data with longer time from satellite observations, 
and applying detailed emission sources to the chimneys of thermal power plants and the ger districts in the 
atmospheric transport model.

Hybrid Approaches.  GOSAT satellites make observations covering an area with a 10.5 km diameter in a 
160 km-wide grid. Therefore, there are many unobserved areas in Mongolia, and interpolation in those spaces 
becomes a problem. In this study, we conducted 14 intensive observations (with a diameter of 10.5 km) to cover 
the entire city of Ulaanbaatar, Mongolia. The use of an observation method that captures all CO2 emissions from 
Ulaanbaatar improves the accuracy of the observations. As such, the inverse analysis makes it possible to esti-
mate the amount of CO2 emissions from Ulaanbaatar.

Regarding global fossil fuel emissions, one report states that urban areas account for approximately 70% 
of global fossil fuel emissions12 and play an essential role in mitigation strategies under the Paris Agreement’s 
action plan. Ulaanbaatar is the largest city in Mongolia, and its fossil fuel-derived CO2 emissions account for 
69% of the country’s total, which is most of the country’s emissions. Notably, to prevent air pollution, population 
influx is restricted. Therefore, it is reasonable to assume that the emissions from Ulaanbaatar and Mongolia will 
remain unchanged12.

We establish that the inverse analysis accurately estimates 69% of fossil fuel-derived CO2 emissions in Mon-
golia. The remaining 31% can, thus, be obtained according to the ratio between the city and nationwide emis-
sions rather than by inverse analysis. This is acceptable for Mongolia as it is a non-Annex I country with limited 
financial and human resources. “Hybrid Approaches,” combining the latest inverse analysis methods and all other 
applicable data analysis-based methods, have recently been recommended as a powerful means of reflecting 
estimated GHG emissions in the policy-making process more quickly5.

The Government of Mongolia decided to include the results of the National Emission Inventory 2018 by the 
“Hybrid Approaches” method described in Chapter 3, 3.1 Inventory overview, Additional information/best practice 
of the BUR2 to be submitted to the UNFCCC.

This approach is applicable in most, if not all, non-Annex I countries.

Steps for further improving the method.  The ratio between the city and nationwide emissions of fossil 
fuel-derived CO2 emissions could influence technological innovation towards decarbonization in each country 
in the future. To apply this ratio to countries other than Mongolia, it is necessary to upgrade the latest inverse 
analysis to a more general emission estimation method for a vast area that comprises not only urban areas but 
also an entire country. To this end, further development of future GHG observation satellite technology and 
improvement of the analysis system are necessary.
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JAXA/NIES/MOEJ plans to launch the Next-Generation Greenhouse Gases Observing Satellite (GOSAT-GW) 
in 2024, it will make it possible to make planar observations over a swath of 911 km or more with a resolution 
of 10 km. Using these next-generation satellites, all areas, including many urban areas and areas with other land 
uses, will be covered with a 10 km resolution mesh. In addition, targeted observations such as those conducted 
in Ulaanbaatar in this research will be carried out in all other areas. With the advent of GOSAT-GW, it will 
become possible to uniformly apply the top-down method using satellite data to all land use areas. To incorporate 
GOSAT-GW, we are expanding and improving all analysis systems. We are preparing to apply the top-down 
method using satellite data in a unified manner to countries other than Mongolia.

Our approach is to first clarify the CO2 emissions from fossil fuel-based energy sources, which are Mongolia’s 
most important emission sources. However, there are various sinks and emission sources in Mongolia and other 
regions. Livestock is increasing yearly in Mongolia. Methane emissions from livestock accounted for 47.9% and 
48.9% of the total emissions inventories in Mongolia in 2014 and 2018, respectively.

Observations covering a wide area can effectively detect methane emissions and CO2 absorption and emis-
sion from wide-ranging emission sources, such as grasslands and forest areas. Additionally, using GOSAT-GW 
in these areas, it is expected that a top-down method using satellites will be applicable to estimate the amount of 
CO2 absorption from grassland/forest areas and methane emissions from grazing livestock.

Methods
Methodology overview of a top‑down approach to analyze nationwide CO2 emissions.  Two 
approaches can be used for estimating GHG emissions: a bottom-up approach relying on forward analysis of 
global databases28 and top-down approach based on inverse analysis of observational data29.

Top-down approaches rely on inverse models such as Lagrangian particle models31 and Bayesian models based 
on Green’s function32. These models, however, have to contain and rely on a CO2 atmospheric transport model. 
These model can be a global transport model, such as the Goddard Earth Observing System model coupled to 
chemistry (GEOS-Chem)33, or a regional-scale model based on WRF-Chem34 (i.e., a regional model that relies 
on appropriately downscaled data extracted from a global transport model).

Ganesan et al.30 and Miller et al.35 reported examples of inverse analyses based on global transport models 
for India and China, respectively. In both study cases, methane emissions were analyzed by an inverse model 
using satellite data elaborated with GEOS-Chem and compared with BURs. In terms of CO2 inversion analysis, 
there have been studies such as Janarganan et al. (2020)36 who used a global model, and Zhang et al. (2021)37 
who utilized a regional model. However, for most of non-Annex I countries like Mongolia, where observational 
data for CO2 emissions are limited, application of these analysis methods proves challenging. This is a common 
issue among non-Annex I countries in the UNFCCC, highlighting the need for developing a method that begins 
with the analysis at city level, where knowledge and observational data is relatively abundant such as air pollution 
monitoring data, regional weather model, and meteorological knowledge, which extends them to a nationwide 
estimation. Several examples of inverse analysis of CO2 emissions based on regional models targeting cities 
have been reported in the literature18,19,38–40. Pillai et al.32, for instance, used a 100-km square grid to estimate 
CO2 emissions in Berlin, Germany. Therefore, in this study, we first focus on a top-down approach to estimate 
CO2 emissions at the city level, specifically in Ulaanbaatar, Mongolia. This city-level data is then used as a basis 
for the nationwide CO2 emission estimation, creating a comprehensive picture of Mongolia’s CO2 emissions.

Inverse analysis of CO2 emissions in Ulaanbaatar.  The process of estimating CO2 emissions consisted 
of three sequential steps (Supplementary Fig. S16): forward analysis using the regional chemical transport model 
WRF-Chem, inverse analysis using Green’s function, and comparison with a global database such as EDGAR.

Forward analysis.  The spatial distribution of a priori CO2 emissions in Ulaanbaatar was estimated based on 
CO2 emission data from thermal power plants (four sites), automobiles, household stoves in gers, heat-only 
boilers, and coal-fired water heaters, which accounted for almost all the energy sector-related emissions in Mon-
golia in 2015. These data were estimated by the Japanese Ministry of Environment in the “Project on Develop-
ment of Innovative Green Technology and MRV Method for JCM in Mongolia”, which was based on the same 
methodology as the Mongolian GHG emission estimate. Comparing the CO2 inventory for the energy sector in 
Mongolia from EDGAR with Mongolia’s gross domestic product (GDP) for the same period, a constant ratio can 
be evaluated, suggesting that CO2 emissions in the energy sector are strongly related to the economic growth in 
Mongolia, and that no changes in economic structure occurred during the monitoring period. We calculated the 
a priori total CO2 emissions from Ulaanbaatar in 2018 according to this constant ratio with GDP41 (Supplemen-
tary Fig. S17). We calculated the hourly input data of a prior CO2 emissions for the forward model by differen-
tiating observed data on hourly CO concentration changes provided by the Information and Research Institute 
of Meteorology, Hydrology and Environment in Mongolia (Supplementary Note 5, Supplementary Fig. S18).

We used the GHG Tracer developed by the Max Planck Institute and the National Oceanic and Atmospheric 
Administration as an atmospheric transport model for CO2. Consequently, we were able to sequentially analyse 
CO2 concentrations with a horizontal resolution of 9 km and 34 vertical levels. The modelled XCO2 was in good 
agreement with the GOSAT XCO2 data, with a correlation coefficient of 0.89. Supplementary Table S5 provides 
details on WRF-Chem physical conditions and main input parameters, including the modelling of the CO2 flux 
from vegetation (Vegetation Photosynthesis and Respiration Model, VPRM)42,43, and to Supplementary Fig. S3 
shows the simulation results of XCO2.

Atmospheric transport model errors in forward analysis.  Ye et al.18 estimated the error variance by combining 
the measurement error and forward model error variances. The former accounts for GOSAT measurements, 
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whereas the latter considers transport model errors in wind speed, wind direction, and boundary conditions. 
WRF-Chem transport model uncertainties range within 0.31–3.03 ppm in Riyadh, Cairo, and Los Angeles18. In 
our model, we considered uncertainties in CO2 boundary conditions and the prior emissions.

Regarding boundary conditions, meteorological data and background CO2 concentration data—taken as 
boundary conditions in WRF-Chem—were obtained, from the final analysis data from the National Center 
for Environmental Prediction, USA44 and JENA CarboScope inversion system JENA_s04oc_v4.3 (shortened 
as JENA_s04oc)45 data from the Max Planck Institute, Germany. Although the resolution of JENA_s04oc was 
lower in our region (4° × 5°), the CO2 distribution was optimized using a Bayesian inversion framework46,47. 
The monthly average difference with the Atmospheric Infrared Sounder product of NASA’s AQUA satellite was 
approximately 1.1 ppmv in terms of column CO2 concentration in the Mongolian region (44–49 N, 100–110 E)48. 
In situ CO2 measurements by aircraft over Europe showed that JENA_s04oc products had a lower bias than those 
from the Copernicus Atmosphere Monitoring Service (CAMS)49, 0.8 (1.3) μmol mol-1 vs. 3.7 (1.5) μmol mol−150, 
where the standard uncertainty in the final digits is given in brackets. This suggests that CAMS products are 
preferred for setting lateral boundary conditions for regional modelling. Consequently, we opted for JENA_s04oc 
products because the bias of CAMS in Mongolia was poorly constrained.

Regarding CO2 emissions, we quantified the discrepancy in CO2 concentrations between observed and model-
predicted values (Supplementary Fig. S3).

Inverse analysis.  We conducted the inverse analysis through a Bayesian inversion based on the synthesis inver-
sion method (Green’s function method)32 and constructed Green’s function to modify CO2 emissions to mini-
mize the difference between the WRF-Chem simulated estimate and GOSAT observations by the following cost 
function J. This resulted in an a posteriori estimate of CO2 emissions.

where cobs is the observed CO2 mole fraction, cfwd is the simulated CO2 mole fraction, H is Jacobi’s matrix (num-
ber of emission sources × number of observations per optimization period; e.g., 1 day), R is the cobs—cfwd error 
covariance matrix, x is the modified amount of CO2 at the observation point, x0 is the prior emission estimate 
of x, and P0 is the error covariance matrix of x0.

In (1), the measurement error covariance matrix (diagonal matrix), R depends on the XCO2 random errors32 
using GOSAT and TCCON observation data collected independently51. As a reference for R, Yoshida et al.51 
showed that the standard deviation of the differences between XCO2 (SWIR L2 v02.xx product) and TCCON 
data are evaluated to be 2.1 ppm. Wang et al.52 also stated that using GOSAT data (ACOS dataset), setting 2 times 
(land) and 1.25 times (sea) of the presented retrieval error would give realistic errors. In (1), P0 represents the 
error covariance of the a priori CO2 emission and is defined as a diagonal matrix when the CO2 emission data 
as referred to by Pillai et al.32 are independently generated.

In this case, the optimal solution (a posteriori estimate of CO2 emissions) is given by:

Jacobi’s matrix H32, which corresponds to Green’s function, is a function of the impact of CO2 emissions 
from a given point on Earth’s surface on the spatiotemporal variation in atmospheric concentrations. There-
fore, forward modelling results based on an atmospheric transport model inputting pulsed emission fluxes or 
a Lagrangian analysis tracking the trajectories of CO2 gas can be used to populate H. The period during which 
emissions from the ground surface remain within the targeting area varies depending on the size of the targeting 
area and meteorological conditions (such as the wind speed). Therefore, we must formulate H for the period 
during which CO2 gas concentrations are recorded after the gas is emitted from within the model domain (Sup-
plementary Fig. S19).

In R, Kuze et al.24 used a standard deviation of 2.09 ppm for both XCO2LT and XCO2UT because the value 
was validated by the TCCON network. Therefore, we also set a standard deviation of 2 ppm for our a priori error 
in the XCO2LT concentration data, which is also close to the value provided by the NIES51.

For P0, Pillai et al.32 gave a 40% a priori emission error in CO2 emissions based on the difference between 
their detailed inventory data and the EDGAR inventory. Ye et al.18 chose an uncertainty of 20% for cities with 
low statistical uncertainty in CO2 emissions (Los Angeles) and 40% for cities with high statistical uncertainty 
(Riyadh, Cairo). In Ulaanbaatar, the statistical uncertainty is assumed to be high; however, the city is smaller than 
Riyadh and Cairo, and the number and location of primary sources of CO2 are known. Moreover, comparing 
the a priori CO2 emission data in this study with EDGAR energy sector data, the difference is as small as 1.3%. 
Therefore, we set the a priori emission uncertainty to 400 ton h−1 (26%).

In this study, Eqs. (1) and (2) were applied to a 50 km × 50 km model domain (refer to the Results, Supplemen-
tary Note  3, and Supplementary Fig. S20) in and around Ulaanbaatar in 2018 to calculate a posteriori estimates 
of GHG emissions, and XCO2LT concentrations were calculated from GOSAT/GOSAT-2 EORC Daily Partial 
Column GHG data24,25. CO2 emission values in Green’s function corresponded to hourly-averaged emissions 
within the model domain over 24 h from the observation time of GOSAT. We calculated the a posteriori emis-
sions only if 70% of the GOSAT observation points (10 out of 14 points) were available. Finally, we calculated 
the averaged ratio of a posteriori to a priori CO2 emissions within the model domain over the entire year.

After solving the cost function J, the following two formulas18 can be used to calculate an optimized estimate 
of the scaling factor and the a posteriori error variance:

(1)J = (cobs − cfwd −Hx)
T
R
−1

(
cobs − cfwd −Hx

)
+ (x0 − x)TP−1

0 (x0 − x)

(2)x̂ =

(
H

T
R
−1

H + P
−1
0

)−1(
H

T
R
−1

(
Cobs − Cfwd

)
+ P

−1
0 x0

)
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where �̂ = x̂  , ym = H, So = R, and σa=P0 based on (1) and (2).

Comparison with a global database.  Here, we describe the method to calculate a posteriori estimates of 
CO2 emissions for Ulaanbaatar and Mongolia.

First, we calculated the average ratio of a posteriori to a priori CO2 emissions at each GOSAT observation 
point. Second, we multiplied this ratio by the a priori estimate of energy sector CO2 emissions for Ulaanbaatar 
and Mongolia, thereby obtaining the a posteriori CO2 emissions of the energy sector. Finally, we calculated the 
95% confidence interval (across all observation points during the whole of 2018) of the difference between a 
priori and a posteriori emissions at each observation point.

We calculated the a posteriori estimates of CO2 emissions in Mongolia using the following procedure. First, 
we calculated the a priori estimate of CO2 emissions in 2018 in Mongolia by multiplying the CO2 emissions in 
2014 from the 1st BUR in Mongolia by the 2018 GDP/2014 GDP39 ratio. Second, we calculated the a posteriori 
estimate of CO2 emissions in 2018 in Mongolia by multiplying the averaged ratio of a posteriori to a priori CO2 
emissions within the model domain in Sect. 2 by the a priori estimate of CO2 in 2018 for Mongolia. Third, we 
calculated the difference between top-down and bottom-up CO2 emissions by calculating the difference between 
the a posteriori estimate of CO2 emissions and energy sector CO2 emissions in BUR2 for 2018. We used ArcGIS 
10.2 (https://​www.​esri.​com/​en-​us/​arcgis/​about-​arcgis/​overv​iew) to extract subsets for Ulaanbaatar and Mongolia 
from the global CO2 emissions dataset in EDGAR v6.0. The latter contains energy sector CO2 emissions data 
for each administrative district. Finally, we calculated the difference between each subset and the a posteriori 
estimate of CO2 emissions.

Data availability
GOSAT XCO2LT data were obtained from https://​www.​eorc.​jaxa.​jp/​GOSAT/​CO2_​monit​or/​index_​Ver.K.​html. 
Observed CO and CO2 data are available from the corresponding authors on reasonable request.
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