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Using surveillance data for early 
warning modelling of highly 
pathogenic avian influenza 
in Europe reveals a seasonal shift 
in transmission, 2016–2022
Lene Jung Kjær 1*, Michael P. Ward 2, Anette Ella Boklund 1, Lars Erik Larsen 1, 
Charlotte Kristiane Hjulsager 3 & Carsten Thure Kirkeby 1

Avian influenza in wild birds and poultry flocks constitutes a problem for animal welfare, food 
security and public health. In recent years there have been increasing numbers of outbreaks in 
Europe, with many poultry flocks culled after being infected with highly pathogenic avian influenza 
(HPAI). Continuous monitoring is crucial to enable timely implementation of control to prevent HPAI 
spread from wild birds to poultry and between poultry flocks within a country. We here utilize readily 
available public surveillance data and time-series models to predict HPAI detections within European 
countries and show a seasonal shift that happened during 2021–2022. The output is models capable of 
monitoring the weekly risk of HPAI outbreaks, to support decision making.

In recent years, occurrences of highly pathogenic avian influenza (HPAI) in domestic and wild birds have 
increased globally, posing a threat to animal welfare and public  health1–4 as well as causing great economic losses 
when farmed birds become  infected5,6. Some studies have found evidence of intercontinental spread of avian 
influenza virus (AIV) from Eurasia to  Africa7 and North  America8,9. Transmission from wild to domestic birds 
is a risk for many poultry farmers, especially regarding HPAI. However, low pathogenic avian influenza (LPAI) 
can also be transmitted from wild birds to captive birds and poultry, and certain LPAI subtypes (H5 and H7) 
have the potential to mutate into HPAI in  poultry10.

In Europe, detections of LPAI and HPAI have been characterized by seasonal oscillations and an increased 
number of detections during the period November to  May11. However, during the 2021 and 2022 seasons, detec-
tions were also observed during the summer  months12,13. HPAI causes high mortality, approaching 100%14, 
and infected flocks are culled for welfare reasons and to prevent spread to other  flocks15,16. Preventive actions 
to control avian influenza worldwide include reinforcement of biosecurity  measures17, movement restrictions 
and  vaccination13,18–20. Furthermore, biosecurity recommendations (such as indoor housing) are encouraged to 
prevent infection from wild  birds21. These measures are enforced during periods with high risk of HPAI virus 
transmission and in restriction zones around affected  farms22. Ideally, to predict high-risk periods and areas and 
to increase the effect of preventive measures, an early warning system should be developed and implemented.

As wild birds cannot be contained in the same way as domestic birds during disease outbreaks, to prevent 
disease spread it is important to quickly detect AIV in wild bird species and mitigate potential transmission to 
domestic  birds23. This can be done using early warning systems, although in the case of AIV challenges include 
the range of hosts and virus  mutations23. Early warning systems can be applied to both wild and domestic bird 
species but are invariably dependent on surveillance data. AIV surveillance within poultry flocks can include 
the use of diagnostic testing  schemes24, sentinel  birds25, surveillance of flock  mortality26 and morbidity and 
monitoring the daily feed and water intake and egg  production27. Early warning systems for AIV in large areas 
(e.g., country level) can include active and passive surveillance of poultry flocks and wild  birds6, environmen-
tal  sampling28, complex systems such as hybrid knowledge-based  algorithms29, and models based on move-
ment  data30,31. However, there is a need for systems that cover larger study areas beyond national boundaries, 
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incorporate multiple wild- and domestic bird species and use real-time outbreak data. Thus, any system could 
benefit from the utilization of already available registered information on the occurrence of AIV in neighbouring 
countries, to predict the risk of transmission in specific countries.

The World Organisation for Animal Health’s World Animal Health Information System (WOAH-WAHIS32) 
platform provides free access to world animal health data. The platform reports surveillance data from veterinary 
services in WOAH member and non-member countries and territories on WOAH-listed diseases in wildlife and 
domestic animals. The WAHIS database is publicly accessible and contains data as far back as  200532. Used in a 
statistical model, these data could facilitate the creation of an early warning system, when combined with a time-
series modelling framework such as that proposed by Meyer et al.33. This modelling framework has previously 
been applied in human health  modelling34–37, as well as modelling rabies in  foxes38, Campylobacter in  poultry39, 
and diseases in  pigs40. Thus, this modelling framework has yet unexplored potential for use in modelling the risk 
of AIV transmission. In this study, we used registered WOAH-WAHIS data on HPAI in Europe to fit endemic-
epidemic time-series  models33, and evaluated the potential of such models based on accessible data as an early 
warning system. Our aim was to evaluate the use of WOAH-WAHIS data and the modelling framework to predict 
detections of HPAI virus on a weekly basis. The objective was to construct an early warning model which can 
inform decision makers of the risk of outbreaks for the purpose of timely implementation of preventive measures.

Materials and methods
Data
We obtained data from the World Organisation for Animal Health (WOAH), where data are continuously made 
 available32. As the data included all reported animal diseases, we used the definitions “High pathogenicity avian 
influenza viruses (poultry) (Inf. with)” and “Influenza A viruses of high pathogenicity (Inf. with) (non-poultry 
including wild birds)” to select only HPAI outbreaks and detections. Some of the reported events within these 
categories affected species other than birds and were thus excluded. For simplicity, we defined each data entry as 
outbreak detection (where outbreak detection includes both outbreaks in domestic birds and detections in wild 
birds), referring to one or more HPAI detections at the same locality at the same time. Thus, we did not distin-
guish between domestic and wild birds in our data. Although each entry in the WOAH-WAHIS data reported 
the number of affected birds, we chose to only model outbreak detections, because some countries (for example 
Denmark) will not sample and test all wild birds from the same area if it is a known outbreak area (and this 
could therefore greatly bias the data). Furthermore, domestic birds are usually affected in greater numbers than 
wild birds and this might skew outbreak severity patterns (if wild and domestic birds are modelled together).

We restricted our analyses on European data to countries that reported HPAI detection data during the 
study period. We restricted our study region to Europe, and in order to focus on recent years to understand the 
resurgence of HPAI cases in Europe, and to avoid large temporal gaps in the HPAI data (for example, Denmark 
had no reported detections between 2006 and 2016), we restricted the study period to be from 1 January 2016 to 
5 December 2022. European countries with no reports of HPAI between 2016 and 2022 (e.g., Andorra, Belarus, 
Kosovo, Liechtenstein, Malta, Monaco, San Marino, and Vatican City) were omitted from our analyses.

We aggregated number of outbreak detections by week (n = 361) and country (n = 37), starting with week 1 
in 2016 and ending with week 49 in 2022. For each country, if no outbreak detections were reported in a given 
week within the study period, we included this week as a “zero detection” observation.

Due to the change in seasonal oscillations observed in Europe during 2021 and particularly 2022 compared 
to previous  years12,13, we split our data and ran analyses using only data from 2016 to 2021 (week 1 in 2016 to 
week 52 in 2021), and models using only data from the last quarter of 2021 and all of 2022 (week 39 in 2021 
to week 49 in 2022). We refer to these two data sets as HPAI1621 and HPAI2122. The two datasets overlap in 
time, as we wanted to include the latest HPAI season in the 2021–2022 dataset, but only keeping week 1–38 for 
2021 in the HPAI1621 dataset caused model calibration problems, due to insufficient amount of detection data.

We decided to aggregate the data to weekly HPAI detections, because aggregating over longer periods can 
mask causality and seasonality in the detections. However, the modelling framework described in this study 
can easily be adapted to aggregations over longer time periods, the data preparations just need to be adjusted 
accordingly. As a form of sensitivity analysis, we ran our statistical models with data aggregated bi-weekly, to 
assess whether the resulting models differed greatly from models with data aggregated weekly (see Sect. "Sta-
tistical analysis").

Landscape variables
Wild birds are natural reservoirs of  AIV41, so we explored landscape variables that might be associated with pres-
ence of wild birds, i.e., coastal areas, waterways, and wetlands, where migratory birds are known to aggregate in 
high  numbers42. For each country, we obtained the length of coastline (km) through the CIA World  Factbook43 
and used Global Lakes and Wetlands Database  rasters44, 1  km2 resolution). We used R 4.1.245 package  sp46,47 
to calculate the area  (km2) of waterways/wetlands within each country. We combined waterways and wetlands 
and used the following landcover definitions in the raster file to calculate the area within each country: “Lake”, 
“Reservoir”, “River”, “Freshwater Marsh, Floodplain”, “Coastal Wetland (incl. Mangrove, Estuary, Delta, Lagoon)”, 
“Pan, Brackish/Saline Wetland”, “Bog, Fen, Mire (Peatland)”, and “Intermittent Wetland/Lake”.

Statistical analysis
We used the multivariate time-series modelling framework described by Meyer et al.33 to model the spatiotempo-
ral relationship between HPAI detections. This modelling framework allows for additive decomposition of time 
series data into endemic and epidemic components. The HPAI data (outcome variable) was modelled as weekly 
counts conditional on past observations, following a negative binomial distribution, with the conditional mean 
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decomposing into a random endemic part that incorporates a trend parameter, and an epidemic component 
composed of autoregressive effects (within-country effects) and neighbourhood effects (between-country effects). 
The epidemic component captures the occasional (to some extent local) detections while the endemic component 
explains the baseline rate of detections, usually with a temporal pattern. This endemic component translates, in 
our case, to the underlying risk of occurrence from factors not included in the model, i.e., transmission from 
migratory birds coming from countries not included in our study and unreported HPAI virus circulating within 
the countries included. The main formula for the conditional mean of the negative binomial distribution model is:

where µit is the conditional mean per country, i and time, t (week). The number of expected counts, eit, is mod-
elled as an offset for the endemic log-linear predictor, νit. The epidemic component is observation-driven and 
contains a within-country effect (λ per country i at time t), and Y denotes the HPAI data, in country i at time 
t − 1. The between-country effects (ϕ, disease from other regions j) are captured by wji denoting the spatial weights 
matrix for the adjacency order of the different countries oji (See Supplementary Material for description of the 
adjacency matrix and Fig. S1) at time t-1. It is also possible to include data on infections originating from non-
neighbouring countries by incorporating long-range transmission. This can be done by estimating the spatial 
weights wji as a power-law model with distance-decay, wij = o−d

ji
33. Thus, the model incorporates an endemic 

transmission component (νit), an epidemic transmission component that splits into within-country transmis-
sion effects (λit), and between-country transmission effects (ϕit). All elements within the two components − νit, 
λit, and ϕit—allow for log-linear predictors as the above equation becomes a rich regression model. For more 
detailed description of the underlying modelling equations see Meyer et al.33, Held et al.48, and Paul and  Held49.

We used the same model selection process for both the HPAI1621 and HPAI2122 data sets, and Fig. 1 gives an 
overview of the different model comparisons and selection of final models. We used the package  surveillance33,50 
in R 4.1.245 to fit our models and explored several models with varying structure as described below and in 
Fig. 1. We divided both our HPAI1621 and HPAI2122 datasets into training sets (week 1 in 2016 to week 46 in 
2021 and week 39 in 2021 to week 43 in 2022, respectively), and test sets (week 47 to week 52 in 2021 and week 
44 to week 49 in 2022, respectively). We used the respective training data sets to train all our models and the 
test data sets to check model performance and to compare different model specifications. For both HPAI1621 
and HPAI2122 datasets, we first specified a basic model (Baseline model 1 in Fig. 1) with no covariates and no 
seasonality but with country area relative to all countries (area_frac) as offset in the endemic component and 
simple epidemic between-country effects (only disease transmission from countries directly sharing a border, 
wji = 1(j ∼ i) = 1(oji = 1)):

µit = eitνit + �itYi,t−1 + φit
∑

j �=i

wjiYj,t−1

µit = area_fraciνi + �Yi,t−1 + φ
∑

j �=i

wjiYj,t−1,

Baseline model 1: no 
seasonal waves,

country area as offset

Models with none, 1, 2 or 
3 waves in the endemic 
and epidemic (within-

country effects) 
component

Baseline model 2: best 
model from previous 

comparison

Models with covariates 
and offsets in the 

endemic and epidemic 
(within-country effects) 

component

Baseline model 3:
best model from previous 

comparison

Models with power law 
(between-country effects) 
and random effects in the 

endemic and epidemic 
component

Final model:
best model from 

previous comparison

Compare using strictly 
proper scoring rules

Compare using strictly 
proper scoring rules

Compare using strictly 
proper scoring rules

Figure 1.  An overview of the different model comparisons and different baseline models used for selecting the 
final multivariate highly pathogenic avian influenza virus time-series models for the HPAI1621 and HPAI2122 
data. Within-country/between-country effects denote that covariates/offsets/seasonality/power law was only 
included in the within-country/between-country effects of the epidemic component. All models included 
country area relative to all the country areas as offset in the endemic component.
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In this basic model, we assumed that both the endemic and epidemic parameters were homogeneous across 
countries and constant over time, ν = exp(α(ν)), λ = exp(α(λ)) and ϕ = exp(α(ϕ)). For the epidemic components, 
we used an offset of 1 and for all fixed-effects models, we used the default quasi-Newton penalisation for log-
likelihood to maximize the marginal likelihood regarding the variance  parameters37. We then compared the basic 
models to other models incorporating 1, 2 and 3 seasonal waves in both the endemic and epidemic components. 
We chose only to add seasonal waves to the within-country effects in the epidemic components (and not to 
the between-country effects) to keep model complexity as simple as possible (model equations below depict 3 
seasonal waves (s)):

As recommended by Paul and  Held49, we used strictly proper scoring rules when comparing and validating 
models. We specifically used the ranked probability score (RPS) and the logarithmic score (logS), and the scores 
were based on successive one-step-ahead predictions (one-week-ahead forecasts) for the models using the test 
sets (previously unseen by the models), where we refitted the models up to week t to obtain predictions for week 
t + 1. Strictly proper scoring rules provide summary measures by evaluating probabilistic forecasts based on the 
predictive distribution and the actual count  data51. The most commonly used strictly proper scoring rules are 
the logS score and RPS. LogS (calculated as minus the log of the probability estimate for the actual outcome) is 
highly sensitive to extreme values, as it penalizes low probability events. In contrast RPS generalizes the absolute 
error and thus measures how well probabilistic forecasts match the observed  outcome49,52. RPS is less sensitive to 
extreme values and adds weights to unusually high observed or predicted  counts49,52. When comparing logS and 
RPS for different models, we calculate mean scores over a set of predictions. Assessment can be done by simply 
ordering the mean scores or using permutation tests to test for significant  differences49. If RPS and logS differed 
in scoring the best model, we chose to use logS as it is more sensitive to a misprediction in an outbreak period 
than RPS. For both RPS and logS, a lower score indicates a better  mode49. We used permutation tests for paired 
data to test for differences between mean model scores of the two models with the lowest  scores49 (Fig. 1). The 
best performing models were then selected as the new baseline models (Fig. 1). We checked if all models were 
well-calibrated by using a calibration test to assess whether the predictive distribution covered the observed 
 value52, and only well-calibrated models were considered when selecting the best performing models. After 
selecting the best models comparing seasonal waves, we used these as new baseline models (Baseline model 2 in 
Fig. 1) and added area of waterways/wetlands and length of coastline as log-transformed covariates (τ(ν)(log(co
ast + 1) + log(wetlands + 1)), τ(λ) (log(coast + 1) + log(wetlands + 1)) or offsets (multiplying log(coast + 1) + log(we
tlands + 1) with νi and/or λit) to the endemic and epidemic components (only for the epidemic within-country 
effects as these covariates were country-specific) and compared and validated these models to the new baseline 
models, resulting in selection of another new baseline model for each of the HPAI1621 and HPAI2122 data sets 
(Baseline model 3 in Fig. 1). Lastly, we compared the latest new baseline models to models with spatial weights 
as a power-law model with distance-decay, wij = o−d

ji  and to models with country-specific (both uncorrelated and 

correlated) random effects, α(ν)
i ∼ N(α(ν), σ 2

ν ) , α
(�)
i ∼ N(α(�), σ 2

�
) , α(φ)

i ∼ N(α(φ), σ 2
φ) (assumed to be normally 

distributed with mean 0 and positive definitive covariance matrix) to capture any remaining heterogeneity not 
explained by covariates or seasonal waves (for example due to underreporting of outbreaks in certain countries). 
These random effects were applied to both the endemic and epidemic components of the models (in the latter 
both for within- and between-country effects), to absorb effects such as country-specific likelihood of detection 
and occurrence unrelated to landscape factors. As with previous model comparisons, we checked for model 
calibration and used RPS and logS to select the final best models for forecasting. For models including random 
effects, we used the Nelder-Mead penalisation for log-likelihood to maximize the marginal likelihood regarding 
the variance  parameters49. We used the final best models to run 500 simulations of long-term forecasts to gauge 
the overall ability of the models to simulate HPAI detections. For the HPAI1621 dataset, we simulated the years 
2020–2021 (week 1 in 2020 to week 52 in 2021), whereas for the HPAI2122 dataset we simulated week 40 in 2021 
to week 49 in 2022. Forecasting consists of sequential calls to the negative binomial distributions developed in the 
final models. At each time point (here week number), the mean is determined by using the parameter estimates 
and the counts simulated at the previous time point. For example, for the first week in 2020 (HPAI1621 dataset), 
we needed parameter estimates and counts simulated before 2020 and we specified the initial vector of counts 
used for this forecast as the last week of 2019. For the HPAI2122 models, we used week 39 in 2021.

As a sensitivity analysis, to test if our model results were sensitive to the timescale of our data, we ran models 
using the HPAI1621 dataset aggregated bi-weekly and compared the final resulting model, its variables, offsets, 
and coefficients to the final model based on data aggregated weekly. We used the same methods as described 
above.

Results
Data
The data obtained from WOAH-WAHIS32 contained 15,595 European HPAI detections during 361 weeks from 37 
countries (including Faroe Islands, see Table 1) that reported HPAI data between 1 January 2016 and 5 December 
2022. Of these, 8873 were detections in wild birds, whereas 6722 were detections in domestic birds. Table 1 gives 
a detailed overview of the countries included in our study, the number of wild and domestic detections and the 

log(νit) = α(ν) +
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HPAI subtypes reported for each country between 2016 and 2022. Supplementary Table S1 shows the reported 
detections by subtype and the number of countries that detected the specific subtypes.

Due to few records of H7 cases, we decided to only use H5 subtypes in our study and removed 46 entries 
(including 43 entries where subtype was not specified, Supplementary Table S1). This produced a dataset contain-
ing 15,549 detections. Due to data constraints, we combined the different H5 subtypes in our analyses (where 
60.8% of the detections were H5N1 and 35.7% were H5N8, Supplementary Table S1). Considering H5 subtypes 
only, France, Germany and the UK were among the countries with the highest number of detections, followed by 
Hungary, Poland, Italy, the Netherlands, and Denmark. However, when correcting for country size, the highest 
number of detections per 10,000  km2 were found in the Netherlands, followed by Denmark, the UK, Hungary, 
Germany, Belgium, and France (Fig. 2A). Overall, detections were predominantly reported in the autumn and 

Table 1.  The 37 European countries included in this study, number of detections in wild and domestic birds, 
highly pathogenic avian influenza subtypes, and number of weeks with and without reported outbreaks for 
each country between 2016 and 2022 (1 January 2016, to 5 December 2022). *European countries omitted 
due to no reported HPAI detections during the study period: Andorra, Belarus, Kosovo, Liechtenstein, 
Malta, Monaco, San Marino, and Vatican City. ‡ European countries omitted due to either size and/or being 
transcontinental: Russia, Turkey. † Although the Faroe Islands belong to Denmark, they have here been treated 
separately due to the large distance to Denmark.

Country*,‡ Wild/domestic bird detections Subtypes reported
Weeks with detections/ weeks with no or missing 
detections

Albania 2/17 H5N1, H5N8 5/356

Austria 109/10 H5, H5N1, H5N5, H5N8 36/325

Belgium 240/60 H5, H5N1, H5N5, H5N8 73/288

Bosnia & Herzegovina 3/1 H5, H5N1, H5N8 44/317

Bulgaria 16/162 H5, H5N8, “Not specified” 4/357

Croatia 29/19 H5N1, H5N5, H5N8 20/341

Czechia 84/163 H5N1, H5N5, H5N8 47/314

Denmark 569/43 H5, H5N1, H5N3, H5N5, H5N6, H5N8 128/233

Estonia 50/6 H5N1, H5N8 102/259

Faroe Islands† 24/3 H5N1 44/317

Finland 122/2 H5, H5N1, H5N5, H5N6, H5N8 24/337

France 436/2679 H5, H5N1, H5N2, H5N3, H5N8, H5N9 66/295

Germany 2066/565 H5, H5N1, H5N2, H5N3, H5N4, H5N5, H5N6, H5N8 114/247

Greece 30/6 H5N1, H5N5, H5N6, H5N8 11/350

Hungary 106/993 H5N1, H5N5, H5N8 100/261

Iceland 27/1 H5N1 17/344

Ireland 182/28 H5N1, H5N3, H5N6, H5N8 24/337

Italy 131/458 H5N1, H5N5, H5N8, H7N7 77/284

Latvia 24/0 H5N1, H5N8 50/311

Lithuania 20/55 H5N1, H5N8, H7N7 13/348

Luxembourg 7/5 H5N1, H5N8 79/282

Moldova 0/11 H5N1 21/340

Montenegro 2/0 H5N1, H5N5 6/355

Netherlands 742/117 H5, H5N1, H5N3, H5N4, H5N5, H5N6, H5N8 8/353

North Macedonia 10/2 H5, H5N1, H5N8 5/356

Norway 97/8 H5N1, H5N5, H5N8 5/356

Poland 220/491 H5N1, H5N2, H5N5, H5N8 2/359

Portugal 14/34 H5N1, H5N8 108/253

Romania 123/62 H5, H5N1, H5N5, H5N8 51/310

Serbia 50/10 H5N1, H5N2, H5N5, H5N8 84/277

Slovakia 82/19 H5, H5N1, H5N5, H5N6, H5N8 20/341

Slovenia 70/1 H5N1, H5N5, H5N8 39/322

Spain 196/137 H5N1, H5N8 33/328

Sweden 234/51 H5, H5N1, H5N4, H5N5, H5N6, H5N8 27/334

Switzerland 124/4 H5N1, H5N4, H5N6, H5N8 22/339

Ukraine 8/26 H5, H5N8 93/268

United Kingdom 2624/473 H5N1, H5N3, H5N5, H5N6, H5N8 20/341

Total: 37 countries 15,595
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spring, and large epidemic waves were observed in 2016/2017, 2020, 2021 and 2022 (Fig. 2B), with similar pat-
terns for both wild and domestic birds (Supplementary Fig. S2).

Due to changes in the seasonality of the detections observed in 2021 and particularly in 2022 (Fig. 2B)12,13, we 
created two datasets from our data, before analysing and modelling spatiotemporal relationships. The first data 
set, hereafter referred to as HPAI1621, contained data from 2016 to 2021 (week 1 in 2016 to week 52 in 2021, 
comprising 9100 detections in total), and the second data set, hereafter referred to as HPAI2122, contained data 
from 2021–2022 (week 39 in 2021 to week 49 in 2022, comprising 9376 detections in total). We included week 
39–52 in 2021 in the HPAI1621 data set due to data constraints, thus the two datasets overlap in time. In the 
2016–2021 data set, 33.6% of the detections were of the subtype H5N1 and 61.2% were of the subtype H5N8, 
whereas these proportions were 99.2% and 0.2% for the 2021–2022 data set (Supplementary Table S2).

Figure 2.  Number of reported highly pathogenic avian influenza (H5 subtype) detections between 2016 and 
2022 summed over 37 European countries (including Faroe Islands) shown (A) geographically as numbers per 
10,000  km2, and (B) over time. The dataset contained a total of 15,549 detections of varying sizes in both wild 
and domestic birds. The map in A) was created using the package  tmap64 in R 4.1.245.



7

Vol.:(0123456789)

Scientific Reports |        (2023) 13:15396  | https://doi.org/10.1038/s41598-023-42660-7

www.nature.com/scientificreports/

Endemic-epidemic time-series model
Testing multiple model formulations, we found that when comparing the baseline model with no seasonality 
(Baseline model 1 in Fig. 1) to models with one, two and three seasonal waves in both the endemic and epi-
demic (within-country effects) components, the best performing calibrated model for the HPAI1621 data (with 
the lowest scores for RPS and logS) was the model with three waves in the endemic component and one wave 
in the within-country effects in the epidemic component, and thus this model was chosen as the new baseline 
model (Base line model 2, Fig. 1, Supplementary Table S3). For the HPAI2122 data, 2 calibrated models had 
the exact same low logS score and included no seasonality in the endemic component and 2 and 3 waves in the 
within-country effects in the epidemic component respectively. We chose the simpler model with 2 waves in the 
within-country effects in the epidemic component as the new baseline model for HPAI2122 (Baseline model 2, 
Fig. 1, Supplementary Table S3). For HPAI1621, all models had calibration tests for RPS with p ≥ 0.05, indicating 
satisfactory calibration; however, for logS, not all models calibrated (p < 0.05, Supplementary Table S3). For the 
HPAI2122 data, only models with no endemic waves were calibrated (p ≥ 0.05), which was also the case for logS, 
except for one model including three waves in the endemic component and no waves in the epidemic component 
(p ≥ 0.05, Supplementary Table S3). Comparing the new baseline models (Baseline model 2 in Fig. 1) to models 
in which we added area of waterways/wetlands and length of coastline as log-transformed covariates or offsets, 
the calibrated model with the lowest scores for both RPS and logS was a model with covariates in the endemic 
component and no covariates or offsets in the epidemic components for the HPAI1621 data; this was chosen 
as the new baseline model (Baseline model 3 in Fig. 1). For the HPAI2122 data, the best performing calibrated 
model based on logS scores included no covariates or offsets in either component (Supplementary Table S3). This 
model was chosen as the new baseline model for HPAI2122 (Baseline model 3 in Fig. 1). Most of the HPAI1621 
models calibrated based on RPS scores but not logS scores, particularly not models incorporating the covariates 
as offsets (p < 0.05, Supplementary Table S3). For HPAI2122 most of the models calibrated based on RPS scores, 
except for models with offsets in the endemic component. For logS, all models calibrated (p ≥ 0.05).

Adding spatial weights wji as a power-law model with distance-decay and models with country-specific cor-
related and uncorrelated random effects to the new baseline model (Baseline model 3 in Fig. 1) resulted in a 
best performing calibrated model that included the spatial weights power law and uncorrelated random effects 
for both the HPAI161 and HPAI2122 data sets (Supplementary Table S3). For both RPS and logS, most models 
for the HPAI1621 data calibrated (p ≥ 0.05), except for models without power law added to the spatial weights 
for logS (p < 0.05); the model with power law added, but no random effects; and the model with only correlated 
random effects and no power law added for RPS (p < 0.05). For the HPAI2122 dataset, only the models with no 
power law added and random elements did not calibrate for RPS scores (p < 0.05), whereas all models according 
to logS scores calibrated.

The final models for HPAI1621 and HPAI2122 both included power law and uncorrelated random effects. 
The HPAI1621 model included three seasonal waves in the endemic component and one wave in the within-
country effect in the epidemic component as well as covariates in the endemic component, whereas the HPAI2122 
model only included epidemic seasonality. The seasonality waves for both the endemic (3 waves) and epidemic 
component (2 waves) for the HPAI1621 model and the epidemic seasonality waves (2 waves) for the HPAI2122 
model can be seen in the Supplementary Fig. S3. There are large peaks in AIV predictions during the autumn and 
smaller peaks during spring (Supplementary Fig. S3); but in the endemic component, there is a small peak in early 
summer for the endemic seasonality in the HPAI1621 model. For the within-country epidemic seasonality, we see 
large peaks in autumn and spring for the HPAI1621 model, but a large peak starting earlier during the summer 
season for the HPAI2122 model. We also see a very small, almost negligible, peak in the early spring. Epidemic 
between-country predicted transmission was mostly seen in Czechia, Sweden, and Poland in 2016–2021 (Fig. 3), 
compared to 2021–2022 where it was mostly in Poland, Belgium, and the Netherlands (Fig. 4).

The point estimates of the final HPAI1621 model show that length of coastline has a positive association with 
detections in the endemic component, whereas area of wetlands has a negative association (Table 2). However, 
the confidence intervals for these coefficients overlap zero (Table 2). Our final model for HPAI1621 suggests 
that most of the HPAI detections reported in Europe are epidemic (occasional localized outbreaks) in nature 
(94.6%), with 78.8% within-country and 15.8% between-country transmission; 5.4% of the reported detections 
were endemic (baseline rate comprising unreported outbreaks within a country and outbreaks originating from 
transmission from countries not included in our study) in nature. Compared to the HPAI1621 model, the model 
for HPAI2122 suggested that more HPAI detections were endemic in nature (12.2%), with 87.8% being epidemic 
in nature (73.3% within-country and 14.5% between-country transmission). The prediction plots show that 
there is a slight tendency for our final models to underestimate the number of detections in periods with many 
detections (Figs. 3 and 4).

In the HPAI1621 model, the exponentially transformed deviations of the random intercepts, indicating the 
model fit for each country, show that for the epidemic within-country random intercepts, particularly France, 
Switzerland, Hungary, and Germany (Supplementary Fig. S4A, pink colour) had more detections from within-
country transmission than explained by the model. For the HPAI2122 model, countries with the largest random 
epidemic, within-country intercepts were France and Slovenia, followed by the UK, Italy, Hungary, and Spain 
(Supplementary Fig. S4B). Maps of the random intercepts for epidemic between-country transmission show 
that for the HPAI1621 model, countries such as the UK, Estonia, Sweden, and Bulgaria followed by Hungary 
received more cases from other countries than the model could explain (Supplementary Fig. S4A), whereas for 
the HPAI2122 model the highest random intercepts were found for the Netherlands, Hungary, France, and Poland 
(Supplementary Fig. S4B). As for the map of the endemic random intercepts, reflecting endemic circulation and 
transmission by migratory birds from countries not included in this study, countries in cyan in Supplementary 
Fig. S4A and B exhibit a relatively lower endemic incidence than the model predicted.
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Figure 3.  Country-wise model fit, and the relative contribution of model components based on the final 
multivariate time-series models for the HPAI1621 data. Dots show the actual counts of reported highly 
pathogenic avian influenza (H5 subtype) detections in domestic and wild birds. Only countries with > 200 
detections are depicted. The last panel shows the overall model fit aggregated over all the 37 countries. Note that 
the scales on the Y-axes are different for some of the graphs, and zero/missing detections have been omitted. 
Although actual counts from week 47–52 in 2021 are depicted, they were not part of the training set in the 
model, and thus are not part of the model fit.
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Figure 4.  Country-wise model fit, and the relative contribution of model components based on the final 
multivariate time-series models for the HPAI2122 data. Dots show the actual counts of reported highly 
pathogenic avian influenza (H5 subtype) detections in domestic and wild birds. Only countries with > 200 
detections are depicted. The last panel shows the overall model fit aggregated over all the 37 countries. Note that 
the scales on the Y-axes are different for some of the graphs, and zero/missing detections have been omitted. 
Although actual counts from week 44–49 in 2022 are depicted, they were not part of the training set in the 
model, and thus are not part of the model fit.
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Fan plots show how well the final models performed for successive one-step-ahead predictions (one-week-
ahead) using the test data sets (unseen data). We see that both models predict detections reasonably well, but 
there seems to be a lag of one week for some detection peaks (Supplementary Figs. S5 and S6). Comparing 
the final models to the original baseline model 1, shows how the overall predictions from the final HPAI1621 
model encompass slightly more of the actual observed detections than the overall predictions from baseline 
model 1 (Supplementary Fig. S7). Furthermore, the HPAI2122 final model seems to predict more detections to 
be epidemic between-country and endemic in nature compared to Baseline model 1 (Supplementary Fig. S8).

Using the final HPAI1621 model to make long-term forecasts from 2020 to 2021, Fig. 5A shows how the model 
predicted many detections in the period late 2020/early 2021 and late 2021 where a large number of detections 
were reported. However, it did not capture well the observed peak in detection in the spring 2020, following a 
period with low numbers of observed detections (early 2020). This indicates that the model forecasts relatively 
well in years with many detections, but less well in years following years with no or low observed detections. The 
mean size of all the simulated detections (N = 5925) was slightly smaller than the observed number of detections 
(N = 6593) from 2020–2021. The same pattern was seen for individual countries (Supplementary Fig. S9). For the 
HPAI2122 model, forecasting the years 2021–2022 resulted in continuous predicted detections throughout the 
period, which corresponds to observed number of predictions. The model showed two peaks in late 2021/early 
2022 and again in late 2022, and whereas the model predicted the increase in 2021/2022 detections fairly well, 
it overshot predictions in late 2022 (Fig. 5B). For individual countries we see the same patterns (Supplementary 
Fig. S10). For the HPAI2122 model, the mean size of simulated detections (N = 11,710) was larger than the actual 
number of detections during 2021–2022 (N = 9367).

Aggregating the data from 2016 to 2021 bi-weekly and following the same model selection process as above 
resulted in a final model very similar to the original weekly aggregated HPAI1621 model, however with 2 seasonal 
waves in the endemic component and three seasonal waves in the epidemic component, covariates in both the 
endemic and epidemic components, spatial weights power law and uncorrelated random effects (Supplementary 
Tables S4 and S4 and Fig. S11).

Discussion
We here utilized a time-series modelling framework to predict country level detection of H5 HPAI based on 
freely available WOAH-WAHIS HPAI data. This enables the greatest use of data from other, surrounding coun-
tries for continuous risk assessment, taking endemic and epidemic transmission into account. Furthermore, we 
identified a difference between the model fitted to 2016–2021 data and the model fitted to 2021–2022 data: in 

Table 2.  Coefficient estimates from the final multivariate time-series models for HPAI1621 and HPAI2122. 
HPAI1621 is the dataset containing detections from 2016 and 2021, whereas HPAI2122 is the dataset 
containing detections from 2021 and 2022. Both models include area of country relative to total area of all 
countries as offset in the endemic component, spatial weights wji as a power-law model with distance-decay 
for the between-country effects of the epidemic component and uncorrelated random intercepts for all 
components Coeff. Coefficient estimate, SE Standard error.

Model components/
parameters

HPAI1621 HPAI2122

Coeff SE 2.5% CI 97.5% CI Coeff SE 2.5% CI 97.5% CI

Endemic component

Sine(2πt/52) 0.646 0.089 0.471 0.821 NA NA NA NA

Cosine(2πt/52) 2.099 0.266 1.577 2.621 NA NA NA NA

Sine(4πt/52) 0.604 0.077 0.453 0.754 NA NA NA NA

Cosine(4πt/52) 0.872 0.112 0.652 1.091 NA NA NA NA

Sine(6πt/52) 1.398 0.174 1.058 1.738 NA NA NA NA

Cosine(6πt/52) 0.689 0.096 0.522 0.856 NA NA NA NA

Length of coastline 0.027 0.120 − 0.209 0.262 NA NA NA NA

Area of wetland − 0.168 0.214 − 0.588 0.252 NA NA NA NA

Random intercept 0.669 1.016 − 1.323 2.660 5.163 1.890 1.458 8.867

Epidemic component

Sine(2πt/52) 0.862 0.091 0.684 1.040 0.976 0.146 0.691 1.262

Cosine(2πt/52) 1.322 0.166 0.997 1.648 1.297 0.146 1.011 1.582

Sine(4πt/52) NA NA NA NA 0.954 0.106 0.746 1.162

Cosine(4πt/52) NA NA NA NA 1.029 0.104 0.825 1.233

Length of coastline NA NA NA NA NA NA NA NA

Area of wetland NA NA NA NA NA NA NA NA

Within-country random intercept 0.603 0.102 0.402 0.804 0.662 0.159 0.351 0.974

Between country random intercept 0.123 0.027 0.070 0.175 0.070 0.022 0.027 0.112

Spatial weights (wji) 25.167 6.437 12.550 37.785 28.940 18.993 -8.286 66.165
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Figure 5.  Simulation-based long-term forecast for (A) the HPAI1621 final model starting from the last week in 
2019 (left-hand dot), and (B) the HPAI2122 final model starting from week 39 in 2021. The plots show weekly 
number of predicted and observed highly pathogenic avian influenza (H5 subtype) detections aggregated over 
all countries. The fan charts represent the 1% and 99% quantiles of the simulations (N = 500) each week; their 
mean is displayed as a white line. Actual reported number of detections are depicted with open circles. Data 
from week 47 to week 52 in 2021 for the HPAI1621 model and week 44–49 in 2022 in the HPAI2122 model 
were not used to train the models.
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the latter the seasonal component was weaker, reflecting a concerning change towards reduced seasonality in 
occurrence of HPAI.

Overall model fits showed a fair congruence with the reported data for all countries over time (Figs. 3 and 
4). The final models encompassed more of the observed detections compared to the original baseline models, 
particularly for the HPAI1621 model, so that adding covariates (for HPAI1621 only), long-range transmission 
and random effects improved the model fit. Even though the endemic detections became more frequent in the 
model fitted to 2021–2022 data compared to the model fitted to 2016–2021 data, the final models generally 
predicted fewer endemic than epidemic detections; this could be due to more detections being explained by the 
epidemic long-distance transmission and/or epidemic random effects. The final model fits showed that the model 
framework is sufficiently flexible to predict detections in countries with large temporal variation in the number 
of HPAI detections (Figs. 3 and 4). When used for predicting the number of detections in the following week, 
the models were reactive to the reported data from each country; they can miss the start of periods with many 
sudden detections, such as in France and Hungary, but then the probability estimates were adjusted to the new 
level based on the previous week´s detection data, which is a common property of one-step ahead  forecasting33 
(Supplementary Figs. S5 and S6). During prolonged periods with detections, the models appeared to predict the 
overall risk well, even when there was a declining trend (e.g., Germany and Denmark, Figs. 3 and 4). Further 
studies with more, diverse data are needed to investigate these properties of the model.

A change in the seasonality of HPAI in Europe has been suspected as detections have been observed dur-
ing the summer months in 2021 and particularly in 2022, in contrast to previous  years12,13. Creating separate 
models for 2016–2021 and 2021–2022 produced models with different seasonality, particularly in the endemic 
component. According to the HPAI1621 final model, the 2016–2021 detection data were best described by a 
model with three seasonal waves in the endemic component and one seasonal wave in the epidemic component 
(HPAI1621 model). The model for 2021–2022 (HPAI2122) included no seasonality in the endemic component 
(and no covariates), instead assuming a more or less constant endemic contribution to predicted detections. The 
HPAI2122 model furthermore included two seasonal waves in the within-country effects of the epidemic compo-
nent. The final HPAI1621 model generally predicted a higher probability of detections during the winter months 
but did not predict well for early 2020 following a period with a low number of recorded detections. However, in 
years in which detections were common (e.g., winter 2020/2021 and last quarter of 2021), the model captured the 
increased magnitude of detections. The same outcome was found for individual countries. The model incorpo-
rates a strong seasonality effect, captured by the seasonal waves in the final model. The epidemic seasonal wave 
likely reflects HPAI transmission from migratory birds from countries within our study, and thus the one wave 
in the final model may reflect the timing of the main bird migration periods within countries (winter/spring). 
The endemic component, represented by three waves in the final model, might indicate that more bird species 
or migration events are involved in long-distance transmission (from countries not included in this study), and 
likely captures transmission related to wild bird behaviour (e.g., contact during mating season or communal 
roosts during winter) combined with the seasonal survival rate of the virus in the environment. Further studies 
should investigate if these wave patterns differ between countries, reflecting differences in migratory bird species, 
local bird behaviour or potentially farm-to-farm transmission. The seasonal component in the model reflects the 
general conditions for HPAI to occur, which between 2016 and 2021 were strongly seasonal in Europe. The final 
HPAI2122 model predicted continuous detections throughout late 2021 and all of 2022. The model generally 
predicted well for the 2021/2022 winter season and throughout the summer but predicted more detections than 
observed in the autumn of 2022. The endemic component included no seasonality, and thus the model assumed 
a constant contribution from the endemic component. Thus, any seasonality seen in the model predictions were 
due to the two seasonal waves in the within-country effects of the epidemic component. As with the HPAI1621 
model, this epidemic seasonality could be due to HPAI transmission from migratory birds from countries within 
our study or due to general bird behaviour. The lack of seasonality of the endemic component could also be due 
to this component not solely being related to migratory events, indicating that detections were observed through-
out the year. Countries such as France, Germany, UK, and Denmark have had outbreaks of HPAI in domestic 
poultry and ducks during the summer  months53. Some of these outbreaks, particularly in France and Hungary, 
were caused by between-farm spread and thus not related to migratory  birds53. Thus, these models, and perhaps 
particularly the HPAI2122 model, are useful for assessing the general risk and timing of HPAI occurrence within 
individual countries on a weekly basis. However, it should be kept in mind that the occurrence of HPAI also relies 
on stochastic events such as bird migration timing, which is heavily influenced by the  weather54. Seeing as how 
the seasonality of HPAI detections have changed since 2016, it is important to continuously update the models 
to reflect the current situation and seasonality. Extrapolation of this modelling framework to other continents 
is an area of research that could be pursued if appropriate surveillance data are available.

Geographically, the models both over- and underestimated HPAI detections within countries. Underestima-
tion (RI > 1) was most pronounced for Germany, Switzerland, Hungary, and France for the HPAI1621 model 
and for France, the UK, Spain, Italy, Slovenia, and Hungary for the HPAI2122 model, in which more detections 
attributed to within-country transmission were observed (Supplementary Fig. S4). Overestimation (RI < 1) of 
detections attributed to within-country transmission mostly occurred in countries located at the edge of the 
study area, e.g., Norway, Finland, and Ukraine for both the HPAI1621 and HPAI2122 models. This could indicate 
that for countries with missing information on detections in some of their neighbouring countries, the epidemic 
within-country estimates capture more detections than for other countries with neighbour data i.e., an edge 
effect. This also means that the model will not incorporate, nor predict, the magnitude of outbreaks where more 
birds have been affected than those reported to WOAH-WAHIS. The HPAI1621 model underestimated (R < 1) 
the between-country transmission in countries such as UK, Sweden, Finland, Estonia, Hungary, and Bulgaria 
whereas for the HPAI2122 model, this was especially seen for the Netherlands, Hungary, France, and Poland. 
Most of these countries have a considerable length of coastline, which might attract migratory birds from areas 
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other than the directly neighbouring countries (but still only the countries included in this study). This could 
possibly create noise in the estimated between-country effect. The endemic component here reflects all transmis-
sion not explained by within- and between-country spread, e.g., transmission from unreported outbreaks within 
each country or from migratory birds from countries not included in this study. For a large number of countries, 
the endemic component underestimated (R > 1) the number of detections, particularly for the HPAI2122 model 
(Supplementary Fig. S4). This could be due to underreporting, or reflects that for these countries, the model 
attributes more detections to surrounding countries (for which this information exists in the data), reducing the 
estimated effect of migratory bird transmission. Many of the countries where the endemic component underes-
timated the number of detections lie on several bird migratory flyways with many different migrating birds of 
different  origins55–57. Adding data on bird migration routes as covariates in our model could potentially improve 
the predictive power, but such data might be difficult to obtain and manage.

We found that including the covariates length of coastline and area of waterways/wetlands improved the 
HPAI1621 model, indicating an association between detection of HPAI virus and these covariates. However, 
the point estimates for both these covariates overlap zero, so the effect is statistically non-significant. Several 
other studies have found an effect of landscape on AIV occurrence in wild and domestic birds. In a previous 
study in Denmark, using mixed model generalized linear models, Kjær et al.6 found an association between 
distance to coast and distance to wetlands and AIV in wild birds collected through passive surveillance. In 
Romania, Ward et al.58,59 found a relationship between HPAI outbreaks and distance to migratory waterfowl 
sites, distance to major roads and distance to rivers or streams using conditional logistic regression models and 
spatial lag regression models. Using a machine learning (ML) approach, Belkhiria et al.42 found that land cover 
and distance to coast were important when predicting risk areas for AIV in wild birds in California. On a large 
scale, Walsh et al.60 used data on HPAI occurrence reported to the WOAH (as we did in the present study) in 
addition to spatial surface water data and domestic bird density data. They analysed the data using machine 
learning algorithms and found a spatio-temporal pattern of HPAI occurrence in domestic poultry throughout 
the world. On a smaller scale, Schreuder et al.61 used a machine learning algorithm and data on wild bird den-
sities and landscape variables to spatially predict HPAI in the Netherlands with high accuracy. Pereira et al.62 
used a fireworks-like surveillance approach to fit a model to WOAH-WAHIS data for HPAI H5N1. This model 
was able to describe the data well but did not include a component to account for detections not reported to the 
WOAH within or outside the study area.

The model framework used here has some limitations for the purpose of modelling AIV. Firstly, the data do 
not account for differences in detection effort, sampling scheme or prevention measures in the different countries 
reporting detections. Incorporating such information into this modelling framework could potentially improve 
our models, although it can be complicated to compare and categorize surveillance systems between countries 
and time periods. Secondly by combining HPAI detections in both domestic and wild birds, the models assume 
that HPAI can spread from wild to domestic birds and vice versa. This may not be the case, mainly due to farm 
biosecurity practices but also due to infected domestic birds usually being culled and thus not able to transmit 
HPAI to their surroundings. We did first attempt to run separate models for domestic and wild birds, but data 
constraints caused the models to not to calibrate. The seasonal detection patterns in Fig. S2 (Supplementary 
Material) suggest that combining the data is warranted, as domestic and wild birds exhibit similar seasonal pat-
terns. Thus, we hypothesize that the general transmission in an area is in most cases high when there is a spill 
over to domestic birds, and an infected poultry flock reflects transmission in the wild bird population, which can 
transmit to areas in the same country as well as other countries. Also, when included in the model components, 
the models assume a constant contribution from seasonality every year; for example, there is a probability of 
detection in winter even in years without any detections. This seasonality effect might change over time as we 
have seen in the HPAI2122 model, for instance due to climate change (as climate has an impact on bird migra-
tion and the timing thereof), and the circulating HPAI strains (likely with different properties and target spe-
cies) can change over time; therefore, model fit might be reduced if it is fitted to a long period of data. Ideally, a 
model should be able to incorporate a trend over time so that seasonality changes and other changes related to 
climate can be captured. Furthermore, we did not differentiate between different H5 HPAI viruses, due to data 
constraints. However, different AIV strains may have different transmission  potentials63, affect different species 
and thus have different transmission patterns. The 2016–2021 detection data consisted mainly of H5N8, whereas 
the 2021–2022 detection data consisted mainly of H5N1. In addition, more than 20 genotypes have been detected 
in Europe since 2016, which could explain some of the differences between the models. If more data becomes 
available in the future, it could be feasible to apply our models on specific subtypes and genotypes separately. This 
could potentially improve the predictive ability and the separation into the endemic and epidemic components 
of the modelling framework. Furthermore, detections of one strain in an area are logically not directly related 
to other strains in other areas (as in having been transmitted between the areas). However, within each season, 
detections in the countries included in this study have up until December 2022 been dominated by the same few 
subtypes in all countries. Another limitation is that the models cannot account for differences in reporting effort, 
which likely differs between countries and changes over time. However, this remains a challenge for all model 
types, and cannot easily be separated from the general level of occurrence within each country. Both models 
estimated that the vast majority of detections were epidemic in nature and could be explained by either within-
country or between-country transmission. This shows that the models explained the majority of detections based 
on previous within-country transmission, with a contribution from between-country transmission. However, 
whereas only 5.4% of the detections were attributed to endemic (unexplained) transmission in the HPAI1621 
model, this percentage was 12.2% in the HPAI2122 model. This suggests that the HPAI2122 model estimates 
rely more on unreported endemic HPAI virus circulating within the countries, and transmission from migra-
tory birds coming from countries not included in our study. An explanation for this could be that the increased 
outbreaks during summer make it difficult for people to see the dead birds, due to foliage e.g., in forests. It could 



14

Vol:.(1234567890)

Scientific Reports |        (2023) 13:15396  | https://doi.org/10.1038/s41598-023-42660-7

www.nature.com/scientificreports/

also reflect increased decomposition of carcasses at warmer temperatures, or increased activity in scavenger 
species, quickly removing carcasses and thereby reducing the detection. It could furthermore be that increasing 
numbers of outbreaks makes passive surveillance less sensitive as people may stop reporting when finding dead 
birds is no longer unusual. Furthermore, the model selection could have an impact on the resulting final model. 
We here chose to test seasonality as a starting point, but model selection could be sensitive to the order of vari-
ables included. This should be explored in future studies. Lastly, selection of training and test data for each of 
the data sets could impact model results, however, with these kinds of models it is a trade-off between having 
enough data to calibrate the models and using up-to-date data that captures recent changes in the detection 
patterns. The epidemiology of avian influenza has always been dynamic, and during the past few years we have 
seen an even more dynamic system than expected. Predicting such a dynamic system is challenging, and what 
we present here is one approach to this challenge.

Despite the challenges highlighted, these models represent a practical approach to modelling the risk of 
AIV occurrence, since there are many potential variables in the system for which we do not have information. 
Despite such challenges, this model finds use for informing policy makers about the HPAI spatiotemporal risk, 
using readily available surveillance data. In future research, more layers could be added to the model including 
the actual bird density, species composition and temperature related to bird behaviour and thus transmission.

Conclusion
The model framework was able to use surveillance data on HPAI detections in European countries and could 
be useful for predicting the probability and timing of detections. Separating our data into the years 2016–2021 
and 2021–2022 revealed a seasonal shift in observed and predicted detections in Europe. HPAI detections were 
mostly explained by within-country transmission, but with a considerable contribution from other countries. The 
model based on 2021–2022 data attributed more detections to endemic transmission than the model based on 
2016–2021 data. A strong seasonal component reflected the large temporal variation. This modelling framework 
can be used as a decision support tool to predict periods with higher risk of HPAI within a country.

Data availability
Data retrieved from the World Organisation for Animal Health (WOAH) (2022) – Periodical Data Extraction 
WAHIS SharePoint. Retrieved on 2022–12-15 from https:// oieoffi ce3 65. share point. com/: x:/r/ sites/ Perio dical datae 
xtrac tions OIE- WAHIS/ Shared% 20Doc uments/ infur_ 20221 209. xlsx?d= wbde6 6024d 77543 76b0d bf808 0c12b 
41b& csf= 1& web= 1&e= 23QwTb. Reproduced with permission. WOAH bears no responsibility for the integrity 
or accuracy of the data contained herein, but not limited to, any deletion, manipulation, or reformatting of data 
that may have occurred beyond its control. Data and model code of this study are available on figshare: https:// 
doi. org/ 10. 6084/ m9. figsh are. 21975 488.
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