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Mid‑to‑late Holocene climate 
variability in coastal East Asia 
and its impact on ancient Korean 
societies
Jungjae Park 1,2*, Junbeom Bahk 1, Jinheum Park 3, Hyejin Kim 1 & Jieun Choi 1

The sustainability of human societies is contingent upon our ability to accurately predict the 
effects of future climate change on the global environment and humanity. Wise responses to 
forthcoming environmental alterations require extensive knowledge from historical precedents. 
However, in coastal East Asia, a region with a long history of agriculture, it is challenging to obtain 
paleoenvironmental proxy data without anthropogenic disturbances that can be used to assess the 
impact of late Holocene climate change on local communities. This study introduces a high‑resolution 
multi‑proxy sedimentary record from an isolated crater in Jeju Island, Korea, to elucidate the 
mechanisms underlying mid‑to‑late Holocene climate change and its impacts on ancient societies. Our 
findings suggest that hydroclimate changes were predominantly governed by sea surface temperature 
fluctuations in the western tropical Pacific, with low‑frequency variability in solar activity and a 
decrease in summer insolation identified as primary drivers of temperature change. Moreover, ancient 
societies on the Korean peninsula were significantly affected by recurring cooling events, including the 
2.8 ka event, 2.3 ka event, Late Antique Little Ice Age, maunder minimum, and others.

The persistent progression of global warming and the accelerating pace of environmental change pose serious 
threats to human survival, leading to increased interest in understanding how past climate changes influenced 
ancient societies and their coping mechanisms. The coastal regions of East Asia, including eastern China, the 
Korean Peninsula, and Japan, have been populated for thousands of years, making them ideal for such research. 
By reconstructing past climates and vegetation, then correlating those data with the region’s abundant archaeo-
logical and historical records, we can acquire extensive information about the potential consequences of future 
climate change on humans and societies.

To explore past climate changes, scientists analyze various natural samples such as glaciers, stalagmites, tree 
rings, and lake sediments. However, in coastal East Asia, it is particularly challenging to find suitable samples 
for paleoenvironmental research. Although glaciers and stalagmites provide detailed, long-term information 
regarding past climate variability, their locations in remote areas (e.g., poles and karst mountains) limit their 
usefulness with respect to analyzing local climate variations that could have influenced ancient  societies1,2.

Furthermore, tree rings offer precise dating, which is crucial for establishing the relationship between Holo-
cene climate change and local social responses. However, trees that are sensitive to climate change are generally 
conifers that thrive in arid regions with < 800 mm of annual  precipitation3. Paleoclimate information from trees 
in agriculturally favorable areas is sparse. Thus, except for a few limestone  caves4–6, wetlands such as lakes and 
swamps are the only viable sites for Holocene climate investigation in coastal East Asia.

The main challenge lies in differentiating climate change signals from human impacts in sediment proxy data, 
particularly in regions such as East Asia where a substantial human population in the late Holocene may have 
influenced these records. For example, pollen data reported from a river floodplain in the southern part of the 
Korean  Peninsula2 clearly showed decreases in the proportion of tree pollen at 2800 and 2300 cal year BP, but 
there have been differing opinions about this change. The authors saw this change as a result of abrupt short-
term drying due to reduced solar  activity2, while other researchers interpreted it as a result of human  activities7.
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Therefore, less anthropogenically impacted alpine lakes and wetlands, such as our study site (Dongsuak crater, 
situated in Mt. Hallasan National Park) are preferred coring targets. The Dongsuak crater, primarily covered 
by forest and containing wetlands, offers sediment samples that have remained largely undisturbed by human 
activities, a rare find in densely populated coastal regions of East Asia with extensive habitation histories. Intact 
paleoclimate records from this study will also provide a unique opportunity to test the hypothesis of Park et al. 
that late Holocene climate deterioration led to a southward migration of agriculturalists in coastal East  Asia2.

Pollen, a popular sediment proxy data source, is limited by the ability to determine whether vegetation 
change resulted from temperature or precipitation variations. To address this, we reconstructed shifts in these 
climate factors predominantly on the basis of pollen data and charcoal accumulation rates (CARs). We sought 
to thoroughly explore the effects of climate change on human societies.

This paper presents a new high-resolution multi-proxy record (pollen, charcoal, total organic carbon [TOC], 
and magnetic susceptibility [MS]) of the Holocene using a sediment core from Dongsuak swamp on Jeju Island, 
South Korea. The research aims to (1) reconstruct the mid-to-late Holocene climate change history in the study 
area, (2) understand the mechanisms underlying hydroclimate change and temperature variations during this 
period, (3) examine abrupt short-term cooling and/or drying events, and (4) explore the possible effects of these 
events on ancient human societies.

Study area
Site description. The Dongsuak crater (33° 21′ 41ʺ N, 126° 37′40ʺ E) is located in the eastern region of Jeju 
Island, South Korea (Fig. 1). Jeju Island is a shield volcano that emerged from the continental shelf of the Yel-
low Sea; it comprises layers of basaltic lava and some pyroclastic deposits. The island contains > 450 Quaternary 
satellite cones, including cinder (scoria) cones, lava cones/domes, and hydromagmatic tuff rings/cones. The 

Figure 1.  (a) Locations of the study site (yellow star) and the paleoclimate records used or mentioned in this 
study: site MD98-2181, Mindanao,  Philippines24 (Fig. 5), Liang Luar Cave, southeastern  Indonesia31 (Fig. 7), 
Dongge Cave, southern  China59. (b) Coring site location (red square), Dongsuak crater, Jeju Island, South Korea. 
These location maps were created using the GMRT Map tool (www. gmrt. org/ GMRTM apTool/) 85. (c) Coring 
location (red square). Line AB indicates the position of the vegetation profile shown in Fig. 2a. This image was 
created using Google Earth (www. google. co. kr/ intl/ ko/ earth/).

http://www.gmrt.org/GMRTMapTool/
http://www.google.co.kr/intl/ko/earth/
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centerpiece of the island, Mt. Hallasan, is 1950 m high. The Dongsuak crater, positioned within a parasitic cone 
on the eastern flank of the primary volcano, is mostly surrounded by permeable basalt that limits surface water.

Nevertheless, impermeable fine clastic sediments, trapped within craters such as Dongsuak, prevent water 
from seeping into the ground. The Dongsuak crater, part of Mt. Hallasan National Park, is currently safeguarded 
under the Korea Cultural Heritage Protection Act. The crater is located ~ 700 m above sea level, with a height 
of ~ 100 m and a circumference of ~ 1800 m. Its northern slope is gradual, whereas its western slope forms a 
steep, horseshoe-shaped crater that extends  southeastward8. Pollen and macrofossil evidence indicate continuous 
sedimentation over the past 7000  years9; consequently, the crater has transitioned from a lake to a swamp, and 
gradually to a meadow from the edges inward. It currently contains a swamp with a circumference of ~ 220  m10.

Climate. Korea’s climate is distinguished by four distinct seasons, marked by significant variations in 
monthly average temperatures between summer and winter. Most rainfall occurs during the summer months. 
The southeast summer monsoon introduces hot, humid conditions to the Korean peninsula, whereas the north-
west winter monsoon brings cold, dry weather. During winter, a strong high-pressure cell over continental Sibe-
ria triggers clockwise air circulation that flows southeastward over the peninsula. In contrast, during summer, 
the wind direction reverses because inland areas experience more warming than the sea, leading to the summer 
monsoon-mediated transport of warm moisture from the sea to the peninsula. However, Jeju Island, our study 
site, experiences a mild, oceanic climate throughout the year, with a less extreme annual temperature range rela-
tive to the peninsula.

The nearby Seongsanpo station records a mean January temperature of 5.4 °C and a mean August temperature 
of 26.5 °C. The region receives annual mean rainfall of 2030 mm, thus ranking second among the 74 stations 
in South  Korea11. Because of orographic effects, the slopes of Mt. Hallasan experience significant variation in 
annual rainfall (Fig. 2a), with high precipitation primarily on the eastern and southern flanks of the island. 
This pattern is partially attributed to the maritime effects of the warm Tsushima Current, a subset of the larger 
Kuroshio Current (Fig. 1), which weakens the winter monsoon, thereby yielding relatively mild and humid 
conditions on the island during winter. The effects of tropical cyclones, or typhoons, are particularly visible on 
Jeju Island during the summer.

Vegetation. Vegetation on Jeju Island displays significant altitude-based variations, which have been the 
subject of numerous studies (Fig. 2b)12–14. The eastern slope of Mt. Hallasan contains various forest types, includ-
ing evergreen broadleaved forests (ca. 0–500 m above sea level), deciduous broadleaved forests (ca. 500–1350 m), 
mixed deciduous broadleaved-coniferous forests (ca. 1350–1500 m), coniferous forests (ca. 1500–1800 m), and 
subalpine scrub and grassland (ca. 1800–1950 m).

Several lower elevation regions have been repurposed for  agriculture12,14. Historical records indicate that 
over the past millennium, semi-natural lowland grasslands have been used to raise horses and cattle. The grazed 
areas are predominantly populated by species such as Trifolium repens, Botrychium virginianum, Rosa multiflora, 
Miscanthus sinensis, and Imperata cylindrica15.

The evergreen broadleaved forest mainly consists of species such as Castanopsis sieboldii, Quercus acuta, 
Distylium racemosum, Camellia japonica, Eurya japonica, Ligustrum lucidum, Ilex crenata, and Daphniphyllum 

Figure 2.  (a) Vegetation profile on the eastern slope of Jeju Island and altitudinal variations in annual mean 
temperature and  precipitation86. (b) Dominant plants in each vegetation zone. (c) A photograph from inside the 
crater. It was taken by Jieun Choi.
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macropodum; the deciduous broadleaved forest is populated by Carpinus laxiflora, C. tschonoskii, Quercus ser‑
rata, Betula ermanii, Acer palmatum, and Styrax obassia14. The mixed deciduous broadleaved-coniferous forest 
is dominated by Quercus mongolica and Pinus densiflora; Taxus cuspidata, Abies holophylla, Abies koreana, and 
Pinus densiflora are the primary species found in the coniferous  forest16. The scrub at the peak of Mt. Hallasan 
primarily consists of Juniperus chinensis, Empetrum nigrum, Rhododendron mucronulatum, Berberis amurensis, 
Vaccinium uliginosum, Salix blinii, and herbs such as Carex siderosticta, Tofieldia fauriei, Cirsium japonicum, 
and Duchesnea chrysantha12.

The Dongsuak swamp currently contains various plant species, including (in descending order of frequency) 
Isachne globosa, Juncus effusus, Persicaria sieboldii, Scirpus fluviatilis, and Carex heterolepis. Less commonly 
encountered species include Eleocharis acicularis, Scirpus triangulates, Eriocaulon sieboldianum, Stellaria alsine, 
and Aneilema keisak. However, because of human activities and the resulting clastic influx, the swamp is gradually 
transitioning into a meadow. The ecotone between the forest and meadow features species such as Rosa multi‑
flora and Viola verecunda17. The inner slopes of the crater are dominated by deciduous broadleaved trees such as 
Carpinus laxiflora, Carpinus tschonoskii, Quercus Serrata, and Styrax japonica, as well as evergreen broadleaved 
trees such as Neolitsea sericea18.

Results and discussion
Chronology and stratigraphy. This study established a depth-age model for our 3-m-long core, founded 
on 10 radiocarbon dates (Table 1). The deposition rate of the Dongsuak sediments was relatively constant, sug-
gesting that the swamp’s sedimentary environments remained stable during the mid-to-late Holocene. Paleoen-
vironmental multi-proxy data were obtained from the upper 150 cm of the sediment core (Fig. 3). Sedimenta-
tion rates from the 150 cm depth to the surface fluctuated between 0.2 mm/year and 0.5 mm/year, averaging 
0.36  mm/year. Sediments below 50  cm depth were relatively coarse, containing even sandy grains with low 
organic contents. However, sediments above this depth, primarily composed of fine silt materials, were charac-
terized by decreased deposition rates, as well as increasing pollen concentrations and TOC percentages. TOC 
values from 150 cm depth to 55 cm depth were mostly below 15%. However, there was a substantial increase 
from the 27 cm depth upwards, exceeding 40% at the topmost layer.

Paleoenvironmental proxy data. For ease of discussion, the pollen diagrams were divided into five 
zones and three subzones based on clustering results (Fig. 4). The same zones were also utilized to describe other 
proxy data (Figs. 5 and 6).

Table 1.  Radiocarbon dates for Dongsuak sediments. The data were calibrated using rbacon 3.0.0  software72 
and the IntCal20  dataset73.

Sample depth (cm) Material dated Laboratory no. δ13C ‰) Age (14C year BP) Two σ age range (cal year BP) Probability (%)

5 Plant remains BETA-597144 − 29.4 101.38 ± 0.38 pMC − 5 to − 6 95.4

20 Bulk sediments BETA-601089 − 28.8 400 ± 30
513–428 73.8

376–325 21.6

40 Bulk sediments BETA-597145 − 27.4 1400 ± 30 1350–1284 95.4

60 Bulk sediments BETA-601090 − 23.6 1960 ± 30
1951–1820 87.5

1991–1957 7.9

80 Bulk sediments BETA-597146 − 21.6 2350 ± 30
2466–2329 94.7

2486–2481 0.7

100 Bulk sediments BETA-601091 − 20.3 2660 ± 30
2792–2739 77.1

2848–2809 18.3

120 Bulk sediments BETA-597147 − 19.1 3130 ± 30

3409–3319 64.7

3304–3247 25.7

3445–3423 5

140 Bulk sediments BETA-601092 − 19.1 3730 ± 30
4154–3981 93.5

4221–4208 1.9

160 Bulk sediments BETA-597148 − 19.9 4080 ± 30

4650–4511 65.2

4806–4756 14.6

4485–4441 10.9

4700–4671 4.7

200 Bulk sediments BETA-597149 − 19.8 4220 ± 30

4760–4692 41.9

4855–4797 39.9

4679–4642 12.8

4634–4626 0.8
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Figure 3.  (a) The Dongsuak sediment core age depth profile. The optimal age depth model (red dotted line), 
with a 95% confidence interval (gray dotted line), was established based on Bayesian principles using rbacon 
3.0.0 software. (b) Sedimentation rates, pollen concentration, and total organic carbon (TOC) in Dongsuak 
sediments. This diagram was generated using pro Fit 7.0.19 software (www. quans oft. com).
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Pollen zone 1 (150–55 cm): 4350–1700 cal year BP. This zone was divided into three subzones. Zone 1a (150–
128 cm) exhibited a high pollen percentage of herbaceous plants, including Artemisia and Poaceae, as well as 
aquatic plants such as Cyperaceae (Fig. 4). TOC percentages were relatively high, whereas MS values and CARs 
were low (Fig. 5). Notably, there was a negative correlation between TOC and MS throughout the sediment 
profile.

In zone 1b (128–90 cm), there were consistent decreases in Artemisia and Poaceae percentages, whereas 
Quercus subg. Lepidobalanus showed an increase. Cyperaceae frequencies were lower, and tree pollen index of 
temperature (TPIT) values were higher, compared with the previous subzone (Fig. 6). TOC percentages gradu-
ally increased, whereas MS values declined.

Zone 1c (90–55 cm) was characterized by a significant increase in Lepidobalanus percentages. Similar to 
zone 1b, Artemisia and Poaceae percentages steadily decreased. Cyperaceae frequencies and CARs both showed 
a substantial increase around 2300 cal year BP, followed by a gradual decline. TPIT and MS values consistently 
decreased.
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Pollen zone 2 (55–37 cm): 1700–1150 cal year BP. In zone 2, the percentages of Artemisia and Poaceae dra-
matically decreased to ≤ 2%. Lepidobalanus and Cyperaceae also experienced substantial decreases. Conversely, 
Carpinus percentages substantially increased to nearly 50%, and Botryococcus greatly increased to 80%. TPIT 
values continued to decrease until 1500 cal year BP, then began to recover. CARs steadily decreased. TOC per-
centages were higher compared with the previous period, whereas MS values were lower. Notably, TOC, MS, and 
Botryococcus data all exhibited two peaks.

Pollen zone 3 (37–26 cm): 1150–700 cal year BP. All proxy records from zone 3 displayed trends opposite to 
the findings in zone 2. Carpinus abundance significantly decreased; herbaceous taxa (e.g., Artemisia, Poaceae, 
Asteraceae, and Haloragis) all increased. Betula and Ericaceae abundances declined compared with the previous 
zone. The percentage of Cyperaceae increased. However, Botryococcus abundance greatly decreased to 5%. TOC 
percentages were lower compared with the previous zone, whereas CARs, MS values, and TPIT values were all 
higher.

Pollen zone 4 (26–8 cm): 700–100 cal year BP. Zone 4 showed patterns similar to the findings in zone 2. The 
proportions of Artemisia and Poaceae decreased again. However, there were considerable increases in the abun-
dances of tree taxa such as Carpinus, Lepidobalanus, Betula, Ericaceae, and Pinus. Notably, Pinus was rare in 
previous periods but began to show an increase in zone 4. Among the key tree taxa, only Castanopsis demon-
strated a noticeable decline. Botryococcus displayed a sharp increase and reached 80%. Cyperaceae percentages 
and CARs, which remained low in the first half of the zone, rapidly increased beginning around 500 cal year BP. 
Conversely, both MS and TPIT values declined at the same time.

Pollen zone 5 (8 cm‑surface): 100 cal year BP to present. In zone 5, human activities had a significant effect on 
vegetation. Pinus and herbaceous plants, especially Poaceae, displayed increasing importance. However, other 
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tree taxa, Cyperaceae, and Botryococcus showed a considerable decrease. TOC percentages rose sharply, while 
MS values and CARs both declined.

Paleoclimate proxy records of Dongsuak sediments. The Dongsuak proxy records, particularly the 
charcoal data, imply that mid-to-late Holocene hydroclimate variations in the study area were primarily driven 
by fluctuations in sea surface temperatures (SSTs) in the western tropical Pacific (WTP). The study area likely 
experienced drier periods when WTP SSTs were lower and wetter periods when WTP SSTs were higher.

The results of previous pollen studies in the Korean peninsula have suggested that the climate was com-
paratively dry during periods when WTP SSTs cooled because of long-term El Niño-Southern Oscillation-type 
 variations2,19–22. The frequency of El Niño events may have increased, leading to reduced WTP SSTs and a smaller 
amount of atmospheric water vapor above the oceanic source region where the East Asian summer monsoon 
originates. Our CARs data support the notion that reduced precipitation, induced by lower WTP SSTs, resulted 
in more frequent and intense local wildfires in coastal East Asia, including the Korean peninsula and Jeju Island.

Comparisons between Dongsuak proxy records and 250-year moving averages of total solar irradiance (TSI) 
 data23 suggest that varying levels of dryness or wetness in the study area were influenced by centennial-scale 
fluctuations in solar activity. Enhanced solar activity on this timescale resulted in drier conditions, and vice versa. 
These long-term shifts in TSI may have controlled multi-centennial, low-frequency variations in Holocene El 
Niño-Southern Oscillation; increased TSI likely triggered El Niño-like conditions and lower WTP  SSTs24. The 
lower WTP SSTs may have led to decreased precipitation in the study area (Fig. 5).

The impacts of solar activity and WTP SSTs on the study area’s hydroclimate are clearly captured in TOC, 
MS, Botryococcus, Cyperaceae, and charcoal records of Dongsuak sediments. TSI values were negatively cor-
related with TOC % and Botryococcus % over most of the period investigated, but positively correlated with 
Cyperaceae %, CARs, and MS values. During dry periods, likely triggered by low WTP SSTs, there would have 
been a decrease in both autochthonous productivity and the influx of allochthonous organic matter (indicated 
by low Botryococcus % and TOC %)25. Reduced precipitation could have led to more frequent wildfires (high 
CARs values), decreased tree density on the slope, and increased erosion (high MS values), in a successive man-
ner. Additionally, increased influx of clastic materials into the lake may have caused a reduction in lake area, 
providing more space for Cyperaceae colonization.

The resemblance between our TPIT data and temperature reconstructions from Greenland ice  cores26 suggests 
that TPIT can be used to gather local information regarding Holocene temperature change, although the data 
are not strictly quantitative. The TPIT records imply that temperature shifts in the study area were influenced 
by variation in both solar  activity27 and summer insolation, which declined consistently during the mid-to-late 
Holocene (Fig. 6).

Our TPIT data, Greenland temperature reconstructions, and 50-year moving averages of TSI show significant 
similarities in periodicity, including ~ 1000-year warming cycles and ~ 500-year cooling cycles over the past 
4000 years. These findings all indicate a connection between solar activity variability and mid-to-late Holocene 
temperature change in the study area (Fig. 6).

Intriguingly, the comparison between our proxy records and TSI data suggests that long-term (250 years) 
moving averages of TSI provide insights into hydroclimate change in the study area, whereas shorter-term 
(50 years) moving averages are more indicative of paleotemperature change.

Hydroclimate changes since 2600 cal year BP. Our pollen data suggest that the study area became 
progressively wetter during the mid-to-late Holocene. A consistent increase in arboreal taxa and a decrease in 
non-arboreal taxa indicate forest expansion in and around the crater, supplanting grassland as rainfall increased. 
From ~ 2600 cal year BP to 1700 cal year BP (pollen zone 1c), trees such as deciduous oak and hornbeam became 
increasingly prominent in the study area, whereas the abundances of herbaceous plants decreased.

The causes of these observed changes (i.e., whether they were related to increased precipitation or higher 
temperatures) remain unclear. Considering the low WTP SSTs and high CARs in zone 1c, it is highly probable 
that the climate during this period was relatively dry with decreased precipitation (Fig. 5). Annual mean tem-
peratures also appeared to decrease, consistent with a gradual decrease in summer insolation (Fig. 6). However, 
deciduous oaks exhibited a particularly competitive advantage over grasses during this period. Our findings 
suggest that deciduous trees benefited from a slight but steady increase in late Holocene winter  insolation19,28 
since 2600 cal year BP.

Additionally, high CARs in zone 1c indicate frequent wildfires because of the prevailing dry conditions 
between 2600 and 1700 cal year BP. These wildfires likely influenced slope stability, resulting in a significant 
influx of clastic materials into the lake. The increased area created by these deposits could have provided favorable 
conditions for colonization by sedges at the lake margin, as indicated by the increased prevalence of Cyperaceae.

From 1700 cal year BP to 1150 cal year BP (zone 2; DACP), precipitation increased, resulting in a wetter 
climate (as indicated by Dongsuak proxy records). Increased frequencies of Botryococcus and Carpinus suggest 
greater productivity in and around the lake. Furthermore, percentages of herb taxa, MS values, Cyperaceae per-
centages, and CARs all decreased during this period. These changes imply that the wet climate led to increased 
tree density, decreased wildfires, and reduced erosion. The wet conditions were likely related to a decrease in 
low-frequency solar activity and an increase in WTP SSTs.

There was a relatively warm period between 1150 and 700 cal year BP (zone 3), commonly referred to as the 
Medieval Climate Anomaly (MCA). However, hydroclimate conditions were particularly dry, as indicated by 
a reduction in the abundances of Carpinus and Botryococcus, a contrasting increase in frequencies of herb and 
aquatic taxa, and an increase in MS values and CARs.
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During the subsequent period from 700 to 100 cal year BP (zone 4), corresponding to the Little Ice Age (LIA), 
wet conditions returned. Changes were evident in MS values, Cyperaceae percentages, and CARs. Notably, the 
first half of this period likely included a significant increase in precipitation, as implied by rapid declines in the 
values of all three proxies. However, the sudden rebound at ~ 1600 CE suggests a transition to drier conditions 
during the middle of the LIA, consistent with paleoenvironmental proxy records from Northeast  China29,30 and 
the western tropical  Pacific31,32.

For instance, western Pacific hydroclimate reconstructions from stalagmite δ18O data for southeastern Indo-
nesia clearly demonstrated sudden drying at ~ 1600 CE (Fig. 7). The similarity between Indonesian data and 
Dongsuak records supports our conclusion that Holocene climate change on Jeju Island was primarily controlled 
by variations in WTP SSTs. Furthermore, the Annals of the Joseon Dynasty (official state records) indicate a 
dramatic decrease in typhoon landfalls beginning at ~ 1600  CE33. This information suggests that decreasing WTP 
SSTs suppressed typhoon generation, reducing the influx of water vapor into coastal East Asia (Fig. 7).

After ~ 1850 CE (zone 5), variations in the proxy data no longer indicate natural climate change but instead 
reflect the effects of human activities.

The results of autospectral analysis on charcoal data showed hydroclimate cycles of 124, 106, and 81 years, 
which were significant at the 90% Monte Carlo false alarm level. Additionally, there was significant statistical 
coherence between CARs and WTP SSTs for cycles of 215, 106, and 86 years (Fig. 8). These cycles closely resemble 
sunspot periodicity at 230-year34, 212-year35, 130-year36, 106-year35, and 88-year35 cycles. These findings indicate 
that hydroclimate variability in the study area, driven by variations in WTP SSTs, was connected with major 
cycles of solar activity.
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Figure 7.  Comparison of the ΔTSI  data23 (250-year moving average) (a), stalagmite δ18O records from Liang 
Luar, southeastern  Indonesia31 (b), charcoal accumulation rates (CARs) from this study (c), Cyperaceae 
percentages from this study (d), and Joseon Dynasty records of typhoon  landfalls33 (e). Dry periods are 
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Past temperature variability. The Greenland temperature  reconstructions26 and our TPIT data showed 
similar trends and fluctuations since ~ 4000 cal year BP. These changes were characterized by gradual cooling 
punctuated by periods of relative warmth occurring at ~ 1000-year intervals. The overall temperature decline was 
likely to have been connected to a consistent decrease in Holocene summer insolation. Both records also revealed 
short-term cooling periods at 400–600-year intervals, suggesting periodic climate variation in the study area. 
Paleoclimatological studies from various regions, globally, increasingly show abrupt climate changes, including 
late Holocene cooling events at 4.2  ka37,38, 3.7  ka39, 3.2  ka40, 2.8  ka41,42, 2.3  ka43, 1.8  ka44, 1.2  ka45, and 0.6  ka46. 
The ~ 500-year cyclicity is presumably associated with low-frequency sunspot  variability47 and subsequent shifts 
in WTP  SSTs1,2,29. Simultaneously, temperatures appear to have dropped at ~ 230-year intervals throughout the 
period investigated, potentially in relation to periodic changes in Holocene solar activity. The 210-year Suess/de 
Vries cycle has been detected most frequently in Holocene paleoenvironmental  proxies48.

As previously mentioned, the study area appeared to experience warm periods at ~ 1000-year intervals. These 
are commonly referred to as the Minoan Warm Period (MWP, 3400–2800 cal year BP)49, Roman Warm Period 
(RWP, 2200–1750 cal year BP)50, and MCA (1200–800 cal year BP)51. Between these warm periods, there were 
relatively cool periods, such as the Iron Age Cold Period (IACP, 2800–2300 cal year BP)52, Dark Age Cold Period 
(DACP, 1750–1200 cal year BP)53, and LIA (700–100 cal year BP).

The autospectral analysis of our TPIT data revealed that the 230-, 130-, and 80-year periodicities were signifi-
cant. These periodicities were similar to the 210-year de Vries cycle and 88-year Gleissberg cycle, both of which 
had substantial effects on global climate variability during the  Holocene54,55. Additionally, key solar cycles were 
confirmed in the coherency spectrum between TPIT data and TSI records (Fig. 8). Coherent periodicities of 
505, 350, 231, 125, and 90 years were significant at the 90% Monte Carlo false alarm level. They correspond to 
the solar cycles of 504, 355, 230, 130, and 88 years reported in previous  studies34–36,56. These findings collectively 
suggest that changes in TSI were highly likely to be responsible for mid-to-late Holocene temperature shifts in 
the study area.

Societal response to climate change. As previously mentioned, our TPIT data exhibited a ~ 500-year 
cycle of climate deterioration centered at 4.2, 3.7, 3.2, 2.8, 2.3, 1.8, 1.2, and 0.6  ka. Importantly, the cooling 
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events at 2.8 ka and 2.3 ka are suspected to have significantly impacted ancient Korean societies. Recent Korean 
paleoenvironmental studies increasingly recognize these events, with time gaps of ~ 500 years between  them2,57. 
Furthermore, Holocene WTP SST  reconstructions24, TSI  data23, and stalagmite δ18O records from Dongge Cave, 
 China58,59, all revealed distinct changes around 2800 and 2300 cal year BP.

The amount of water vapor reaching the Korean Peninsula appears to have diminished during the 2.8 ka and 
2.3 ka events, likely because of decreased WTP SSTs under sustained El Niño-like conditions. Specifically, around 
2300 cal year BP, the study area experienced extreme dryness, as indicated by the highest CARs throughout the 
investigation period (Fig. 9).

Around 3000 cal year BP, a new group of farmers (known as the Songguk-ri assemblage) emerged in the south-
ern Korean peninsula. The culture of these farmers, based on early rice agriculture, reached its peak 200 years 
later. However, the Songguk-ri societies, which once dominated the southern part of the peninsula, began to 
weaken around 2800 cal year BP and finally ended 2300 cal year BP. The abrupt disappearance of Songguk-ri 
culture is recognized as important by Korean archaeologists. Nevertheless, the exact cause of the culture’s rapid 
decline remains unknown. Recent paleoclimate data from the Korean Peninsula suggest that the cause was cli-
mate deterioration around 2800 and 2300 cal year BP, likely to have been related to changes in WTP  SSTs2,22,57.

During the warm periods, occurring at ~ 1000-year intervals, local societies may have remained stable because 
of reduced migration inflow. However, during the intervening cold periods, massive influx of migrating northern 
people might have caused chaos among the prehistoric societies of the peninsula. Asian paleoenvironmental 
studies increasingly suggest that late Holocene climate deterioration often drove northern people  southward60–64.

During the Middle Bronze Age Cold Period (MBACP, 3800–3400 cal year BP), IACP (2800–2300 cal year 
BP), and DACP (1750–1200 cal year BP), people from Liaoxi and Liaodong likely migrated south to the pen-
insula. Conversely, during the MWP (3400–2800 cal year BP), RWP (2300–1900 cal year BP), and MCA 
(1200–750 cal year BP), local societies likely experienced stabilization because of the milder climate. Each cold 
spell presumably caused northern people to migrate southward, leading to internal and external conflicts in 
southern peninsula societies. This is not to say that climate change was the only factor driving these migrations 
and social upheavals. Many other factors were probably involved.

However, the northern people also brought advanced culture, which helped drive cultural development in 
the area. There is evidence that they introduced rice farming during the  MBACP65, bronze dagger culture during 
the  IACP66, and horse-riding culture during the  DACP67. These material cultures helped the tribal societies of 
the Korean Peninsula to form ancient state systems.

In 427 CE, King Jangsu, who led the Kingdom of Goguryeo at its peak, made the decision to move the capi-
tal to Pyongyang. According to our TPIT data, the year of that move was within the coldest part of the DACP 
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(Fig. 9). Therefore, it is difficult to dismiss climate change as a factor in King Jangsu’s decision to move the capital 
over 200 km south of the original capital, away from the country’s center. As the population grew, Goguryeo 
more heavily relied on crop farming; moving the capital to the warmer location of Pyongyang would have been 
a strategic decision in response to decreasing temperatures.

The DACP also includes the so-called Late Antique Little Ice Age (LALIA, 536–660 CE), identified through 
tree-ring  data68. This period of climate deterioration, triggered by massive volcanic eruptions and lasting for over 
120 years because of a subsequent decrease in solar activity, led to a series of social upheavals in Western Eurasia. 
In 541 CE, the Justinian Plague spread in the Eastern Roman Empire, causing tens of millions of  deaths69. This 
pandemic may have been worsened by climate change and the resulting decline in crop yield. On the Korean 
Peninsula, the official historical record of the Three Kingdoms, the Samguk Sagi, shows that numerous people 
in the Kingdom of Goguryeo experienced severe famine in 536–537 CE. This tragedy was presumably caused by 
the volcanic eruptions of 536, which marked the onset of the  LALIA70. Our TPIT data clearly record this drop 
in temperature during the mid-sixth century (Fig. 9).

The maunder minimum (1645–1715 CE), a period of extremely low sunspot activity, brought sudden fam-
ine to the Korean peninsula in 1670–1671 CE. The cold spring weather and typhoon-induced summer floods 
resulted in devastatingly poor crop yields. Additionally, because people displayed famine-induced deterioration of 
immunity, an epidemic of plague rapidly spread throughout the country, causing substantial population  decline71. 
Korean historians refer to this disaster as the Kyungshin Great Famine. The low temperatures that likely led to 
lean years during the late seventeenth century are clearly visible in the TPIT data (Fig. 9).

In summary, cooling and drying events at 2.8 and 2.3 ka may have played important roles in the overall south-
ward migration of Korean agriculturalists during the third millennium BP. The relocation of King Jangsu’s capital 
at 427 CE, the Goguryeo famine at the beginning of LALIA, and the Kyungshin famine during the maunder 
minimum all seem to have been associated with a decline in temperatures.

Conclusions
This study has focused on the reconstruction of mid-to-late Holocene climate changes in coastal East Asia using 
a high-resolution multi-proxy record from Jeju Island, Korea. Additionally, it explored the potential effects of 
abrupt short-term climate events on ancient societies in the Korean peninsula. This exploration was conducted 
by reconstructing hydroclimate and temperature variability over the past 4000 years. The primary study findings 
are summarized below.

First, our proxy records, particularly charcoal data, suggest that mid-to-late Holocene hydroclimate changes 
were primarily governed by SST variations in the WTP. A multi-centennial increase in TSI may have induced 
long-term El Niño-like conditions and lower WTP SSTs, which could have resulted in less precipitation in the 
study area. Overall, our records highlight a shift to drier conditions around 1600 CE during the middle of the 
LIA in the study area.

Second, temperature changes in the study area during the mid-to-late Holocene were largely driven by solar 
variability and a gradual decrease in summer insolation. Our TPIT data reveal a ~ 1000-year cycle of warming 
and a ~ 500-year cycle of cooling.

Finally, ancient societies on the Korean peninsula appear to have been significantly affected by abrupt short-
term climate change events. Examples include the 2.8 ka event, the 2.3 ka event, the LALIA, and the maunder 
minimum. Notably, the decision to move the capital of Goguryeo, an ancient kingdom on the Korean peninsula, 
southward in 427 CE may have been influenced by a drop in temperature.

Materials and methods
Core materials and multi‑proxy data. In June 2021, we retrieved a 300-cm-long sediment core from the 
Dongsuak swamp using a Russian-type peat corer (Fig. 2c). Nine bulk sediment samples and one macroscopic 
plant fragment were sent to Beta Analytic for accelerator mass spectrometry radiocarbon dating (Table 1). High 
δ13C values between − 20 and − 19‰ in the deeper samples suggest that C4 plants were dominant before C3 
trees colonized inside the crater. We calculated the calibrated age ranges using rbacon 3.0.0  software72 and the 
IntCal20  dataset73. For this study, we utilized only the top 150 cm of sediments.

We collected 145 samples for pollen analysis at approximately 1-cm intervals from a depth of 3 cm to 150 cm. 
Pollen was extracted using standard palynological  procedures74. The samples underwent sequential treatments 
with HCl, KOH, HF, and acetolysis; they were sieved with a 180-µm mesh filter to remove large debris after KOH 
treatment. Pollen counts were conducted on a Leica microscope with a 40 × objective at a total magnification of 
400 ×. Each slide had a minimum of 300 pollen grains counted. We identified 95 pollen taxa, the alga Botryococ‑
cus, and two types of spores (monolete and trilete). We did not count other algae, such as Pediastrum, since their 
numbers were insufficient for any meaningful discussion. The frequency of Botryococcus is sometimes a very 
good climate-sensitive indicator of aquatic  productivity25. It has been particularly useful in paleoenvironmental 
studies of sediment cores from Jeju  Island20,21,75,76. A pollen diagram was produced using  TILIA77. A stratigraphi-
cally constrained cluster analysis was done using CONISS. Pollen concentrations were calculated based on the 
ratios of added Lycopodium  spores78. All percentages shown in the pollen diagram are based on the total sum of 
non-aquatic pollen and spores.

To reconstruct past local fire events, we counted > 125-μm macrocharcoal particles using a Leica EZ4 
 stereoscope79,80. This analysis was conducted for each depth between 6 and 140 cm, yielding 135 analyzed sam-
ples. For sample preparation, each sediment sample of 1.25 mL was soaked in  H2O2 (6%) and incubated at room 
temperature overnight to bleach dark organic materials that could be mistaken for charcoal  particles80. Then, 
materials < 125 μm and > 1 mm were discarded via sieving. Sieving with a grid size of 1 mm was conducted to 
remove only large plant fragments; it did not affect charcoal particles. The residual materials were poured into 
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a Petri dish, and the number of particles bigger than 125 μm in axis length were counted manually for each 
sample without any weighting by further size fractions. Then, the counts were transferred to accumulation rates 
(#  cm−2  year−1) using CharAnalysis ver. 1.181.

MS was measured at 1-cm intervals using an MS2 meter (Bartington Instruments). TOC and total nitrogen 
were measured at the National Center for Inter-University Research Facility located at Seoul National University, 
Republic of Korea. Samples collected at 1-cm intervals from a depth of 3 cm to 150 cm were analyzed using the 
Flash 2000 CHNS/O Analyzer (Thermo Fisher Scientific, Bremen, Germany) with an accuracy of 0.3%. Prior to 
analysis, each sample was treated with HCl (10%) to remove inorganic carbonates.

Tree pollen index of temperature. To estimate past temperature variability from the pollen record, TPIT 
values were derived using the following equation: (Quercus subg. Cyclobalanopsis + Castanopsis)/(Quercus subg. 
Cyclobalanopsis + Castanopsis + Quercus subg. Lepidobalanus + Carpinus). This index essentially calculates the 
ratio of evergreen broadleaf pollen to the total major tree pollen.

Previous studies, involving the collection and analysis of mosses from the slopes of Mt. Hallasan in Jeju 
 Island82, revealed that Castanopsis pollen was predominant in moss samples from slopes below 450 m altitude, 
whereas pollen from Quercus subg. Cyclobalanopsis was prevalent in samples from 360 to 500 m  altitude82. These 
broadleaved evergreens are characteristic of low elevation forests on Jeju Island. Conversely, deciduous tree taxa 
such as Quercus subg. Lepidobalanus and Carpinus were mainly observed in samples from higher-elevation 
areas between 600 and 1100  m82. The altitudinal distributions of these major tree species were consistent with 
the altitudes at which their pollen was deposited, confirming a strong correlation between the two parameters.

The arboreal pollen deposited over time on Dongsuak crater predominantly originated from four taxa: 
Quercus subg. Cyclobalanopsis, Quercus subg. Lepidobalanus, Castanopsis, and Carpinus. Because different types 
of trees flourish at specific altitudes based on their temperature preferences, the distribution of tree taxa on Mt. 
Hallasan follows an expected pattern. Altitude and temperature are inversely related; thus, we can qualitatively 
infer past temperature changes using TPIT data.

The proportion of broadleaf evergreen pollen may also be positively correlated with wetness. However, consid-
ering that Mt. Hallasan receives more precipitation at higher altitudes (Fig. 2a), we hypothesized that changes in 
the proportion of broadleaf evergreen pollen on the slope of Mt. Hallasan primarily reflect temperature variations. 
Additionally, we assumed that precipitation is negatively correlated with CARs because drought conditions tend 
to promote wildfires. Therefore, the analysis of Dongsuak sediments allowed us to reconstruct distinct mid-to-
late Holocene shifts in temperature and precipitation.

Autospectral analyses. We performed autospectral analysis on TPIT data using REDFIT  software83. Three 
Welch-overlapped segment averaging segments (N50 = 3), 3 degrees of freedom (dofs = 3), 1000 Monte Carlo sim-
ulations (Nsim = 1000), and one Welch window (Iwin = 1) were used for all analyses. The TPIT records consisted 
of 145 data points with an average interval of 29 years between points [t(1) = 40 CE and t(145) = 4273 cal year 
BP]. We also conducted cross-spectral analyses using REDFIT-X  software84 to assess climate cycles with sig-
nificant coherency, comparing our TPIT data to TSI records, and our CARs data to WTP SST reconstructions.

Data availability
The datasets generated and/or analyzed during the current study are accessible upon reasonable request from 
the corresponding author.
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