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Machine learning model 
for predicting late recurrence 
of atrial fibrillation after catheter 
ablation
Jan Budzianowski 1,2,3,8*, Katarzyna Kaczmarek‑Majer 4,8, Janusz Rzeźniczak 5, 
Marek Słomczyński 5, Filip Wichrowski 4,6, Dariusz Hiczkiewicz 2,3, Bogdan Musielak 2,3, 
Łukasz Grydz 2,3, Jarosław Hiczkiewicz 2,3,9 & Paweł Burchardt 1,5,7,9

Late recurrence of atrial fibrillation (LRAF) in the first year following catheter ablation is a common 
and significant clinical problem. Our study aimed to create a machine‑learning model for predicting 
arrhythmic recurrence within the first year since catheter ablation. The study comprised 201 
consecutive patients (age: 61.8 ± 8.1; women 36%) with paroxysmal, persistent, and long‑standing 
persistent atrial fibrillation (AF) who underwent cryoballoon (61%) and radiofrequency ablation 
(39%). Five different supervised machine‑learning models (decision tree, logistic regression, random 
forest, XGBoost, support vector machines) were developed for predicting AF recurrence. Further, 
SHapley Additive exPlanations were derived to explain the predictions using 82 parameters based on 
clinical, laboratory, and procedural variables collected from each patient. The models were trained 
and validated using a stratified fivefold cross‑validation, and a feature selection was performed with 
permutation importance. The XGBoost model with 12 variables showed the best performance on the 
testing cohort, with the highest AUC of 0.75 [95% confidence interval 0.7395, 0.7653]. The machine‑
learned model, based on the easily available 12 clinical and laboratory variables, predicted LRAF with 
good performance, which may provide a valuable tool in clinical practice for better patient selection 
and personalized AF strategy following the procedure.

Atrial fibrillation (AF) is the most common sustained arrhythmia in adults, and its prevalence is  increasing1. 
One of the drivers for this increase is the aging population and an intensifying search for undiagnosed  AF2. 
The early rhythm-control strategy was associated with a lower risk of adverse cardiovascular conditions in the 
EAST-AFNET 4  trial3.

In this context, catheter ablation is the well-established and most effective treatment option to maintain 
sinus  rhythm4. However, the recurrence rate of AF following catheter ablation is common and estimated at 
20–45%, which is a significant clinical problem inflating treatment  costs5,6. One possible explanation for AF 
recurrence is the complex interaction of various factors such as increasing AF duration, age, left atrium (LA) 
size, and epicardial fat  tissue7,8. Our previous study concerning ERAF revealed the poor predictive value of the 
ERAF model in the patients with abnormal body  weight9. However, ERAF occurring within the first 3 months 
following pulmonary veins (PV) isolation by radiofrequency (RF) or cryoballoon approach does not indicate 
ablation failure, given that the procedure itself generates transient local inflammation. Therefore, the first 90 days 
following ablation are known as the blanking  period10.

In contrast, late recurrence (LRAF) occurring 3 months following ablation is considered an actual clinical 
recurrence, which is a relevant clinical  problem11. Various machine learning models have been proposed to 
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support predicting  LRAF12–14. Although deep learning models provide high prediction  accuracy15, explaining 
their predictions remains a challenging step, and as stated by the authors  of12: “we cannot provide an explicit 
survival function or equation, and we cannot suggest specific cut-off values of predictors because of the ‘black-
box’ characteristic of the model”.

In this study, we compared selected top-performing machine learning models for predicting LRAF following 
PV isolation by cryoballoon or RF ablation. Next, we derived visual explanations using the well-known SHapley 
Additive exPlanations (SHAP)  framework16. SHAP enables us to assign an importance value for each feature in 
a particular prediction. Understanding why the model makes a certain prediction is as important as the accuracy 
of developed models. Concluding, similarly to Kim et al., we considered ERAF as an explanatory variable, and 
the major contribution of this work is confirming that ERAF is an important predictor of  LRAF10.

Methods
Study population. This study comprised 201 consecutive patients with documented symptomatic parox-
ysmal, persistent, and long-standing persistent AF. The patients were scheduled to undergo cryoballoon and RF 
ablation using the CARTO-mapping at the Cardiology Department in the Multidisciplinary Hospital in Nowa 
Sól, Poland. A total of 164 patients underwent the PV isolation procedure for the first time, while 34 and 3 
patients underwent ablation for the second and third time,  respectively9. Exclusion criteria included intracardiac 
thrombi, myocardial infarction, stroke or cardiac surgery in the previous 3 months, malignancies, autoimmune 
or inflammatory disease, antibiotic therapy, and heart failure exacerbation. All the patients signed a written 
study participation consent while the study protocol was approved by the Medical Ethics Committee at Poznań 
University of Medical Sciences (Approval 44/16). The study was carried out in May 2016 until March  20189. All 
the participants fulfilled the criteria and completed the study.

Radiofrequency ablation. Pre-procedural transthoracic and transoesophageal echocardiography (TEE) 
were performed in all the patients prior to ablation. RF ablation was performed using the focal ablation strategy 
guided by the CARTO 3-D mapping system (Biosense Webster, Diamond Bar, CA). The ablation procedure was 
performed under local anesthesia with mild conscious sedation. The double transseptal puncture with LassoNav 
and Navistar ST electrodes was performed following the fluoroscopic guidelines. Immediately after the punc-
ture, intravenous unfractioned heparin (UFH) was administered. An activated clotting time was maintained 
between 300 and 350  s11. The voltage map of left atrium and PVs was performed. PV isolation was performed 
using 7F Navistar ThermoCool and 8F ThermoCool SmartTouch SF (Biosense Webster, Diamond Bar, CA). The 
standard energy settings were 30 Watts for 30 s at the anterior LA wall, and 20 Watts at the posterior LA wall. 
In 5 patients, RF ablation was performed using the “ablation index”  algorithm9. The verification of the lines was 
done using the voltage map. Additional cavotricuspid isthmus ablation was performed in the patients with a con-
comitant typical atrial flutter. Additional ablations such as low-voltage zone ablation, complex fractionated atrial 
electrogram-guided ablation, or linear ablation were performed at the operator’s discretion if AF was induced 
after PV isolation.

Cryoballoon ablation. All the procedures were performed under local anesthesia with mild conscious 
sedation. In the cryoablation group, the second-generation cryoballoon ablation catheter was used (Arctic Front 
Advanced, Medtronic, Minneapolis, MN, USA). The patients had a groin entry venous route catheter introduced 
with the transseptal puncture by means of a Brockenbrough needle (St. Jude Medical). In addition, a 15 Fr steer-
able sheath (FlexCath Advance, Medtronic) and an integrated inner-lumen circular mapping catheter (CMC, 
Achieve™; Medtronic, Inc.) were  applied9. The cryoballoon was introduced into the target PV, and its position 
was confirmed by contrast retention. The freezing cycles, lasting 180–240 s, were performed for each PV and 
were confirmed by the Achieve  catheter9. In the absence of PV potentials, the procedure was ended; otherwise, 
next cryoapplications were performed. During the application in the right veins, the diphragmatic nerve was 
constantly stimulated (30/min) to avoid its paralysis. Freezing was immediately terminated at any indication of 
diaphragmatic weakness or palsy.

Biochemical analyses. Blood samples were obtained at baseline and 24 h after  ablation9. Venous blood was 
drawn from the basilic vein. All routine biochemical analyses (hsTnT, CK, CKMB, CRP, D-dimer, fibrinogen) 
were performed immediately in the central hospital laboratory. High-sensitivity TnT (hsTnT) was analyzed by 
electrochemiluminescence immunoassay (ECLIA) The principle of the Sandwich ECLIA method involves the 
immobilization of Troponin T using a biotinylated monoclonal anti-Troponin T antibody and a monoclonal 
anti-Troponin T antibody labeled with a ruthenium complex. HsTnT were measured by means of a Cobas c601 
device with a cut-off value of 14 pg/L (Roche Diagnostics GmbH, Germany). The serum creatinine level was 
measured using Creatinine Jaffe Gen.2 kits (CREJ2; Roche, Mannheim, Germany) based on a kinetic colori-
metric assay. This kinetic colorimetric assay is based on the Jaffé method. In alkaline solution, creatinine forms 
a yellow-orange complex with picrate. The rate of dye formation is proportional to the creatinine concentra-
tion in the specimen. The levels of sodium and potassium were determined by indirect potentiometry using 
ion-selective electrodes (ISE) (COBAS C501, Roche, Germany). Serum aspartate aminotransferase (AST) and 
alanine aminotransferase (ALT) were determined by means of a kinetic method with NADH and TRIS buffer 
(Roche, Mannheim, Germany). CK was marked using a kinetic serum test with fosfocreatine and ADP. Cre-
atine kinase (CK) catalyzes the reaction between creatine phosphate (CP) and adenosine 5′-diphosphate (ADP) 
with formation of creatine and adenosine 5´-triphosphate (ATP). The latter phosphorylates glucose to glucose-
6-phosphate (G6P) in the presence of hexoquinase (HK). G6P is oxidized to Gluconate-6P in the presence of 
reduced nicotinamide-adenine dinucleotide phosphate (NADP) in a reaction catalyzed by glucose-6-phosphate 
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dehydrogenase (G6P-DH). The conversion is monitored kinetically at 340 nm by the rate of increase in absorb-
ance resulting from the reduction of NADP to NADPH proportional to the activity of CK present in the sam-
ple. CKMB was analyzed with CKMB immunoassay concentrations (Roche, Germany). The test contains two 
monoclonal antibodies against epitopes of the CK-MB molecule, one gold-labelled, the other biotinylated. The 
antibodies form a sandwich complex with CK-MB in the blood. CRP was tested with an immunoturbimetric 
latex CRP assay (Roche Diagnostics GmbH). Human CRP agglutinates with latex particles coated with mono-
clonal antiCRP antibodies. The precipitate is determined turbidimetrically. D-dimer assays were inspected with 
an immunoturbidimetric method using STA-Liatest D-Di Plus (Stago, France). The assay was calibrated with 
the calibrator of the manufacturer. Fibrinogen, INR, APTT were measured by STACompact Max mechanical 
coagulometer (Diagnostica Stago, France). The STA Compact Max analyser’s method of measuring the coagula-
tion time is based on the mechanical registration of the viscosity based detection system (VBDS). In the analysis, 
the peripheral blood count was marked with CELL-DYN Ruby using flow cytometric techniques combined 
with the MAPSS technology (Abbott Diagnostics, USA)9. In the study, residual fresh (< 4  h) ethylenediami-
netetraacetic acid (EDTA)-anticoagulated samples were used. Normal reference ranges were as follows: WBC, 
4.0–10.0 (×  109/L), Fibrinogen 200–400 mg/dl; CK 0–190 U/L and CK-MB 7–25 U/L. The CRP and D-dimer 
cut-off values were 0.5 mg/dl and 0.5 μg/ml respectively. The extent of biomarker elevation was defined as the 
post-procedure recorded value minus the baseline value (day 0).

Clinical follow‑up. The patients were monitored for the first 24 h following ablation. The 24-h Holter moni-
toring was installed in an outpatient clinic within the first 3 months after ablation and every 6, 9, and 12 months 
during the follow-up (Mortara Instrument, Milwaukee, WI). Additionally, a 12-lead electrocardiogram (ECG) 
was recommended for the patients with the symptoms of arrhythmia. LRAF was defined as any symptomatic 
or asymptomatic atrial tachyarrhythmias (AF, atrial tachycardia [AT], or atrial flutter [AFL]) lasting > 30 s that 
occurred from 3 months to 1 year). Antiarrhythmic drugs (AAD) were not routinely used after ablation, except 
for the highly symptomatic patients with ERAF. Oral anticoagulants were continued for at least 2  months11. The 
decision to continue anticoagulation was based on the individual’s stroke risk determined by the CHA2DS2-
VASc  score9,11.

Statistical analyses. We considered the following two groups of patients depending on the occurrence 
of LRAF: (1) patients with LRAF; (2) lack of LRAF. The normal distribution of continuous variables was tested 
using the Shapiro–Wilk test. Next, the Mann–Whitney test was used for not normally distributed variables, and 
the Student’s t-test was used for normally distributed variables. Also, the Pearson chi-square test for independ-
ence was applied for categorical variables. The analyses were done using the R programming language. The 
statistical threshold for significance for p values was 0.05.

Model development for AF prediction. We formulated LRAF as a binary classification problem and 
predicted its occurence. In the experimental evaluation, we adapted the following top-performing benchmark 
machine learning algorithms: random forest (RF), decision trees (DT), support vector classifier, XGBoost (XGB), 
and logistic regression (LogR). The classifiers were constructed using the sklearn and XGBoost libraries from the 
Python programming language. Finally, SHAPley values were calculated to explain LRAF predictions. SHAP is 
one of the most frequently used model-agnostic methods and is commonly used for tabular  data16. SHAP expla-
nations were derived for the top-performing classifier, namely XGBoost, using the SHAP library for Python.

Experimental Set-up The dataset with all the patients was randomly split into training and test sets (90%) and 
a validation set (10%). Next, the repeated stratified fivefold cross-validation was applied to train the classification 
algorithms for the training set and select the optimal subsets of variables to be included in the predictive model. 
The permutation importance algorithm (with a number of permutations = 50) was applied to reduce dimension-
ality and select the subset of variables with the following indices i = 8, 12, 16, and 20. The subset of variables was 
considered optimal if the F1 score for the test set was maximal. Also, the HAS-BLED score (a scoring system 
developed to assess 1-year risk of major bleeding) was added to the subset of selected variables to improve the 
interpretation potential of the model outcomes. For a fair comparison, the same subsets of data were considered 
for each fold, regardless of the algorithm.

Ethics approval and consent to participate. The study was conducted according to the guidelines of 
the Declaration of Helsinki, and approved by the Ethics Committee of Poznan University of Medical Sciences 
(protocol code 44/16). Signed informed consent was obtained from every subject involved in the study.

Results
The study comprised 201 patients with AF treated with cryoablation (122 patients) and RF ablation (79 patients). 
Over 80 baseline clinical, procedural, and laboratory characteristics, stratified by the presence of LRAF during 
the follow-up, which were considered in this study are described in Table S1 in Supplementary Materials. Their 
statistical characteristics are summarized in Table 1. Additional laboratory data are presented in Table S2 in the 
Supplementary Materials. During the first year, LRAF occurred in 57 patients (28.3%). A 12-month follow-up 
was completed by all the patients. As shown in Table 1, patients with LRAF were significantly more likely to have 
a history of ERAF, coronary artery disease, and higher CHA2DS2-VASC score. Also, the patients with larger LA 
volume, higher number of applications, and longer procedure time showed a significantly higher risk of LRAF. 
Additionally, the extent of CK-MB elevation was significantly decreased in patients with LRAF compared to 
those without LRAF.
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Parameter ( +) LRAF (n = 57) Lack of LRAF (n = 144) p value Total (n = 201)

Age, years, mean ± SD 64 ± 8 63 ± 11 0.43 63 ± 11

Male sex, n (%) 34 (60) 94 (65) 0.56 128 (64)

Smoking, n (%) 8 (14) 10 (7) 0.19 18 (9)

BMI, kg/m2 , mean ± SD 31 ± 7.4 30.5 ± 7.4 0.59 30.6 ± 7.3

Ablation procedure

 ERAF, n (%) 32 (56) 15 (10)  < 0.01 47 (23)

 Procedure time, min, mean ± SD 145 ± 80 110 ± 95 0.03 120 ± 90

 Cryoablation time, min, mean ± SD 105 ± 40 90 ± 35 0.03 95 ± 38.8

 RF ablation time, min, mean ± SD 180 ± 80 190 ± 40 0.45 190 ± 50

 Fluoroscopic time, min, mean ± SD 12.2 ± 8.6 10.7 ± 7.1 0.09 10.9 ± 7.8

 Application time, min, mean ± SD 38.1 ± 24.6 32.8 ± 30.3 0.12 33.3 ± 28.4

 Number of applications, mean ± SD 12 ± 9 9 ± 9 0.05 10 ± 9.2

 Cryoablation, n (%) 29 (51) 93 (65) 0.1 122 (61)

 RF ablation, n (%) 28 (49) 51 (35) 0.1 79 (39)

Cardiovascular parameters

 Baseline LA volume, ml 97 ± 43 89.4 ± 41.1 0.02 93 ± 40.4

 CHA2DS2-VASC score, mean ± SD 3 ± 1 3 ± 2 0.02 3 ± 2

 HAS-BLED score, mean ± SD 1 ± 1 1 ± 1 0.1 1 ± 1

 SBP, mmHg, mean ± SD 130 ± 11 130 ± 17.2 0.94 130 ± 16

 DBP, mmHg, mean ± SD 80 ± 10 80 ± 15 0.91 80 ± 15

Comorbities and medications

 Hypertension, n (%) 40 (70) 103 (72) 0.99 143 (71)

 CAD, n (%) 17 (30) 19 (13) 0.01 36 (18)

 Heart Failure, n (%) 6 (11) 13 (9) 0.95 19 (9)

 Diabetes, n (%) 8 (14) 20 (14) 1 28 (14)

 Hyperthyroidism, n (%) 7 (12) 7 (5) 0.07 14 (7)

 Beta Blocker, n (%) 52 (91) 120 (83) 0.23 172 (86)

 CCB, n (%) 10 (18) 32 (22) 0.59 42 (21)

 NOAC, n (%) 40 (70) 103 (73) 0.74 143 (72)

 VKA, n (%) 17 (30) 39 (27) 0.74 56 (28)

 Statins, n (%) 47 (82) 98 (68) 0.06 145 (72)

 Diuretics, n (%) 21 (37) 47 (33) 0.69 68 (34)

 ACEI, n (%) 22 (39) 55 (38) 1 77 (38)

 ARBs, n (%) 15 (26) 36 (25) 0.99 51 (25)

Laboratory findings

 Cholesterol, mg/dl, mean ± SD 172.5 ± 34.8 183.5 ± 48.1 0.21 180.5 ± 45.1

 LDL, mg/dl, mean ± SD 106.3 ± 33.3 116.7 ± 43.2 0.19 113.8 ± 41

 eGFR, ml/min, mean ± SD 73 ± 18 72 ± 20.5 0.87 72.5 ± 19.2

 CRP, ug/ml, before ablation 0.2 ± 0.2 0.2 ± 0.2 0.7 0.2 ± 0.2

 CRP, ug/ml, after ablation 1.0 ± 1.0 0.8 ± 0.8 0.25 0.8 ± 0.9

 Δ CRP, ug/ml, mean ± SD 0.7 ± 0.9 0.5 ± 0.7 0.26 0.6 ± 0.7

 PLT, 103/ml, before ablation 202 ± 54 210 ± 57.5 0.29 208 ± 59

 PLT, 103/ml, after ablation 174 ± 47 179 ± 49.5 0.31 177 ± 47.2

 Δ PLT, 103/ml, mean ± SD − 27 ± 25 − 31 ± 32 0.68 − 30 ± 30.2

 Fibrinogen, mg/dl, before ablation 390 ± 98 379.5 ± 85.5 0.73 380.5 ± 91.5

 Fibrinogen, mg/dl, after ablation 382.3 ± 72.4 368.8 ± 72.3 0.24 372.6 ± 72.6

 Δ Fibrinogen, mg/dl, mean ± SD  − 8 ± 71.5  − 12 ± 55.2 0.28  − 10 ± 61.2

 D-Dimer, mg/dl, before ablation 0.2 ± 0.2 0.2 ± 0.2 0.97 0.2 ± 0.2

 D-Dimer, mg/dl, after ablation 0.3 ± 0.2 0.3 ± 0.2 0.29 0.3 ± 0.2

 Δ D-Dimer, mg/dl, mean ± SD 0.1 ± 0.1 0 ± 0.1 0.22 0.1 ± 0.2

 Hs-TnT, ng/l, before ablation 0 ± 0 0 ± 0 0.61 0 ± 0

 Hs-TnT, ng/l, after ablation 0.9 ± 0.7 1.1 ± 0.6 0.13 1 ± 0.7

 Δ Hs-TnT, ng/l, mean ± SD 0.9 ± 0.7 1 ± 0.6 0.13 1 ± 0.6

 CPK, U/l, before ablation 113 ± 81 107.5 ± 69.5 0.36 109 ± 80

 CPK, U/l, after ablation 209 ± 122 236.5 ± 151.2 0.43 222 ± 148

 Δ CPK, U/l, mean ± SD 96.7 ± 132.4 115.9 ± 113.7 0.31 110.4 ± 119.6

Continued



5

Vol.:(0123456789)

Scientific Reports |        (2023) 13:15213  | https://doi.org/10.1038/s41598-023-42542-y

www.nature.com/scientificreports/

Table 2 shows the comparative analysis of the performance of selected classifiers. As observed, XGBoost with 
12 variables achieved the highest F1 score of 0.547.

The respective receiver operating characteristic (ROC) curves for this model calculated for the validation 
set are presented in Fig. 1. It is observed that the XGBoost model with the 12 variables achieves the highest area 
under the curve (AUC) of 0.75.

The variables selected as most discriminative in this model are the following: ERAF, TSH, RBC, HAS-BLED 
score, BMI, statin therapy, parameters measured prior to ablation such as glucose, diastolic blood pressure, and 
urea, as well as parameters measured following ablation such as high-sensitive Troponin T, hemoglobin, and 
fibrinogen. Figure 2 shows the SHAP (SHapley Additive exPlanations) global explanation (summary) plot. Each 
point in the figure represents a classified data point, and the color code represents its range of feature values. 
SHAP presents the model output for a given class (here LRAF prediction) as an inverted pyramid of the most 
contributing features to that class. The high values of the top 2 features, ERAF and TSH, contribute to predict-
ing LRAF most, while low values of the top 3 features, RBC, hsTroponin T following the procedure, and HDL 
cholesterol prior ablation, contribute positively to this class.

Figure 3 explains in detail the prediction from the considered XGB model for an illustrative patient from 
the validation set classified as a false positive (FP) patient. The red arrows represent the features that drive the 
prediction towards LRAF, while the blue arrows represent the features that drive the prediction against it. It is 
observed that a higher HAS-BLED score, lower RBC levels, statin therapy, and higher TSH are the factors that 
increased the risk of LRAF diagnosis.

Finally, in Fig. 4, we explain in detail the prediction from the considered XGB model for an illustrative patient 
from the validation set classified as a false negative (FN) patient. It is observed that in this example, lower TSH 
values, lack of statin therapy, higher RBC and hemoglobin levels following ablation are the factors that decreased 
the risk of LRAF diagnosis, even despite the occurrence of ERAF.

Parameter ( +) LRAF (n = 57) Lack of LRAF (n = 144) p value Total (n = 201)

 CK-MB, U/l, before ablation 16 ± 7 15 ± 7 0.31 15 ± 6

 CK-MB, U/l, after ablation 24 ± 15 28 ± 21 0.08 27 ± 20

 Δ CK-MB, U/l, mean ± SD 8 ± 12 12 ± 19 0.02 10 ± 20

Table 1.  Baseline characteristics and comparison of patients with and without LRAF following catheter 
ablation. Continuous data of normal distribution are presented as mean ± standard deviation (SD).Continuous 
data of non-normal distribution are presented as mean IQR calculated as Q1–Q3. Categorical variables are 
presented as numbers and percentages. Categorical data are presented as counts with their percentage values 
in brackets. p values from the Student’s t-test are reported for normal variables, p values from the Mann–
Whitney test are reported for non-normally distributed variables. p Values from the Pearson chi square 
test for independence are reported for categorical variables. BMI body mass index, LRAF late recurrence 
atrial fibrillation, ERAF early recurrence atrial fibrillation, RF radiofrequency, LA volume left atrial volume, 
CHA2DS2-VASc congestive heart failure, hypertension, Age ≥ 75 (doubled), diabetes, stroke (doubled), 
vascular disease, age 65–74, sex (female), HAS-BLED hypertension, abnormal renal/liver function, stroke, 
bleeding history or predisposition, labile INR, elderly (> 65 years), drugs/alcohol concomitantly, SBP systolic 
blood pressure, DBP diastolic blood pressure, CAD coronary artery disease, CCB calcium channel blockers, 
NOAC non-vitamin K antagonist oral anticoagulant, VKA vitamin K antagonist, ACE-I angiotensin converting 
enzyme inhibitor, ARB angiotensin II receptor blocker, GFR glomerular filtration rate, CRP C-reactive protein, 
PLT platelets, hs-TnT high-sensitive cardiac troponin T, CPK creatine kinase, CK-MB creatine kinase-MB 
fraction; Δ—Delta denotes the response to the ablation procedure. Delta was defined as the change in the 
biomarker concentration between two assays performed within 24-h period (after ablation – before ablation). 
Significance difference LRAF(+) versus LRAF (−). Significant values are in bold.

Table 2.  Performance comparison of machine learning models: random forest (RF), XGBoost (XGB), decision 
trees (DT), logistic regression (LogR), and support vector machines (SVM) for a varying number of features 
selected with permutation importance. Performance is measured with F1 ± standard deviation (SD) for the 
test set. Parameters of machine learning methods: RF, DT, SVM: class_weight = ‘balanced’, XGB: scale_pos_
weight = counts[class1]/counts[class2]; LogR: max_iter = 10,000. Significant values are in bold.

Metric # of features DT LogR RF XGB SVM

F1 8 0.489 ± 0.138 0.56 ± 0.13 0.429 ± 0.151 0.546 ± 0.127 0.361 ± 0.114

F1 12 0.502 ± 0.134 0.529 ± 0.123 0.316 ± 0.162 0.547 ± 0.135 0.409 ± 0.1

F1 16 0.493 ± 0.155 0.514 ± 0.13 0.31 ± 0.168 0.54 ± 0.134 0.483 ± 0.063

F1 20 0.49 ± 0.149 0.514 ± 0.125 0.214 ± 0.167 0.514 ± 0.145 0.483 ± 0.064

F1 All 0.421 ± 0.13 0.374 ± 0.117 0.064 ± 0.107 0.433 ± 0.145 0.487 ± 0.061
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Discussion
Late recurrence of atrial fibrillation (LRAF) is a common phenomenon after pulmonary vein isolation, and 
the prognosis after the procedure is highly complex. Previous studies have demonstrated that machine learn-
ing techniques can be effectively applied for AF recurrence prediction and may have better performance than 
conventional statistical  analysis14. In a recent systematic review of 33 studies developing or validating 13 models 
based on the c-statistic, highly variable discriminatory ability was observed, ranging from very poor to very 
 good13. However, the risk of bias was high, and many studies lacked internal validation in model development.

In this study, we developed a machine learning model for predicting AF recurrence following catheter abla-
tion in the first year after the procedure. In the examined group of 201 patients, LRAF occurred in 28% of them, 
with comparable frequency in both types of ablation. The proposed XGBoost model showed better performance 
in predicting LRAF compared to our previous model for  ERAF9.

The XGBoost model with 12 variables commonly available in clinical practice showed the best performance 
on the testing cohort. As illustrated in Fig. 2, ERAF was the most important factor in the model. In addition, the 
SHAP results demonstrated that higher values of TSH, HAS-BLED score, statin therapy, fibrinogen, lower values 
of parameters measured after ablation such as RBC, troponin, hemoglobin, as well as lower values of parameters 
measured before ablation such as HDL, glucose, diastolic blood pressure, BMI and urea were associated with 
an increased risk of LRAF. Our observations show that ERAF is the factor that strongly predisposes patients to 
LRAF, as it comprises the most important contribution to the model.

Several other studies have reported ERAF as a very strong predictor of LRAF, both after single and multiple 
 procedures10,17,18. Moreover, it has been proven that the cause of ERAF is not only the inflammatory process and 
tissue necrosis, but also reconnections within the pulmonary  veins18. Therefore, Kim et al. suggest that ERAF may 
be a surrogate marker of the severity of AF itself and should not be considered as a transient phenomenon, but 
as a strong predictor of  LRAF10. Thyroid disorders are increasingly recognized as a factor responsible for  AF19. In 
the study of Morishima et al., hypothyroidism and high-normal TSH levels were independent predictors of atrial 
tachyarrhythmia recurrence following catheter  ablation20. In the study of Kim et al., the hemoglobin level was 
also significantly lower (p < 0.001), and anemia was more commonly found (p < 0.001) in patients with clinical 
recurrence following ablation than in those who remained in sinus  rhythm21. On the other hand, the HAS-BLED 

Figure 1.  Performance of selected classifiers with 12 features validated for the validation set is further 
illustrated with receiver operator characteristic (ROC) curves.
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Figure 2.  The SHAP summary plot from the XGB classifier shows the ranking of the top-most contributing 
features. The positive contribution towards that class is shown on the positive side of the X-axis (representing 
positive SHAP values), while the negative side of the axis represents a negative contribution or the contribution 
of those features against the prediction of that class. The XGBoost model, data samples and running examples in 
the Python programming language are available through the GitHub platform (https:// github. com/ kasia kaczm 
arek/ predi cting- late- recur rence- of- atrial- fibri llati on).

Figure 3.  SHAP local explanations from XGB for an illustrative patient from the validation set classified 
as a false positive (FP) patient are shown in this figure. The red arrows represent the features that drive the 
prediction towards LRAF, while the blue arrows represent the features that drive the prediction against it.

https://github.com/kasiakaczmarek/predicting-late-recurrence-of-atrial-fibrillation
https://github.com/kasiakaczmarek/predicting-late-recurrence-of-atrial-fibrillation
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score, as a predictor of bleeding adverse events, also includes important risk factors for AF recurrence, such as 
hypertension and advanced age.

Study limitations. The study was single-centered with a relatively small number of patients. The study 
group was heterogeneous in terms of the number of ablation procedures and RF ablation technique. LRAF was 
detected based on clinical symptoms, 12-lead ECG, and 24-h Holter monitoring. Therefore, asymptomatic ERAF 
might have been missed in outcome adjudication. Also, a specific limitation in the interpretation of myocardial 
injury biomarkers, such as CPK and CK-MB, occurred due to their thermal instability during RF  ablation22. 
Finally, the main limitation of machine learning analysis was the small data set.

Conclusions
Our machine learning model of LRAF following catheter ablation achieved good performance and works as a 
valuable tool for better patient qualification.

Data availability
The datasets used and/or analyzed in this study are available from the corresponding authors upon reasonable 
request. The XGBoost model, data samples and running examples are available through the GitHub platform 
(https:// github. com/ kasia kaczm arek/ predi cting- late- recur rence- of- atrial- fibri llati on). Full dataset used to gener-
ate these results is subject to data sharing agreements and cannot be made publicly available but can be shared 
following the agreement of respective institutional review boards on request to the corresponding author.
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