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Entropy generation optimization 
for the electroosmotic MHD fluid 
flow over the curved stenosis artery 
in the presence of thrombosis
Bhupendra K. Sharma 1*, Umesh Khanduri 1, Nidhish K. Mishra 2, Ibrahim Albaijan 3 & 
Laura M. Pérez 4

The present study deals with the entropy generation analysis on the flow of an electrically conductive 
fluid (Blood) with Al

2
O
3
-suspended nanoparticles through the irregular stenosed artery with 

thrombosis on the catheter. The fluid flow can be actuated by the interactions of different physical 
phenomena like electroosmosis, radiation, Joule heating and a uniform radial magnetic field. The 
analysis of different shapes and sizes of the nanoparticle is considered by taking the Crocine model. 
The velocity, temperature, and concentration distributions are computed using the Crank–Nicholson 
method within the framework of the Debye–Huckel linearization approximation. In order to see 
how blood flow changes in response to different parameters, the velocity contour is calculated. The 
aluminium oxide nanoparticles employed in this research have several potential uses in biomedicine 
and biosensing. The surface’s stability, biocompatibility, and reactivity may be enhanced by surface 
engineering, making the material effective for deoxyribonucleic acid sensing. It may be deduced 
that the velocity profile reduces as the nanoparticle’s size grows while depicts the reverse trend for 
the shape size. In a region close to the walls, the entropy profile decreases, while in the region in 
the middle, it rises as the magnetic field parameter rises. The present endeavour can be beneficial in 
biomedical sciences in designing better biomedical devices and gaining insight into the hemodynamic 
flow for treatment modalities.

List of symbols
u1 = L0ũ1

δ∗U0
	� Radial velocity

U0	� Reference velocity (ms−1)
w1 = w̃1

U0
	� Axial velocity

g	� Acceleration due to gravity (ms−2)
z1 = z̃1

L0
	� Axial direction

r1 = r̃1
R0

	� Radial direction
T	� Temperature (K)
t = U0 t̃

R0
	� Time

T̃0	� Reference temperature (K)
C̃0	� Reference concnentration (mol m −3)
T̃w	� Temperature at wall (K)
C̃w	� Concentration at wall (mol m −3)
Q	� Volumetric flow rate (m3/s)
R0	� Radius of normal artery (m)
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e	� Systolic to diastolic pressure ratio
B	� Uniform magnetic field (T)
Rc = R̃∗

R0
	� Radius curvature of artery

Nr = 16σeT̃
3
0

3κf κe
	� Radiation parameter

fp	� Heart pulse frequency

Gr = g(ρβ)f R
2
0
(T̃w−T̃0)

µ0U0
	� Thermal Grashof number

Gc = g(ρβ)f R
2
0
(C̃w−C̃0)

µ0U0
	� Solutal Grashof number

Re = U0ρf R0
µ0

	� Reynold’s number

Ec = U0

cp(T̃w−T̃0)
	� Eckert number

Pr = µ0Cp

κf
	� Prandtl number

E1 = R0√
µ0U0

E0	� Electric field parameter

p = R2
0
p̃

µ0U0L0
	� Non dimensional pressure

qe = R0
qm

	� Electro-osmotic parameter

Sz =
σf
κf

R2
0
E2
0

(T̃w−T̃0)
	� Joule heating term

Uhs = ζǫE0
µ0U0

	� Helmholtz–Smoluchowski velocity
Sc = ν

Dm
	� Schmidt number

M2 = σf B
2
0
R2
0

µ0
	� Magnetic field parameter

Greek letters
σ	� Electrical conductivity (S/m)
(Cp)nf 	� Specific heat at constant pressure
ρnf 	� Density of nano-fluid (Kg/m3)
e	� Systolic to diastolic pressure ratio
δ∗ = δ

R0
	� Stenosis depth

κf 	� Thermal conductivity (W/(m  K))
τw	� Wall shear stress (Pa)
ωp	� Circular frequency
�	� Impedance ( �(Ohm))
β	� Thermal expansion coefficient (K−1)
µf 	� Blood’s viscosity (Pa s)

ξ = Rbρf R
2
0

µ0
	� Chemical reaction parameter

θ1 = T̃−T̃0
T̃w−T̃0

	� Non-dimensional temperature

φ1 = C̃−C̃0

C̃w−C̃0

	� Non-dimensional temperature

� = T̃

(T̃w−T̃0)
	� Temperature difference

µ0	� Reference viscosity (Pa s)
� = C̃

(C̃w−C̃0)
	� Mass difference

Cardiovascular disease (CVD) is a major public health concern due to its high morbidity and mortality rates1. 
This rates upshots in both developed and developing countries due to obesity and poor lifestyle. CVD encom-
passes a wide range of disorders, including cardiac muscle and vascular system diseases. It is widely recognised 
that arterial pathologies arise due to the degradation mechanisms involving cholesterol, lipoproteins, and diverse 
chemical components. These processes predominantly occur at the curvatures or bifurcation points of the arte-
rial wall. Many researchers pointed out that hemodynamic factors play a significant role in the formation and 
progression of these diseases. Walsh2 explained that stenosis and thrombosis result from vascular injury and 
inflammation. The clot develops due to internal damage to the arterial lumen, and additional clot formation 
results in stenosis or emboli. The shear stress and hemodynamic parameters affecting stenosis and thrombosis 
were investigated by Strony et al.3. They found that the shape of stenosis had a significant impact on platelet 
activation and thrombosis development in a diseased artery. Elaqneeb et al.4 developed a mathematical model 
of the stenotic artery with a thrombosis. When they considered the copper nanoparticle, they concluded that 
an increase in the nanoparticle volume fraction led to a boost in velocity. Tanveer et al.5 investigated the MHD 
(magneto hydrodynamics) Jeffery nanofluid in curved channel with convective boundary conditions. Ahmed and 
Nadeem6 analysed the shape effect of copper nanoparticles through curved stenosed artery. Ahmed and Nadeem7 
constructed the mathematical model to analyse the effect of MHD on a micropolar fluid flow through 6-types of 
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different stenosis. The study conducted by Shahzadi and Kousar8 focused on the development of a mathematical 
model for analysing the behaviour of a bifurcated stenosed artery, with particular emphasis on incorporating 
slip effects into the model. The research findings indicated that the angle of bifurcation played a significant role 
in improving the distribution of shear stress within the main artery. Conversely, the daughter artery exhibited a 
contrasting pattern, with a decrease in shear stress as the bifurcation angle increased. In their study, Zidan et al.9 
undertook an investigation aimed at evaluating the entropy generation occurring within a catheterised stenosed 
artery. The analysis conducted by the researchers revealed that an enhancement in the stenosis height resulted in 
a heightened intensity of the shear stress profile at the arterial wall. Khanduri and Sharma10 conducted a study 
to analyse the impact of nanoparticle shape, explicitly focusing on hybrid nanoparticles (Au/GO), on blood 
circulation within a compromised artery. The study incorporated considerations of the Hall and ion effect. The 
affected artery displayed stenosis along its arterial walls and thrombosis at the central region of the catheter. The 
researchers concluded that an augmentation in the shape of nanoparticles improved the temperature profile.

Young11 analyzed the deposition of plaque along the lumen of the artery disturbed the blood flow and led to 
mechanical processes advancing in intimal cell proliferation. Flow separation is the main factor in the develop-
ment of vascular disorders, suggested by Mustapha et al.12 They analyzed the unsteady MHD fluid flow through 
an irregular multi-stenosed arteries and concluded that the flow separation zone shrank with increasing the 
Hartmann number value. Changdar et al.13 discussed the nanoparticle application as drug delivery in the blood 
flow through an irregular stenosed artery by considering single- and discrete-phase models. Gandhi et al.14 
discussed magnetic hybrid nanoparticle (Au-Al2O3/blood) based drug delivery through a bell-shaped occluded 
artery with joule heating, viscous dissipation and variable viscosity. The application of blood with the applied 
magnetic field has extensive applications in the biomedical and engineering fields. Kolin15 first introduced the 
concept of MHD in the medical field. The experimental results indicate that when a conducting fluid, such as 
human blood, is exposed to a magnetic field strength of 10 T, it experiences a retarding force that leads to a 30% 
decrease in flow. Moreover, the application of an external electric field results in the emergence of an electro-
osmotic force, which in turn causes the migration of an electrolyte within a specific conduit. When the conduit 
is placed in an electrolytic medium, it induces an electrostatic response in which positively charged particles are 
drawn towards its surface. In contrast, negatively charged ions are pushed away. The Electric Double Layer (EDL) 
formation occurs due to this phenomenon. Initially, Woodson and Melcher16 investigated electrically charged 
fluid dynamics, also known as electrokinetics or Electrohydrodynamics (EHD). The focus of their study lies in the 
examination of the behaviour and relationships between ionised particles and the surrounding fluids. Addition-
ally, they investigate the mechanisms that facilitate the movement of fluids, including electrostatics, electropho-
resis, and electro-osmosis, among other related phenomena. Whitehead and Rice17 applied the Debye–Huckel 
approximation for the electrokinetic flow through narrow capillaries. In a recent study, Nooren et al.18 looked at 
how Joule heating and various zeta functions affected MHD nanofluid in a microchannel. Their study revealed 
that increases in the zeta potential retard fluid motion, an essential medical phenomenon, regulating blood flow. 
This retarding nature occurs due to the presence of impregnable EDL.

The study by Akram et al.19 aimed to investigate the electroosmosis impact by comparing the modified Buon-
giorno and Tiwari-Das model. The investigation demonstrated that the modified Buongiorno model exhibits 
superior performance as a viscosity model compared to the Tiwari-Das model. In a subsequent study, Abdel-
salam et al.20 investigated the hemodynamic characteristics of nanofluid flow in a diseased artery affected by 
both stenosis and aneurysm. The study also considered the influence of electroosmotic forces and the size of 
the nanoparticles. Shahzadi et al.21 conducted a study that aimed to examine the impact of electroosmotic force 
on the oblique stenosed aneurysmal artery. The researchers utilised a fractional model based on second-grade 
principles, incorporating ternary nano particles. They placed particular emphasis on the potential advantages 
of their study in augmenting drug transportation.

Blood is a very complex and marvellous fluid that nurtures life. Over the past few decades, scientists and 
researchers have been studying to uncover the perplexing behaviour of blood. It is essential to know the behaviour 
of blood to deal with the pathological conditions faced by animals and human beings. Examining fluid dynamics 
in a curved conduit is significant in biomedicine due to its ability to closely replicate the complex flow patterns 
observed in arterial blood vessels. These investigations are of great value in managing patients with coronary 
pathologies. In the study by Mekheimer et al.22, an examination was carried out to analyse the hemodynamic 
properties of fluid flow in a curved artery, specifically in the context of catheterisation. The researchers’ study 
clarified that narrower arteries exhibit higher fluidic resistance than wider arteries. Additionally, they found 
that the velocity profile in non-curved arteries is more significant than that observed in curved arteries. Zaman 
et al.23 examined the effect of different types of nanoparticles through curved stenosed channels. Their study 
exhibited that the curvature parameter influences the velocity profile, and the symmetric patterns reduce for a 
higher value of the curvature parameter. Sharma et al.24 studied the MHD blood flow through a curved artery by 
considering the effect of heat transfer and body acceleration. Several other researchers25,26 scrutinized the blood 
flow through the curved stenosis artery. Majorly, researchers considered the blood viscosity a constant, but in 
reality, it gets influenced by different factors like pressure, temperature and flow rate. Lih et al.27 examined that 
blood viscosity at the low-shear region vary according to hematocrit and blood vessel diameter. Mishra et al.28 
introduced a mathematical framework to comprehend blood circulation dynamics from the parent artery to the 
capillary network, considering different entry angles. The primary focus of the investigation revolved around 
the phenomenon of hematocrit reduction via plasma skimming and the mass flux occurring within the capillary 
system. The study’s results highlighted that the lowest quantity of red blood cells passing from the main artery to 
the smaller capillary is observed when both vessels are positioned at a right angle. The variable viscosity is essen-
tial whenever blood through a tube or channel is studied. Keeping this aspect in mind, several researchers29–32 
conducted investigations pertaining to variable viscosity within their model. Baskurt et al.33 emphasized the 
variation in blood viscosity are influenced by hematocrit, RBCs (red blood cells) aggregation, shear stress and 
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mechanical properties of RBCs. Ponalagusamy34 developed the mathematical model of the two-fluid model in 
tapered arterial stenosis. They considered micropolar fluid in the core region and Newtonian fluid in the periph-
eral plasma region with variable viscosity. Sharma and Kumawat35 temperature dependent viscosity and thermal 
conductivity on mhd blood flow through a stretching surface with ohmic effect and chemical reaction. Sharma 
et al.36,37 discussed the impact of viscosity and radiation on the MHD fluid flow thorough a stretching sheet.

The importance of nanoparticles in the field of biomedicine has been emphasised by a combination of theo-
retical studies and empirical data. The studies shows the importance of nanoparticles to enhance the administra-
tion of diagnostic and therapeutic substances. Thus, numerous investigations have been conducted to explore 
molecular-level functionalities of nanoparticles in the field of life sciences. Shahzadi and Nadeem38 conducted 
a series of studies to investigate the simulation of metallic nanoparticles located within eccentric annuli, while 
being subjected to the effects of a radial magnetic field. Moreover, a comparative analysis of copper nanoparticles 
was conducted in a separate study39. The study specifically examined the slip effect in oblique cylinders. Fur-
thermore, Shahzadi et al.40 conducted a study to examine the influence of different shapes of Ag nanoparticles, 
including platelets, bricks, and cylinders, within a curved artery. The results indicated that there was an increase 
in the velocity field as the curvature parameter was raised. In their study, Kumar et al.41 performed an investiga-
tion on the features of flow and heat transfer within a porous medium, specifically focusing on the application 
of various hybrid nanofluids. On the other hand, the study conducted by Imran et al.42 centred on the analysis 
of the flow of an incompressible Jeffrey nanofluid through a vertical tube. The results of their study revealed a 
positive relationship between velocity and nanoparticle concentration with thermophysical parameters, while 
temperature showed a negative association. Jamil et al.43, employed Caputo-Fabrizio fractional derivatives to 
examine the flow characteristics of Casson fluid within a constricted artery. The researchers observed that an 
increase in the Hartmann number resulted in an elevation of the concentration of magnetic particles, conse-
quently leading to an augmentation of fluid viscosity and a decrease in fluid velocity. Hassan et al.44 conducted 
an independent study to examine the characteristics of the boundary layer flow of nanofluid over a movable 
wedge. A decrease in the velocity field was observed as the nanoparticle volume fraction increased. Furthermore, 
several other researchers45–49 have conducted research on the topic of nanofluid flow through curved channels, 
thereby making valuable contributions to the expanding scholarly discourse in this field.

In the biological system, metabolism is the central process, providing the energy needed to sustain life. 
The heat transfer and energy losses are incurred in this process causing the disorders (entropy). The entropy 
generation is associated with the thermodynamic irreversibility process that is associated with the second law 
of thermodynamics. The mitigation or reduction of the energy losses is desirable and one of the focus area in 
bio-inspired engineering system. The entropy generation is classified in two physical framework: reversible and 
irreversible process. The reversible process are those where change of entropy is zero and non-zero change in 
entropy signifies the irreversible process. Although, all the processes that occurs in nature are irreversible. Several 
factors associated in the biological process for production of entropy such as (viscosity) fluid friction, exposure 
to radiation and magnetic field (associated with iron particle present in hemoglobin molecule), electric field 
(associated with ions), etc. Bejan50 pioneered the entropy analysis by studying the four fundamental way of heat 
conductive process. According to their study the thermal efficiency of the system can be optimized by reducing 
the overall entropy. Moreover, they concluded that the viscous dissipation and heat transfer were the crucial 
one for entropy generation in the system. A very few study51–53 has been conducted in the field of biological 
systems. Aoki et al.54 investigated the human body’s entropy production at the basal conditions and calculated 
using the energetic data obtained from the respiration calorimeter. They determined that the impacts of the 
forced air current and clothes did not influence entropy creation. It’s conceivable that there are physiological 
systems that can keep the body’s entropy production at constant levels. For the analysis of entropy production 
utilising a ferromagnetic nanofluid, Akbar and Butt55 employed the mathematical model of composite stenosis 
arteries with permeable walls. Gandhi et al.56 took into account the various nanoparticle shapes effect on the 
multi-stenosed artery exposed to heat radiation to conduct their entropy study. Further theoretical investigation 
of the MHD two-phase across a permeable curved artery with varying viscosity and radiation was reported by 
Kumawat et al.57. They found that arterial wall permeability and curvature are the most critical risk factors for 
atherosclerosis.

Inspired by the aforementioned studies, the present research endeavours to investigate a previously unex-
plored domain, specifically examining the combined effects of nanoparticles’ shape and size, alongside Joule 
heating, electroosmosis, radial magnetic fields, and radiation, on the blood flow dynamics within a curved sten-
osed artery with thrombosis. To fill this void in the existing research, we examined the flow of blood containing 
suspended Al2O3 nanoparticles through irregular stenosis while also considering the presence of thrombosis on 
the catheter walls. The nanoparticles under consideration are categorised as porous metallic oxides, known for 
their significant surface areas and impressive resistance to chemical and mechanical disturbances. The exten-
sive accessibility of these nanoscale entities makes them economically feasible for incorporation into diverse 
biomedical applications.

This study examines the impact of a uniform radial magnetic field, electroosmosis , and radiation on a system. 
The hematocrit dependent viscosity model is taken into the consideration. In this study, we have chosen to adopt 
a curvilinear coordinate system along with mild stenosis assumptions to reduced the complexity of the governing 
equations. These governing equations are discretized using the Crank–Nicolson method and further solved in 
the MatLab under the appropriate boundary conditions.

The salient contributions of this research are as follows:

•	 Investigation of the impact of nanoparticle shape and size on the flow behavior within a curved artery.
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•	 To investigate the impact of variable viscosity on the flow dynamics within a stenosed artery with thrombosis 
at the centre of the catheter wall, specifically by considering the hematocrit-dependent viscosity model.

•	 Entropy generation analyzation on the diseased artery by considering the combined effects of Joule heating, 
electro-osmosis, radial magnetic field and radiation.

Mathematical formulation
A study is undertaken to examine the hemodynamics of blood flow in a pathological arterial segment that exhibits 
irregular stenoses and thrombosis at the central region of the catheterised tube. The flow is characterised by being 
unsteady, laminar, incompressible and fully developed, exhibiting an axisymmetric configuration. To enhance the 
analysis, a curvilinear coordinate system is employed, where the radial and axial coordinates are represented as 
r1 and z1 respectively. The adoption of axisymmetry enables the elimination of any dependence on the variable θ 
in the flow. The assumption is made that the induced magnetic field is very small, as it is considered insignificant 
in comparison with an applied magnetic field. As a component of the research, the introduction of aluminium 
oxide nanoparticles into the bloodstream is conducted to investigate their impact on the flow dynamics as they 
pass through the afflicted arterial vessel.

Geometrical representation of the model.  The visual representation of the affected arterial structure 
is depicted in Fig. 1. The depiction of the arterial configuration involves the use of two concentric tubes, where 
the radius is represented as R′ , originating from the central point O. The geometric characterization pertains to 
an irregularly shaped stenotic condition is given as follows56,58:

Let η denote the radius of the stenosis segment, which possesses a length denoted by L0 . Additionally, d 
represents the distance of the stenosis segment from the initial position P. The geometric characteristics of the 
clot are described as follows:

where cR0 denotes the radius of the inner tube, or catheter, wherein the parameter c is significantly smaller than 
unity ( c << 1 ). The clot axial displacement , with its utmost elevation denoted by σ , is represented by the vari-
able zd.

Mathematical formulation.  Electrohydrodynamics (EHD).  Blood encompasses various ionic constitu-
ents like atoms or molecules that gain or lose electrons and thus carry an electric charge, which confers the 
properties of an electrically conducting fluid upon it. In consideration of this, we investigated the effects of in-
troducing an electric field (0, 0,E0) and an external magnetic field B = ( R̃∗B0

r̃1+R̃∗
, 0, 0) subjected to the blood flow 

in the afflicted arterial, where B0 remains constant. The current density and Lorentz force is given as59:

(1)η(z̃1) =
{

R0 − 2δ
[

cos( 2πL0 (
z̃1−d̃
2 − L0

4 )−
7
100 cos(

32π
L0

(z̃1 − d̃ − L0
2 ))

]

d̃ ≤ z̃1 ≤ d̃ + L0,

R0 otherwise ,

(2)ǫ(z̃1) =
{

R0(c + σ exp(−π2

L0
(z̃1 − z̃d − 0.5L0)

2)), d̃ < z̃1 ≤ d̃ + 3
2L0,

cR0, otherwise,

Figure 1.   Physical sketch of the irregular-shaped constricted artery with Al2O3 nanoparticles.



6

Vol:.(1234567890)

Scientific Reports |        (2023) 13:15441  | https://doi.org/10.1038/s41598-023-42540-0

www.nature.com/scientificreports/

where σnf  and J signifies the electric conductivity and current density vector , respectively. The phenomenon of 
electroosmosis occurs in the present case as the solid conduct, such as an arterial walls or a catheter, interfaces 
with an electrolyte solution, such as blood. The occurrence of this interaction results in the formation of an 
electrical double layer (EDL) in the proximity of the solid surface as a consequence of disparities in ion concen-
trations. The mathematical representation of the electroosmotic potential is given by the Poisson–Boltzmann 
equation as60,61:

where ψ denotes the electro-osmotic function, while ǫ represents the dielectric constant. The variable ρe is 
explicitly expressed as follows:

The number density of cations and anions can be characterized by the Boltzmann distribution which is given as:

where kB is Boltzmann constant , e0 is electric constant, z0 is the charge balance . Combining Eqs. 6 and 7 and 
using the Debye–Huckel linearizion, we get:

By using Eqs. 5 and 8 , the Poisson equation takes the form:

where qm = 1
e0z0

√

ǫkBTavg
2n0

.

Viscosity model.  Corcione62 introduced a theoretical framework for investigating the interrelation between the 
diameters of nanoparticles (dp) with nanofluid viscosity µnf .

where molecular diameter df  of the base fluid is provided as follows:

N represents the Avogadro constant (6.022 ∗ 1023) , applicable to nanoparticles within the size range of 25 to 200 
nm and concentrations spanning from 0.01 to 7.1%.

The abundance of suspended entities within the circulatory system is primarily due to erythrocytes, also 
known as red blood cells or RBCs. These cells significantly impact the biomechanical properties of blood. The 
variability of blood viscosity is influenced by the spatial arrangement of its particles, which is a crucial factor 
examined in the subsequent model proposed in this study63.

where h(r̃1) = hm[1− ( r̃1R0
)m] , hm signifies the maximum level of hematocrit with γ1 as constant.

Governing equations.  Based on the previously mentioned assumption regarding magnetohydrodynamic 
(MHD) interaction, the governing equations are provided as follows63,64:

 Continuity Equation

(3)
J.J

σnf
=σnf

(

R̃∗B0

r̃1 + R̃∗

)2

(w̃2
1)+ σnf E

2
0 ,

(4)J× B =



0, σnf

�

R̃∗

r̃ + R̃∗

�

B0E0,−σnf

�

R̃∗B0

r̃1 + R̃∗

�2

w̃1



,

(5)∇2�̃ = −
ρe

ǫ
,

(6)ρe = (n+ − n−)e0z0.

(7)n± = n0 exp(±
e0z0�̃

kBTavg
),

(8)ρe = −
2e20z

2
0n0

kBTavg
�̃

(9)
(

∂2

∂ r̃12
+

1

r̃1 + R̃∗
∂

∂ r̃1
+

(

R̃∗

r̃1 + R̃∗

)2
∂2

∂ z̄21

)

�̃ = �̃

q2m
,

(10)
µnf

µf
=

1

1− 34.87(
dp
df
)−0.3φ1.03

,

(11)df =
[

6M

Nπρf0

]
1
3

.

(12)µf = µ0[1+ γ1h(r̃1)],
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Momentum (in r∗1-direction)

Momentum (in z∗1-direction)

Temperature Equation

Concentration Equation

Electroosmotic Equation

where ∇2 := ∂2

∂ r̃21
+ 1

r̃1+R̃∗
∂
∂ r̃1

+
(

R̃∗

r̃1+R̃∗

)2
∂2

∂ z̃21
 , the material derivative is D̃

dt̃
:= ∂

∂ t̃
+ ũ1

∂
∂ r̃1

+ w̃1R̃
∗

r̃1+R̃∗
∂
∂ z̃1

 and the 

viscous dissipation term Fvd is given as:

The boundary conditions are given as:

The specification of boundary conditions pertaining to the potential function is as follows:

Where zeta potential functions represented by ζ̃1 and ζ̃2 are specifically denoted with respect to the arterial 
and catheter wall, respectively.

The pulsatile nature of blood flow is an inherent characteristic, primarily resulting from the continuous 
pumping action of the heart. The aforementioned phenomenon can be mathematically characterised in the 
subsequent manner30,66:

where A0 denotes the amplitude of the pressure gradient corresponding to the steady-state condition, while A1 
signifies the amplitude of the pressure gradient associated with the pulsatile state. The term ω̃ = 2π ˜(ν) denotes 
the angular frequency pertaining to the heart.

(13)
∂ũ1

∂ r̃1
+

ũ1

r̃1 + R̃∗ +
R̃∗

r̃1 + R̃∗
∂w̃1

∂ z̃1
= 0.

(14)

ρnf

[

D̃

dt̃
ũ1 −

w̃2
1

r̃1 + R̃∗

]

=−
∂ p̃

∂ r̃1
+ µnf

(

∇2ũ1 −
ũ1

(r̃1 + R̃∗)2
−

2R̃∗

r̃1 + R̃∗
∂w̃1

∂ z̃1

)

+
(

4

3

∂ ũ1

∂ r̃1
−

2

3

(

R̃∗

R̃∗ + r̃1

∂w̃1

∂ z̃1
+

ũ1

R̃∗ + r̃1

)

)

∂µnf

∂ r̃1
.

(15)

ρnf

[

D̃

dt̃
w̃1 +

ũ1w̃1

r̃1 + R̃∗

]

=−
(

R̃∗

r̃1 + R̃∗

)

∂ p̃

∂ z̃1
+ µnf

(

∇2w̃1 −
w̃1

(r̃1 + R̃∗)2
+

2R̃∗

r̃1 + R̃∗

)

+ g(ρβ)nf (T̃ − T̃0)+ g(ρβ)nf (C̃ − C̃0)

+
(

R̃∗

R̃∗ + r̃1

∂ ũ1

∂ z̃1
+

∂w̃1

∂ r̃1
−

w̃1

R̃∗ + r̃1

)

∂µnf

∂r1
+ ρeE0 − σnf B

2
0w̃1

(

R̃∗

r̃1 + R̃∗

)2

.

(16)(ρCp)nf
D̃T̃

dt̃
= κnf∇2T̃ + σnf

(

R̃∗B0

r̃1 + R̃∗

)2

(w̃2
1)+ σnf E

2
0 + Fvd −

∂q

∂ r̃1
.

(17)D̃C̃

dt̃
= Dm∇2C̃ − Rb(C̃ − C̃w).

(18)∇2�̃ = −
�̃

q2m

(19)Fvd = µnf

[

2

(

∂ ũ1

∂ r̃1

)2

+ 2

(

R̃∗

r̃1 + R̃∗
∂w̃1

∂ z̃1
+

ũ1

r̃1 + R̃∗

)2

+
(

∂w̃1

∂ r̃1
−

w̃1

r̃1 + R̃∗ + R̃∗

r̃1 + R̃∗
∂ ũ1

∂ z̃1

)2]

(20)
{

w̃1 = 0, T̃ = T̃0, C̃ = C̃0 at t̃ = 0,

w̃1 = 0, T̃ = T̃w , C̃ = C̃w at r̃1 = η(z̃1) and r̃1 = ǫ(z̃1).

(21)
�̃ =ζ̃2 on r̃1 = ǫ(z̃1),

�̃ =ζ̃1 on r̃1 = η(z̃1).

(22)−
∂p

∂ z̃1
= A0 + A1cos(2πωpt̃), t̃ > 0,
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Non‑dimensionalization.  In consideration of the dimensionless parameters delineated in the nomencla-
ture, the pertinent Eqs. (13)–(21) that govern the model under the assumption of mild stenosis (δ∗ << 1) and 
the condition O(1) = α = R0

�
 can be expressed as follows63:

Associate boundary conditions are as follows:

Boundary condtion for electroosmotic function:

The dimensionless expressions corresponding to the diseased artery are provided as: Clot region:

Stenosis Region:

where σ represents the maximum clot height at the axial location zd , while the inner tube radius is denoted as cR0 , 
where c is a considerably small value (c << 1) . Additionally, the maximum height of the stenosis is symbolized 
by parameter δ in equation (31), and the specific location of the affected segment is represented by the variable d.

The pressure component in dimensionless form is given as63:

where D1 = A0R
2
0

µ0U0
, e = A1

A0
, and cp =

2πR0ωp

U0
.

The volumetric flow rate is defined as10:

In the afflicted arterial system, the impedance encountered by the blood flow is expressed as10:

(23)
dp

dr1
= 0,

(24)

ρnf

ρf
Re

∂w1

∂t
= −

Rc

Rc + r1

∂p

∂z1
+

µnf

µ0

(

∂2w1

∂r2
1

+
1

r1 + Rc

∂w1

∂r1
−

w1

(r1 + Rc)2

)

+ Uhsq
2

e�+
(ρβ)nf

(ρβ)f
(Grθ1 + Gcφ1)

−
mβ1hmr

∗m−1

1
(

1− 34.87

(

dp
df

)−0.3

φ1.03

)

(

∂w1

∂r1
−

w1

Rc + r1

)

−
σnf

σf

(

Rc

r1 + Rc

)2

M2w1,

(25)

(ρCp)nf

(ρCp)f

κf

κnf
PrRe

∂θ1

∂t
=

∂2θ1

∂r2
1

+
1

r1 + Rc

∂θ1

∂r1
+

σnf

σf

κf

κnf

[

(

Rc

r1 + Rc

)2

BrM2w2

1 + Sz

]

+
κf

κnf
Nr

∂2θ1

∂r1
2

+
(

κf

κnf

)(

µnf

µ0

)

Br

[

∂w1

∂r1
−

w1

r1 + Rc

]

.

(26)ReSc
∂φ1

∂t
=

∂2φ1

∂r21
+

1

Rc + r1

∂φ1

∂r1
− Scξφ1,

(27)
∂2�

∂r21
+

1

Rc + r1

∂�

∂r
= q2e�.

(28)
{

w1 = θ1 = φ1 = 0 at t = 0,
w1 = 0, θ1 = 1,φ1 = 1 at r1 = ǫ(z1) and r1 = η(z1).

(29)
� =0.1 on r1 = ǫ(z1),

� =0.3 on r1 = η(z1).

(30)ǫ(z1) =
{

c + σ exp(−π2(z1 − zd − 1/2)2), d < z1 < d + 3/2,
c, otherwise ,

(31)η(z1) =
{

1− 2δ∗
[

cos(2π( z1−d
2 − 1

4 )−
7
100 cos(32π(z1 − d − 1

2 ))

]

d ≤ z1 ≤ d + 1,

1 otherwise ,

(32)−
∂p

∂z1
= D1(1+ e cos(cpt)),

(33)Q =
∫ η

ǫ

w1r1dr1.
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Finally, the shear stress profile is given as49:

Entropy.  Entropy is the measured of the irreversibility present in the system. The entropy is attribute to the 
change in the system cause by mass and thermal exchange. The overall entropy is the sum of entropy produces 
by each individual process. The dimensional volumetric entropy generation is defined as9,67:

There are four components in the above equations. The first term on right hand side depicts the irreversibility 
due to heat transfer , the second term for the hydromagnetic, third term for the fluid friction and the last term 
for solute irreversibility. We simplified the above equation further, to get;

The dimensionless Ns defined as the ratio of total entropy generation to characteristic entropy transfer. It is 

defined as Ns = T̃2
0R

2
0

κf (�T̃)2
× Eg . Using equation above, we have

where Ŵ = DbT̃0�C̃

κf�T̃
 . The Bejan number is defined as the ratio of heat transfer irreversibility to total irreversibility. 

So, we have

Numerical methodology
The mathematical model under consideration yields a set of non-linear coupled PDEs (partial differential equa-
tions), for which obtaining exact solutions proves to be challenging. In all but a few very basic circumstances, 
accurate solutions to these equations are impossible. As a result, several different numerical techniques have 
been developed to address these problems.

(34)� =
L(

∂p
∂z∗1

)

Q
.

(35)τw1 =
(

∂w1

∂r1

)

r1=η

.
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[
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+
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)
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+
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(
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)2

.

(37)

Eg =
κf
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0
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2
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0
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+
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3
0
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0
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(
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.

(38)

Ns =
[

κnf

κf
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](
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∂r1

)2

+
µnf

µ0

{(

∂w1

∂r1
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+
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+
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(
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,

(39)Be =
N
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=

[

κnf
κf

+ Nr
]

( ∂θ1
∂r )

2

[

κnf
κf

+ Nr
](

∂θ1
∂r1

)2
+ µnf

µ0

{

(

∂w1
∂r1

)2
}

Br
�

+ σnf
σf

M2Br
�

((

Rc
r1+Rc

)

w1 − E1
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+ �Ŵ

�

(

∂φ1
∂r1

)2
.

Table 1.   Thermophysical properties of nanofluid65.

Properties Mathematical expression for nanofluid

Viscosity µnf = µ0[1+γ1h(r̃1)]
(1−34.87(

dp
df

)−0.3φ1.03
n )

Density ρnf = (1− φn)ρf + φnρs1

Heat Capacity (ρCp)nf = (1− φn)(ρCp)f + φn(ρCp)s1

Thermal Conductivity knf
kf

= ks1+(m−1)kf −(m−1)φn(kf −ks1 )

ks1+(m−1)kf +φn(kf −ks1 )

Electrical Conductivity σnf
σf

= σs1+(m−1)σf −(m−1)φn(σf −σs1 )

σs1+(m−1)σf +φn(σf −σs1 )

Thermal Expansion Coefficient γnf = (1− φn)γf + φnγs1
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With today’s fast computers and cutting-edge commercial software, such methods have become more straight-
forward and accurate. There have been a number of researchers that have suggested the Crank–Nicolson tech-
nique as an implicit strategy. It is second-order convergent in time. This method uses the finite difference grid as 
shown in Fig. 2 , replacing the spatial derivative at 

(

tn−1/2, xj
)

 by taking the average of upstream and downstream 
values at tn−1 and tn , respectively. In a similar manner, the time derivative can be substituted with the central 
difference formula at the point 

(

tn−1/2, xj
)

.

Table 2.   Values of the physical parameters with their sources.

Parameters Ranges Sources

Thermal Grashof number (Gr) 0–6 35,37

Nanoparticle shape parameter (n) 3–8.6 6,10

Prandtl number (Pr) 0–4 10,14

Radiation parameter (Nr) 0–3 37,53

hematocrit parameter ( hm) 0–1 25,34

Magnetic Number (M) 0–4 7,36

Brinkmann number (Br) 0.1–2 5,10

Figure 2.   Grid for the Crank–Nicolson scheme.

Figure 3.   Thermophysical properties of blood and nanoparticle.
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Discretization of governing equations.  In this study, we utilized the dimensional parameter and ther-
mophysical parameters specified in the nomenclature and Table 1, respectively. Additionally, the thermophysical 
properties of blood and nanoparticles, as presented in Figure 3, were taken into consideration, along with the 
physical parameters from Table 2. The resulting discretized governing equations are displayed as follows:

Here, φn denotes the nanoparticles volumetric concentration. The discretized equations for the initial and 
boundary conditions are given as:

The tri-diagonal system obtained from Eq. (40) is written as:

where
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Using Eq. (41), we may derive the tridiagonal system:
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Using Eq. (42), we may derive the tridiagonal system as:

where

The flow region has been partitioned into a grid composed of (N + 1)× (M + 1) points. In our analysis, we 
have chosen to utilise temporal and spatial discretization with step sizes �t = 0.01 and �x = 0.001 , respectively, 
while considering the Crank–Nicolson method, which is renowned for its second-order convergence.

In order to enhance the precision of our results, we have implemented a meshing scheme that ensures the 
attainment of a convergent solution. In order to perform numerical computations, a custom MATLAB code has 
been developed to solve for the distribution of velocity, temperature, electroosmotic, and concentration fields 
within the specified domain. It is worth noting that the electroosmotic equation is unaffected by changes in time, 
enabling us to effectively create a specialised function file that includes it in each temporal iteration.

Result and discussion
Validation.  This study aims to validate our model by comparing it to the previously published research con-
ducted by Elnaqeeb et al.4. For the validation process, the radiation conditions and irregular stenosis were not 
considered. To validate the findings, the primary objective was to analyse the behaviour of copper nanoparticles 
within the bloodstream when subjected to a straight artery ( Rc  = 0 ) while accounting for the source term in 
place of radiation. The boundary conditions utilised in this study for validation process were derived from the 
previously mentioned research conducted by Elnaqeeb et al.4. The temperature and velocity profiles for the fixed 
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parameters σ = 0.2 and Gr = 5 are illustrated in Fig. 4a,b, correspondingly. Significantly, the findings derived 
from this investigation demonstrate a substantial degree of concurrence with the outcomes presented in the 
research conducted by Elnaqeeb et al. 4.

Velocity profile.  Figure 5 depicts the impact of the different parameters on the velocity profile. The impact 
of magnetic field parameters and electric kinetic potential between the clot and stenotic zone is depicted in 
Fig. 5a. The analysis reveals that an increase in the magnetic field parameter leads to a decrease in the velocity 
profile, whereas a contrasting trend is observed in relation to the parameter qe . The Debye–Huckel parameter 
qe exerts a substantial influence on the fluid motion throughout the entire region being analysed. The figure 
provided depicts the scenarios when an electric double layer (EDL) is absent ( qe = 0 ) and when it is present 
( qe  = 0 ). It is worth mentioning that an augmentation in the electro-kinetic parameter, which corresponds to 
a decrease in the electrical double layer (EDL) thickness, enhances the movement of fluid by reducing the drag 
force acting on it. The bulk fluid moves proportionately to the charged surface due to the applied electric field. 
Increasing the magnetic field parameter from M = 0 to M = 4 resists the fluid motion due to resistive Lorentz 
force. Figure 5b elucidates the effect of the shape and size of the nanoparticles on the velocity profile. According 
to several researchers, the velocity profile increases as particle size grows from 23 nm to 110 nm. The surface 
area ratio of a nanoparticle increases with nanoparticle size. Thus, reducing the nanoparticle size enhances the 
fluid’s viscosity and impedes the fluid flow. Figure 5c depicts the increasing trend of the velocity profile for an 
enhancing Gc parameter (Gc = 0, 1, 2, 3) . The concentration profile is coupled with the velocity profile as seen 
in Eq. (24).

The solutal Grashof paramter is the ratio of solutal buoyancy with the hemodynamic viscous force. The buoy-
ancy force depicts the dominant behavior as the value of Gc parameter increases and thus, shows the increasing 
the velocity profile. Figure 5d demonstrates the effect of curvature on the velocity profile. It is observed from the 
graph that the velocity enhances as the curvature parameter increases from 0 to 5. This phenomenon indicates 
that as the curvature parameter increases, the artery tends to transform into a straight channel, resulting in 
reduced fluid obstruction near the wall and facilitating fluid motion. Figure 5e illustrates the velocity profile by 
varying the hematocrit dependent viscosity parameter. In the current study, the figure illustrates both scenarios, 
one with negligible viscosity ( hm = 0 ) and the other with varying viscosity ( hm  = 0 ). The velocity profile dem-
onstrates a decrease as the hematocrit parameter increases, primarily due to the concurrent increase in fluid 
viscosity. The velocity profile, as depicted in Fig. 5f, showcases the cumulative effect of nanoparticle volumetric 
concentration and the Grashof number (Gr). It presents a comparative analysis between the velocity profiles of 
pure blood (devoid of any added nanoparticles) and Al2O3-blood (containing integrated nanoparticles). One 
can observed from the figure that the velocity distribution improves as the Grashof number or nanoparticles 
concentration enhances in the blood. Enhancing the Grashof number increases the velocity profile due to the 
dominating buoyancy force over the viscous force.

Temperature profile and concentration profile.  The temperature profile enhancement is depicted in 
Fig. 6a, illustrating its dependence on the nanoparticle size dp and the shape parameter. The shape parameter 
is denoted by n, where n = 3 corresponds to spheres, n = 5.7 and n = 8.6 represents for platelets and bricks, 
respectively.

The findings suggest that the shape parameter significantly affects the temperature profile, while the size 
parameter has a relatively minimal impact. It is worth noting that an augmentation in the shape parameter 
enhances thermal conductivity, thereby resulting in an elevated temperature profile. The investigation focuses 
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on the influence of two key parameters, namely the Prandtl number (Pr) and the radiation parameter (Nr), on 
the temperature profile within the context of Fig. 6b. The provided figures demonstrate a noticeable increase in 
the temperature distribution as the radiation parameter (Nr) progresses from Nr = 0 (representing the absence 
of radiation) to Nr = 2 . The observed escalation in temperature distribution can be ascribed to an accompany-
ing surge in the generation of thermal energy, thereby contributing to an upward trajectory in the temperature 
profile. Therefore, Nr is considered to be a critical factor in determining the temperature profile. The implications 
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of the findings presented in this study are of considerable importance across multiple domains. These endeavours 
encompass the observation of temperature elevations during hyperthermia therapy for cancer and the advance-
ment of drug administration mechanisms that employ magnetically altered nanoparticles for damaged arterial 
structures. In certain pathological scenarios, surgeons may opt to administer a heightened dosage of radiation 
to enhance the thermal distribution, thereby selectively focusing on malignant cells while safeguarding the 
integrity of healthy ones. Moreover, the analysis presented in Fig. 6b demonstrates that an augmentation in the 
Prandtl number (Pr) from 19 to 25 leads to a more advantageous thermal profile. The observed occurrence can be 
ascribed to the inverse correlation between the Prandtl number and the effective thermal conductivity. It may be 
noted that the rate at which heat is transmitted from the artery walls to the surrounding fluid (blood) is reduced 
for higher Prandtl numbers. This particular observation has the potential to play a crucial role in enhancing the 
efficiency of heat transfer mechanisms within a range of biomedical contexts.

The fact that the concentration profile has a suppressing effect for an increasing value in the chemical reac-
tion parameter may be gleaned from Fig. 6c, as shown. This has occurred as a consequence of the low molecular 
diffusivity that rises as the value of ξ increases; as a result, less fluid diffuses through the artery wall. Therefore, 
this behaviour manifests itself everywhere across the flow field. The effect of Schmidt number on the concentra-
tion profile is illustrated in Fig. 6d. It is possible to deduce from the figure that the concentration profile will get 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Non-dimensional radius

0.88

0.9

0.92

0.94

0.96

0.98

1

te
m

pe
ra

tu
re

dp=23, n=3

dp=47, n=3

dp=110, n=3

dp=23, n=5.7

dp=23, n=8.6

dp=23, n=3

dp=47, n=3

dp=110, n=3

dp=23, n=5.7

dp=23, n=8.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Non-dimensional radius

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

te
m

pe
ra

tu
re

Pr=19, Nr=2
Pr=21, Nr=2
Pr=23, Nr=2
Pr=23, Nr=0
Pr=23, Nr=0.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Non-dimensional radius

0.75

0.8

0.85

0.9

0.95

1

co
nc

en
tr

at
io

n

=0.5
=1
=1.5
=3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Non-dimensional radius

0.75

0.8

0.85

0.9

0.95

1

co
nc

en
tr
at
io
n

Sc=0.5
Sc=1.5
Sc=2
Sc=3

Figure 6.   Temperature profile by varying (a) dp and n,    (b) Pr and Nr;     Variation in concentration profile by 
varying (c) ξ ,     (d) Sc.



17

Vol.:(0123456789)

Scientific Reports |        (2023) 13:15441  | https://doi.org/10.1038/s41598-023-42540-0

www.nature.com/scientificreports/

lower as the Schmidt number gets higher. As the Schmidt number increases, there will be less mass diffusion, 
resulting in a lower concentration profile.

Flow rate and impedance.  The present study illustrates the influence of the hematocrit parameter on 
the flow rate through the utilization of Fig.  7a,b. In Figure 7a, the first scenario is depicted, wherein the clot is 
positioned on the left side of the stenosis. Conversely, Fig. 7b portrays the second scenario, wherein both the 
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clot’s axial position and location remain consistent. Clearly, from the figures, it can be seen that the flow rate is 
less in Fig. 7a as compared to Fig. 7b at the axial position z1 = 2 to z1 = 3 . This has happened due to hindrance 
observed by the flow from both clot and stenosis simultaneously, while the flow rate in Fig.  7a first reduces due 
to clot presence and then decreases due to stenosis presence. In both depicted illustrations, a noticeable decre-
ment in the flow rate, accompanied by an enhancement in the hematocrit parameter. The observed phenom-
enon can be elucidated by the simultaneous increase in fluid viscosity resulting from higher levels of hematocrit 
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concentrations in the blood. Similarly, from the Fig. 7c,d, we can observed that the impedance profile is higher 
for the case 2 as compared to case 1. In first case, fluid first experience the obstruction due to clot placed at the 
catheter, then due to stenosis at the arterial wall. In the second case, as the stenosis and clot are located at z = 2.5 
(positioned at same axial position), so the fluid (blood) experience more hindrance due to their combined effect 
as compared to first case, where the hindrance in fluid path exists independently. In both the figures, the imped-
ance profile shows increasing nature with respect to the hematocrit parameter. The fluid viscosity increases with 
an enhancement in the hematocrit parameter leading to show declination in the fluid velocity due to hindrance 
in its path. Figure 7e,f potrayed the flow rate and impedance profile for the distinct nanoparticle size , respec-
tively. Clearly, from the figure, it can be inferred that flow rate increases as the nanoparticle size enhances as 
observed in the Fig. 7e, while shows the declining nature in the impedance profile as depicted by Fig.  7f. The 
smaller the size of the nanoparticle then fluid has more viscosity. Thus, increasing the nanoparticle size reduces 
the fluid viscosity leading to increasing the flow rate profile whereas decreasing impedance profile as less hin-
drance comes to the fluid path.

Heat transfer coefficient profile and wall shear stress (WSS).  The profile of the heat transfer coef-
ficient for flow parameters like the Prandtl number and the radiation parameter are depicted in Fig. 8a,b, respec-
tively. It may be noted from the Fig. 8a that the heat transfer profile at axial position z1 = 2.5 (peak value of 
stenosis), the change in heat transfer profile is nearly 65% for change in Pr from 19 to 23.

While, the enhancement is nearly 200% for change of Pr from 25 to 27. Similarly, we can observed from the 
graph that near the clot region (clot position shifted left of stenosis) at z1 = 1.5 , the change is nearly 300% for Pr 
ranging from 19 to 23 and nearly 35% for Pr ranging from 25 to 27. Also, we can inferred that the heat transfer 
efficiency profile rises to a higher level as the value of Pr is increased. It may be justified since there has been a 
drop in the thickness of the thermal boundary layer. The reduced temperature profile is the consequence of the 
reduction in thermal conductivity. As a result, the coefficient of heat transmission through the wall increases. 
The decrease in thermal conductivity that can be seen in Fig. 8b is shown to occur when the radiation parameter 
is increased. The reversal trend is seen as a result of an increase in the thickness of the thermal boundary layer 
close to the wall as Nr increases. Therefore, Nr brings about a decrease in the heat transmission coefficient. 
From the figure, we can observed that at the stenosis peak, the change in heat transfer profile is nearly 69% and 
nearly 300% for change in Nr from 0 to 1 and 2 to 3, respectively. While, near the clot region, the change in heat 
transfer profile is nearly 53% and nearly 200% for change in Nr from 0 to 1 and 2 to 3, respectively. The change 
in percentage value for both the figures can be occur due to amplifying nature of irregular stenosis and clot with 
change in the parameter values.

Figure 8c shows how the size of the nanoparticles affects the WSS distribution. As the value of parameter 
dp grows, a rising trend is seen in the WSS profile. This is because reducing the nanoparticles size has lowered 
down the fluid’s viscosity, which has increased fluid flow and rendered WSS a growing function of nanoparticle 
size. When both the stenotic depth and the magnetic field parameter increase, the WSS profile decreases, as 
seen in Fig. 8d. The fluid’s velocity slows as a result of Lorentz force acting against it. As well as increasing the 
stenotic depth decreases the fluid velocity as it experiences hindrance in its path with an increase in the size of 
the stenosis. Grashof number’s influence on the shear stress profile is seen in Fig.  8e. The amplitude develops 
slowly at first and then oscillates at regular intervals. As Gr increases from 0 to 2, the fluid flow enhances due to 
the generation of thermo buoyancy force.

Velocity contour.  The velocity contour provides a visual depiction of the flow, which may be used to analyse 
the effect of various parameters on the flow field. Velocity contours display the velocity magnitude at different 
arterial locations by the series of color-coded regions. The contour for a range of hematocrit values, from hm = 0 
to hm = 1 , is portrayed in Fig. 9a–c. The artery section consider here lies in the region of z = 0.5 to z = 5 . It can 
be concluded from the figure that the velocity of the fluid reduces from 0.0055 to 0.0025. This declination is justi-
fied from the Fig.  9a–c as the magnitude of hematocrit parameter augmented the fluid viscosity also enhances 
that is depicted by the reduction in the flow rate. Figure 9d-f portrays the role of the size of the stenosis and clot 
on the hemodynamic flow. The fluid velocity reduces as the size of the stenosis or clot increases as depicted in the 
figure. If the Fig. 9d, e are compared with Fig. 9f, the reduction in the velocity can be observed near the region 
occupying the clot and stenosis in the span of z = 2 to z = 3.

The hindrance comes in the fluid path can be catastrophic as it reduced the blood flow through artery which 
is necessary for the basic functions of the body. Thus, it is necessary to address this behavior and proper cure for 
the disease at a right time. The impact of the clot location on the hemodynamic flow issue is shown in Fig. 9g–i. 
Although the maximum flow velocity remains the same in all three conditions, but the change in flow velocity 
in a certain region can be observed from the figure. In Fig. 9g, the position of the clot comes first afterwards, 
the stenosis. Similarly, in Fig. 9i, the position of the stenosis comes first afterwards the clot, while in Fig. 9h, the 
stenosis and clot are centered at the same axial position. In Fig. 9h, the stenosis and clot are centered at the same 
axial position. Compared to the other two situations, the flow velocity is lower in scenario 9h because the clot 
and stenosis act together to provide a multiplicative effect on the resistance to blood flow. Figure 9j–l depicts the 
velocity profile for different nanoparticle concentrations from 0 to 0.03. Figure 9j represents the arterial section 
when no nanoparticle is mixed with the blood, while the other two cases (see 9k,l) are for nanoparticle concentra-
tions 0.02 and 0.03. As the concentration of nanoparticles in the blood increases, the velocity profile decreases. 
These methods may be beneficial for medical professionals and surgeons to slow the body’s blood circulation.

Entropy.  Figure 10a,b depict the effect of magnetic field parameter on the entropy generation NG and Bejan 
number Be, respectively. The figure demonstrates a pattern in which the entropy initially decreases, followed 
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by an increase, and ultimately reduces again as the magnetic field parameter is enhanced. While, the reversed 
behavior is observed with the Bejan number profile as depicted in Fig. 10b.

It is noticed from Fig. 10a that the entropy generation profile decreases as the magnetic field parameter 
enhances near the arterial wall and catheter tube. This has happened due to the fluid friction irreversibility arises 
from the resistive Lorentz force. As, we move away from the walls near the center of the artery, the heat transfer 
irreversibility dominates due to presence of strong magnetic field which raises the temperature due to Ohmic 

Figure 9.   Velocity contour by varying hematocrit parameter, by varying stenosis and clot size, by varying the 
position of the clot, by varying nanoparticle concentration.
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heating. Hence, the entropy generation enhances near the center. Figure 10c elaborates the entropy generation 
profile for different values of the Brinkmann number Br. Brinkmann number is the ratio of heat generated due 
to viscous dissipation and heat transported by the molecular conduction. It is evident from the figure that there 
is a discernible correlation between the Brinkmann number and the enhancement of the entropy profile. This 
has happened due to the less prominent effect of viscous dissipation as compared heat transfer by molecular 
conduction. The substantial amount of heat generated between the layer of the fluid causing an enhancement 
in the entropy profile. The reverse behavior is observed in the Bejan number profile as depicted in the Fig.  10d. 
The declination in the Bejan profile can be explained by the fact that the less dominant effect of the molecular 
conduction as compared to viscous dissipation effect.

Conclusion
The present mathematical model provides the deep insight into the rheology of blood subject to pathological 
conditions such as stenosis and thrombosis and further helps scientists and researchers to understand the blood 
flow characteristics. The reduced form of governing equations are discretized using the Crank–Nicholson method 
and the relevant profile are computed. The salient findings are delineated as follows:

•	 The velocity distribution demonstrates an increase with an escalation in the nanoparticles volumetric con-
centration or the Grashof number, primarily due to the intensified effect of buoyant forces .

•	 The decrement in the WSS profile is observed with an increment in stenotic depth or the magnetic field 
parameter M.

•	 The velocity profile exhibits a negative correlation with the magnetic field intensity, while a positive correla-
tion is observed between the velocity profile and the Debyle length parameter.
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•	 Increasing the Brinkmann paramter Br enhances the entropy generation profile but shows the reverse trend 
with the Bejan number.

The current investigation entails the incorporation of aluminium oxide nanoparticles (AlNPs) into the base fluid 
medium. The nanoscale entities are categorized as porous metallic oxides, which possess significant surface areas 
and strongly resist chemical and mechanical disturbances. The extensive accessibility of these technologies makes 
them economically feasible for integration into the field of biomedical applications. In addition, the aluminium 
nanoparticles (AlNPs) exhibit significant chemical stability even under exposure to abrasive environments. 
Examining various dimensions and configurations of nanoparticles within the curved artery facilitates research-
ers in acquiring knowledge pertaining to the customization and production of pharmaceuticals to enhance drug 
delivery systems’ efficacy. Entropy analysis allows researchers to quantitatively assess the degree of disorder or 
randomness displayed by flow patterns and evaluate energy dissipation within the system. The present study has 
primarily focused on standard wall conditions. It is imperative to extend the investigation by considering the 
permeable wall conditions to advance the research in this domain. To Utilize the magnetic drug targeting to treat 
stenosed arteries with aneurysms and other pathological conditions. The current study has yet to delve into the 
complexities of two-phase blood flow modelling. Incorporating the two-phase blood flow model to analyze the 
fluid flow and heat transfer in a curved tube with time-variant stenosis can significantly broaden the research.

Data availability
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able request.
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