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Using artificial intelligence 
algorithms to reconstruct the heat 
transfer coefficient during heat 
conduction modeling
Elzbieta Gawronska 1, Maria Zych 1*, Robert Dyja 1 & Grzegorz Domek 2

The article shows the usage of swarming algorithms for reconstructing the heat transfer coefficient 
regarding the continuity boundary condition. Numerical calculations were performed using the 
authors’ own application software with classical forms of swarm algorithms implemented. A functional 
determining error of the approximate solution was used during the numerical calculations. It was 
minimized using the artificial bee colony algorithm (ABC) and ant colony optimization algorithm 
(ACO). The considered in paper geometry comprised a square (the cast) in a square (the casting 
mold) separated by a heat-conducting layer with the coefficient κ . Due to the symmetry of that 
geometry, for calculations, only a quarter of the cast-mold system was considered. A Robin’s boundary 
condition was assumed outside the casting mold. Both regions’ inside boundaries were insulated, 
but between the regions, a continuity boundary condition with nonideal contact was assumed. The 
coefficient of the thermally conductive layer was restored using the swarm algorithms in the interval 
900−1500 [W/m2

K ] and compared with a reference value. Calculations were carried out using two 
finite element meshes, one with 111 nodes and the other with 576 nodes. Simulations were conducted 
using 15, 17, and 20 individuals in a population with 2 and 6 iterations, respectively. In addition, each 
scenario also considered disturbances at 0 % , 1 % , 2 % , and 5 % of the reference values. The tables and 
figures present the reconstructed value of the κ coefficient for ABC and ACO algorithms, respectively. 
The results show high satisfaction and close agreement with the predicted values of the κ coefficient. 
The numerical experiment results indicate significant potential for using artificial intelligence 
algorithms in the context of optimization production processes, analyze data, and make data-driven 
decisions.

AI has been instrumental in addressing various complex issues, with road safety being a prime example. Adaptive 
safety systems have been developed to enhance the security of moving vehicles, often requiring rapid prediction 
of potential dangers to avert accidents or traffic incidents. Meier et al.1 introduced an AI-based method that 
automatically learns a predictive function. These models demonstrate improved performance and increased 
passenger security when integrated with adaptive safety systems.

Swarm algorithms, inspired by biological observations of animals such as bee swarms, ant colonies, bird 
flocks, and worm groups, have made significant advancements in AI. Hackwood2 presented the concept of intel-
ligent swarming, emphasizing the adaptability of these algorithms to various constraints, including space size 
and independence of the number of variables.

As we transition into Industry 4.0, the appropriate application of AI algorithms becomes increasingly crucial.
One such application involving the heat conduction problem with an unknown heat source was discussed by 

Karaboga3. The author formulated this physical problem as an optimization challenge, using heuristic algorithms, 
such as genetic algorithms, to search for improved solutions. These algorithms utilize evolutionary mechanisms 
and natural selection principles to navigate available solutions.

The swarming algorithms were modeled on the intelligence of bees. Karaboga4 proposed the Artificial Bee 
Colony (ABC) algorithm, a model based on the food-seeking behavior of honey bees. The model encompasses 
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three main elements: employed bees, food sources, and non-employed bees. Additionally, bees use an extended 
dance technique to enhance communication about food sources with other individuals.

In the conventional approach, optimization problems are typically addressed through gradient-based meth-
ods. Gradient-based algorithms and bee/ant swarm algorithms represent distinct methodologies for optimization. 
The first of them leverage the derivatives of a function to find the value where the function attains its smallest 
value. Whereas the second one, to ascertain the most optimal solution, employs natural evolution as a source of 
inspiration, drawing from the evolutionary processes observed in living species within the natural environment. 
No gradient counting is needed in ABC and ACO algorithms.

Gradient-based algorithms are suitable for solving problems where the objective function has a smooth pro-
file, and the derivatives of the function are known since they can quickly and efficiently find the local minimum 
of the objective function. Bee and ant swarm algorithms are better suited for solving problems where the objective 
function has an irregular profile or only the function values at the mesh nodes are known5,6.

Swarm algorithms used in the article are more robust to errors (such as input data errors and algorithm 
implementation errors) relative to gradient-based algorithms. In addition, ACO and ABC algorithms are more 
scalable than gradient-based algorithms. Gradient-based algorithms can be difficult to apply to complex problems 
because they require calculating gradients for all optimized variables.

Swarm algorithms are more efficient than gradient methods because all individuals in the population can 
solve the problem simultaneously, while gradient-based algorithms can be time-consuming for large problems7.

Ultimately, the choice of algorithm depends on the specific problem to be solved. If the problem has many 
local minima, bee and ant swarm algorithms are better than gradient methods. If the problem has a smooth 
profile and is easy to solve, then gradient-based algorithms are a better choice.

Local minimums resilience refers to the ability of an optimization algorithm to avoid local minimums that 
are not global. Gradient optimization algorithms are susceptible to local minimums because they track the 
directions of the greatest decrease in the objective function, which means that these algorithms will move in the 
direction in which the value of the objective function decreases the fastest. If the solution space has multiple 
local minima, the gradient optimization algorithm may get stuck in one of them, skipping the global minimum. 
ABC and ACO algorithms are less prone to local minimums because they do not rely on differentiation of the 
objective function, which means these algorithms randomly explore the solution space, increasing the chances 
of finding a global minimum. However, robustness to local minimums is one of many factors to consider when 
choosing an optimization algorithm. Other important factors include the algorithm’s complexity and run time. 
Note, however, that not all inverse problems are the same, and in some cases, gradient optimization algorithms 
may be a better option8.

Both swarm algorithms (ABC and ACO) and gradient methods solve optimization problems, but the first is 
evolutional, and the second one is analytical. ABC and ACO algorithms are more effective than gradient methods 
in tackling high-complex optimization problems due to their ability to explore the solution space. Furthermore, 
gradient approaches can become stuck in local minima, whereas ABC and ACO algorithms can get around this 
problem. The time consumption of bee and ant swarm algorithms depends on many factors, such as the size of 
the problem, the number of individuals in the swarm, and the values of the input parameters controlling the 
algorithm. In general, bee and ant swarm algorithms are considered linear complexity algorithms. Gradient-based 
algorithms are decision algorithms that guarantee to find the optimized problem’s global minimum. However, 
they can be time-consuming, especially for large problems (be careful when translating). As with swarm algo-
rithms, the time consumption of gradient algorithms depends on factors such as the size of the problem or the 
number of variables in the problem. In general, gradient algorithms are considered algorithms of quadratic com-
plexity. On the other hand, ABC and ACO algorithms tend to be slower than gradient methods. This is because 
ABC and ACO algorithms have to explore the solution space randomly, while gradient methods can quickly 
use information about the objective function to find a solution. In conclusion, swarm algorithms are considered 
more efficient but generally slower than gradient methods in solving optimization problems of high complexity8.

Finding the shortest path in a city between two points spaced at a given distance from each other is a differ-
ent problem. Ant Colony Optimization (ACO) algorithm was used to solve it. This algorithm makes full use of 
the capabilities of distributed and large-scale systems. In a paper9, Komar demonstrated a better ACO efficiency 
than standard navigation to find the shortest route between two points.

In their research, Hetmaniok et al.10,11 applied selected swarm intelligence algorithms to address the inverse 
heat conduction problem, focusing on the third kind of boundary condition. They reconstructed the tempera-
ture distribution within the considered area and identified the thermal conductivity parameter as part of the 
problem-solving process. The accuracy of the approximate solution was assessed by minimizing the functional 
in the heat conduction problem. The authors emphasized the efficacy of swarm algorithms in solving inverse 
problems, particularly when considering input errors and parameter selection.

The finite elements method (FEM) for numerical calculations of many phenomena in computer simulations 
is the most widely used method, for example, in the continuous casting of steel and many others12–14. Therefore, 
the authors use FEM in the numerical part of their study.

Conductivity-radiation transient problems are often encountered in engineering applications such as ther-
mal insulation design and heat transfer analysis in combustion chambers. Many unknown parameters, such as 
thermal conductivity, emissivity, and absorption, typically characterize these problems. Inverse analysis is the 
process of estimating unknown parameters from experimental data.

The authors in15 present a new inverse analysis method for conductivity-radiation transient problems. The 
method proposed is based on the Boltzmann method on a grid (LBM) and the finite volume method (FVM). The 
LBM method is a numerical method for solving transport equations, such as the thermal conductivity equation. 
The FVM method is a numerical method for solving partial differential equations, such as the radiation equa-
tion. The Genetic Algorithm (GA), a stochastic optimization algorithm, was also used to find optimal values 
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for unknown parameters. The authors demonstrated the applicability of artificial intelligence to engineering 
problems.

The thermal properties of materials are often difficult to measure accurately, especially for materials with 
variable thermal conductivity, such as composites and porous materials. Inverse analysis is a powerful tool that 
can be used to recover the thermal properties of materials from experimental data.

The authors in16 present a new inverse analysis method for recovering the thermal properties of materials in 
transient conductivity-radiation problems. The presented method is based on the finite element (FEM), a pow-
erful numerical method for solving partial differential equations. The authors also used the genetic algorithm 
(GA), a stochastic optimization algorithm, to search for optimal values of thermal properties. It was shown that 
the presented method can accurately estimate unknown parameters from experimental data.

Fourier’s law of thermal conductivity is a commonly used model for heat transfer in solids. However, there 
are many situations in which Fourier’s law is not valid, such as in materials with large temperature gradients 
or materials with inhomogeneous properties. In such cases, it is necessary to use a more general heat transfer 
model, such as Non-Fourier’s law. In the article17, the authors present an inverse analysis method for parameter 
estimation in non-Fourier’s law. The method presented is based on the finite element method (FEM), a powerful 
numerical method for solving partial differential equations. For calculations, the authors also used the genetic 
algorithm (GA), a stochastic optimization algorithm, to find optimal parameter values. The authors demon-
strated the effectiveness of the method. The authors apply it to the two-dimensional non-Fourier problem of 
conductivity and radiation. They showed that the method can accurately estimate parameters in the non-Fourier 
law from experimental data.

AI algorithms and their applications in areas such as heat conduction showcase the potential for innovative 
solutions in various fields. The seamless integration of AI methodologies, including swarm algorithms, with 
mathematical models in heat transfer and other domains will continue to drive progress and open new avenues 
for research and development.

The conducted research aimed to reproduce the value of the κ coefficient that it can take during the solidifica-
tion of the cast in the casting mold. While the measurement of temperatures in the cast and the casting mold is 
accurate, the experimental determination of the κ coefficient is difficult due to the variability of the gap between 
the cast and the casting mold. Two swarm algorithms were used for this research. The coefficient κ was deter-
mined based on temperature changes over time. In addition, to take measurement uncertainty into account in the 
experiment, it was assumed that temperatures could be read with 0 % , 1 % , 2 % , or 5 % disturbance. The research 
was tested by conducting a numerical experiment for parameters corresponding to the cooling of an aluminum 
alloy cast in the casting mold. It is worth noting that there are already publications related to applying artificial 
intelligence algorithms to casting processes. Some studies have used genetic algorithms; others have used neural 
networks or other optimization methods. However, our study brings a new perspective to the problem of repro-
ducing casting conditions by focusing on swarm algorithms10,11. Our approach shows that swarm algorithms 
can reconstruct the κ coefficient in a computationally efficient and easy-to-implement manner. These algorithms 
can also be used to reconstruct the value of the heat transfer coefficient occurring in the continuity boundary 
condition when modeling the thermal conductivity of binary alloys. Other publications have yet to describe this 
consistent with our state of the art. In addition, the presented aluminum alloy results may be applied in Industry 
4.0. Our work can provide valuable guidance to other researchers and practitioners interested in using artificial 
intelligence to model and simulate casting processes.

In the subsequent section, the authors explore the influence of parameters such as finite element mesh den-
sity and input parameters on computer simulations. This analysis is conducted within the context of ABC and 
ACO calculations as they relate to the reconstruction of the heat conduction coefficient between the cast and the 
casting mold. The outcomes of these calculations were then compared across different iterations, two distinct 
tessellations, and a varying number of individuals. The findings present interactions between AI methodologies 
and mathematical models in heat transfer.

Mathematical model
Heat transfer.  Transient heat conduction occurs during heating and cooling bodies as long as they strive to 
achieve temperature equilibrium with the environment in which they find themselves. The heat transfer between 
the parts of bodies in direct contact with each other is defined as heat conduction. The following formula defines 
the mathematical model of conduction in a single body �:

where ρ–material’s density [ kg
m3 ] , Q–the capacity of internal heat sources [ W

m3 ] (in this paper Q = 0 due to lack of 
such sources), ∇–differential nabla operator, T–temperature [K], c–specific heat [ J

kgK ] , and ∂T
∂t  is the time deriva-

tive of temperature. The considered issue is one of the initial-boundary problems, therefore requiring appropriate 
initial and boundary conditions. As the initial conditions, authors used the Cauchy conditions that assign specific 
temperature values at the initial instant t0 = 0 [s] what is necessary to determine the temperature distribution18:

where r is the field vector at a given point.
Boundary conditions are essential for solving the heat transfer equation. With a suitable set of them, the solu-

tion can be clearly determined. The chosen type of boundary condition depends on the specific problem. In some 
cases, only one type of boundary condition can be used. In other cases, using more than one type of boundary 
condition may be necessary. We distinguish four types of boundary conditions associated with heat transfer:

(1)ρc
∂T

∂t
+∇ · (−�∇T) = Q,

(2)T(r, t)|t=0 = T0(r),
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One of the boundary conditions in the casting process is the Dirichlet condition. In this case, the temperature 
at the surface of the casting is known.

Boundary condition of the first type (Dirichlet)—on the boundary ŴA of area � the temperature distribution 
is given ( Tz)

The Neumann condition is used when the heat flux at the surface of the casting is known. The natural condition 
is used when the heat flux at the surface of the casting is 0.

Boundary condition of the second type (von Neumann)—on the boundary ŴB of area � , the heat flux is 
known ( qz)

Robin’s condition or Newton’s cooling law is used when the temperature at the surface of the casting and the heat 
transfer coefficient with the surroundings are known.

Boundary condition of the third type (Newton’s or Robin’s)—on the boundary ŴC of area � heat exchange 
with the environment takes place:

where α is the heat transfer coefficient of exchange with the environment, T is the temperature at the boundary 
between the body and ŴC , Tenv is the ambient temperature, q denotes the heat flux inputting ( T < Tenv ) into the 
area � or outputting ( T > Tenv ) from the area �,

The continuity boundary condition (the fourth kind) is used when heat flows between two areas (e.g., the 
casting and the casting mold). It can be applied in two cases: ideal contact or through a layer separating the cast 
and the casting mold (e.g., an air gap). The boundary conditions significantly affect the temperature distribution 
in the casting, so they must be carefully selected to ensure that the desired properties of the cast are achieved.

Boundary condition of the fourth type (continuity condition)—on the boundary ŴD separating areas �1 and 
�2 heat exchange occurs. Two cases are possible here:

•	 ideal contact between areas,
•	 lack of ideal contact—heat exchange through the separation layer describe κ coefficient: 

 where �p is the thermal conductivity coefficient of the separation layer, and δ is the thickness of that layer18,19.
The numerical case described in the article20 presents a more complex casting model; the model presented in the 
reviewed article is much simpler. In the current article, the model does not consider mechanical interactions and 
uses simplified geometry. However, it is free to move on to realistic problems, as the swarm algorithms used do 
not impose any restrictions on the numerical model:

•	 modeling casting of metal alloys—in this case, many factors must be taken into account, such as the tem-
perature of the alloy, the temperature of the mold, the mechanical properties of the alloy and the mold, and 
the solidification speed of the alloy,

•	 modeling the hardening process of steel—in this case, also needs to consider many factors, such as the tem-
perature of the steel, the temperature of the quenching oil, the cooling rate of the steel, and the mechanical 
properties of the steel.

The proposed optimization methods with ABC and ACO algorithms can successfully solve these problems with 
high accuracy.

Artificial intelligence algorithms.  The ABC and ACO algorithms are classified as swarming algorithms and 
belong to metaheuristics algorithms. A metaheuristic is a general computational problem-solving method used 
to solve any problem described by the terms defined by this algorithm. They are often based on analogies to real-
world processes (physics, chemistry, biology) that can be interpreted in terms of optimization21. Metaheuristics 
make obtaining results close to the optimum possible without requiring expert knowledge of a specific optimiza-
tion problem. These algorithms quickly adapt to constraints and the solution space size while not depending on 
the number of variables. The authors, B. Gerardo et al., in the paper22 and S. Hackwood, in the paper2, presented 
the concept of swarm intelligence. The inspiration for the development of these algorithms came from observa-
tions of biological systems such as herds of birds, swarms of ants, colonies of worms, or just swarms of bees.

The artificial bee and ant colony are two of the most popular swarm-based optimization algorithms. They 
are easy to understand and implement and perform well in many optimization problems. There are many other 
swarm-based optimization algorithms (e.g., particle swarm, beetle swarm), but these algorithms are more com-
plex and harder to implement.

Additional reasons why ABC and ACO were chosen are:

•	 scalability to large problems,
•	 resistance to local minimum narrowing,

(3)ŴA : T = Tz ,

(4)ŴB : q = (qz),

(5)ŴC : q = α(T − Tenv),

(6)κ =
�p

δ
,
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•	 ease of adaptation to other problems,
•	 ease of implementation in various programming languages.

In general, bee and ant artificial colony algorithms are powerful tools for solving optimization problems, are easy 
to understand and implement, and have outstanding computational performance.

Bee algorithm.  The artificial bee colony that makes up the ABC algorithm comprises two groups of bees. The 
first half of the colony consists of worker bees. The second half of the colony comprises equal parts of non-
employed bees.

One of the assumptions of the bee algorithm is that the number of non-employed bees is equal to employed 
bees. It means only one bee belongs to one food source in a given surround. If a food source explored by employed 
bees becomes exhausted, such bees become unemployable.

A possible solution of the problem in the ABC algorithm is the positions of the food sources. The amount of 
nectar present in the food source determines the quality of the solution (efficiency). The first step of the ABC 
algorithm is randomly generating the initial P population (number of food sources) and SN solutions (the 
number of the explored food sources).

Each time a solution xi (i = 1, 2, . . . , SN) is identical to the position of the food source. Iterations are responsi-
ble for updating the solution, where the determination of the coordinates of the source position after initialization 
is subjected to multiple transitions.

Information is exchanged between the worker bees and the non-employed bees. Updating the change in 
solution by the employed bee occurs depending on local information, and the new source is tested depending 
on the amount of nectar. The new position of the food source is remembered only if the amount of nectar in the 
next iterations exceeds the value of the previous iterations. Otherwise, the previous position is remembered. 
Employed bees, after the foraging process, share information about the amount of nectar, which is calculated 
from the formula:

where J(xi) determines the quality of a given source xi . The bees’ choice of food source depends on the amount 
of nectar ( fitj ) found in the food source.

The probability value pi of choosing a food source is the primary criterion for selection by an unemployed 
artificial bee and is calculated according to the formula4,23:

Afterwards, the updating of food source coordinates vij comes according to the relation:

where k ∈ {1, 2, . . . , SN} and φij ∈ [−1, 1] is also a random number and j ∈ {1, 2, . . . ,D} . A dimensional vector 
of xi is the D parameter and denotes the number of optimization parameters in the ABC algorithm. The variable 
k must be different from i.

Ant algorithm.  The ACO algorithm is used when considering problems of finding the shortest path in a graph 
and is inspired by real ants. The search is done by finding the shortest path between the anthill and the food. The 
ants randomly choose the food direction, leaving a pheromone passage on their way back to the anthill. This 
passage left on a specific path gradually evaporates if other ants do not frequent the path. Ants are more likely 
to choose shorter routes because, on such routes, the pheromone passage steams much more slowly than on a 
longer path. It is interesting to note that when ants discover a better path, more of them will start using it, which 
is known as the positive feedback phenomenon.

The artificial ants cooperate in searching for the most favorable solution to difficult combinatorial problems. 
In the search for this solution, there is a relationship between the ants and the accumulated experience they use. 
Ants work out a common set of solutions over time in the form of shortest paths that lead to their goal. However, 
there are differences between artificial and real ants. Artificial ants move within the input graph’s edges, while 
ants can choose any route in nature. The quality of the solution in the ACO algorithm is related to the pheromone 
passage. One characteristic of an artificial ant colony is that each ant finds the expected solution in each passage. 
As a result of the algorithm, the best solution is obtained, which is found by the best ant. The pheromone passage 
is updated along the route when the route found by the artificial ant turns out to be better than the one generated 
so far. Through this, subsequent ants choose certain edges in the graph more willingly. The trace-reinforced ants’ 
process is influenced by the distance of the anthill from the foraging area (the path length in the graph). There is 
a higher probability that the next ant will follow the trail of its predecessor if the pheromone passage is stronger.

The passage routes of all ants follow the rules: at the beginning, the nodes across which the ant will pass are 
determined at random k (k = 1, . . . ,M) , M—a number of ants. The probability pij of choosing jth node by the 
ant being in ith node is defined by the equation:

(7)fiti =

{

1
1+J(xi)

ifJ(xi) ≥ 0,

1+ |J(xi)| ifJ(xi) < 0.

(8)pi =
fiti

∑SN
j=1 fitj

, i = 1, . . . , SN ,

(9)v
j
i = x

j
i + φij(x

j
i − x

j
k),
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where η—is the heuristic function, α and β are constants that determine the effect of pheromone values and 
heuristic values on the kth ant’s decision, G is a path in the graph traversable by kth ants, τij and τ ∈ (0, 1� the 
pheromone array in which the information about the amount of pheromone left is stored, t—time step iteration, 
R—node in the graph.

The best way to remember a path is when the new one is better than the previous one. When all ants have 
passed through all paths, then the pheromone array is updated under the formula:

where values �τ kij is the amount of pheromone left by the kth ant on the movement path, �τ bestij  is the amount 
of pheromone left by the best ant on the path of movement, ρ is the evaporation coefficient in the range (0, 1〉 , 
which determines what part of the pheromone is to remain (0—evaporates everything, 1—nothing evaporates).

During the algorithm operation, a pheromone steaming is added to preserve against the unlimited growth 
of the pheromone passage. The roulette wheel method randomizes nodes on the paths for each ant during the 
first iterations. The probability calculated from the equation (Eq. 10) is considered during this random selection. 
The path characterized by the best quality index is found on the path from the anthill to the feeding ground after 
the first pass of all ants. The path transition for an ant is modified after the definition of the quality indicator 
in case it obtained the highest rating. In each layer of the graph, new nodes are determined at random for the 
path of passage that is the best. The path nodes approximate the nodes in each layer in case they have the best 
quality index. Then, given the formula (Eq. 11), each calculation iterations’ pheromone array is modified. Once 
this is done, the probability calculation is engaged, taking into account the determined pheromone array τ , and 
proceeded to the next iterations of calculation24,25.

Assumptions of the research
The paper deals with an issue that needs an association of two different subject areas: thermomechanics (heat 
conduction) and computer science (artificial intelligence algorithms modeled on nature). The analyzed physi-
cal heat conduction processes considered the continuity boundary condition (of the fourth type). The obtained 
results were tested regarding the influence of input parameters in swarming algorithms on computer simulations 
of heat conduction. The work concerned the value reconstruction of the κ coefficient occurring in the non-ideal 
contact with the separating layer. For this purpose, two nature-inspired algorithms were used, i.e., artificial bee 
(ABC) and ant (ACO) colonies.

The parametric settings associated with the ABC and ACO algorithms were taken from literature items10,11. 
The main parameters in our calculations, respectively, are: 

1.	 for the algorithm ABC:

•	 food sources—the number of bees in the population,
•	 search area—the range of the kappa parameter
•	 a number of iterations—the rerun number of food source searching processes by individuals, consistent 

with the results presented in the calculations.

2.	 for the algorithm ACO:

•	 number of iterations—the rerun number of food source searching processes by individuals, consistent 
with the results presented in the calculations,

•	 the initial number of ant population—the smallest number of individuals as a fixed parameter of the 
algorithm,

•	 the number of ants in the population—the actual number of individuals as an input parameter of the 
algorithm,

•	 Intensification Factor (Selection Pressure)—the value of 0.5, the fixed default parameter of the algorithm,
•	 Deviation-Distance Ratio—value 1, the fixed default parameter of the algorithm search area—the range 

of the kappa parameter.

Geometrical model and finite element meshes were created in the GMSH26 program. The TalyFEM27 library and 
algorithms implemented in C++ were used in numerical calculations. TalyFEM is a tool that employs the finite 
element method of the selected physical phenomena simulation. It taps data structures from the PETSc28 library, 
including vectors, matrices, or ready-made solvers.

These libraries were used to implement the numerical model. In29, the authors used the same FEM model to 
simulate the temperature distribution in a DC motor with permanent magnets. The model included a rotor, a 
stator, and a winding. The authors used various boundary conditions, including constant rotor and stator surface 
temperatures and heat flow through the bearings. The authors compared their results with those obtained from 
an experiment on the heat conduction problem. This validation indicates that the FEM model is accurate and 
can be used to simulate the temperature distribution.

(10)pkij(t) =
[τij(t)]

α[ηij(t)]
β

∑

i,j∈G
[τij(t)]α[ηij(t)]β

, i = 1, . . . ,D, j = 1, . . . ,R,

(11)τij(t + 1) = (1− ρ)τij(t)+

M
∑

k=1

�τ kij (t)+ ρ�τ bestij (t),
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The tests were performed on a computer with the following parameters: Intel (R) Core (TM) i5-4590 CPU @ 
3.30 GHz processor, x86_64 architecture, using the Linux operating system in Ubuntu distribution.

Swarming algorithms have been implemented in Python and adapted to the possibility of combining them 
with the TalyFEM30. The error of the approximate solution was minimized using the bee and ant algorithms, 
respectively. The reference temperature values and the temperatures obtained during the simulation were gener-
ated with the constant reference heat transfer coefficient κ.

The tests used two different finite element mesh density variants for the same geometrical model. Simu-
lations were carried out for one κ parameter. It means that coefficient optimization from one range of val-
ues ( 900−1500 [W/m2K]). The reference temperatures were obtained for the reference coefficient of 
κ = 1000 [W/m2K ]. All simulations were performed for the Al-2% Cu alloy. Material properties are presented 
in Table 1. The values in Table 1 correspond to the material properties of the frequently used aluminum alloy 
with the addition of 2 % copper and the material properties of the metal casting mold18. The initial temperatures 
were respectively T0 = 960 [K ] for cast and T0 = 590 [K ] for the casting mold.

2D finite element meshes are described by a full tessellation, including element nodes, interface, surfaces, 
edges, and vertices sets of the domain. Two meshes of 111 and 576-nodes tessellation are considered in our paper.

For the calculations presented in the article, the number of iterations (the input parameter of the algorithm) 
was the criterion for finishing the calculations. The convergence control of the algorithm was evaluated on the 
basis of the value of the functional:

where i is the number of nodes in the FEM mesh, j is the number of time steps, Ni is the number of nodes in all 
pairs considered, Nj is the number of time steps, and, Tij is the benchmark temperatures generated at a constant 
benchmark heat transfer coefficient κ and Uij denotes the temperatures obtained during the simulation31.

The obtained results concern the layer separating the cast and the casting mold for two different tessellations 
(Fig. 1). The nodes at the interface between the cast and the casting mold have the same spatial coordinates, 
simplifying the implementation of the boundary condition of the fourth type in the heat conduction model.

Limitations of the ongoing research are related to the need for more time records for the calculations, the 
somewhat simple design, or the limited hardware resources. However, these limitations are temporary and easily 
eliminated by exploiting the scalability properties of the algorithms and parallelizing the calculations.

Results
For each tessellation, calculations were performed for the ABC and ACO algorithms for populations of 15, 17, 
and 20 individuals and 2 and 6 iterations. In order to decrease the search area and get correct results, a feature that 
characterizes heuristic algorithms, i.e. the need for multiple runs, was used. For the purpose of the calculations 
performed in each case, the algorithms were run three times. The 0 % , 1 % , 2 % , and 5 % disturbance of reference 
values were also included in each case.

In the case of our calculations, disturbances were introduced into the temperature values.

(12)J(κ) =

N1
∑

i=1

N2
∑

j=1

(Tij − Uij)
2,

Table 1.   Material properties.

Cast Casting mold

ρ , kg/m3 2824 7500

c, J/kgK 1077 620

� , W/mK 262 40

Figure 1.   Geometry (a) with 111-nodes (b) and 576-nodes (c) finite element mesh.
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In general, the measurement of temperatures with a thermocouple during the experiment is characterized by 
good accuracy. It is assumed that, for thermocouples, the measurement accuracy is within +− 2 degrees C and 
the disturbances value not exceeding our assumed 5 % . As suggested by experience, we chose four disturbance 
values from 0 to 5 % . At 5 % disturbance, we noticed that the ABC and ACO algorithms’ input parameters do not 
guarantee finding the best solution relative to the reference value32.

In our research, we used a uniform distribution for disturbance represented by the random.uniform() func-
tion available in Python. The range of disturbance is symmetric, meaning that for a 5 % disturbance in temperature 
values, the range was −2.5 to +2.5%.

Figure 2 presents the reconstructed value κ depending on the number of individuals (for 15, 17, and 20) and 
iteration (2 and 6) for a finite element mesh with 111 nodes. Figure 2a at 0 % disturbances in reference values 
for 15, 17, and 20 individuals, the ABC algorithm proved slightly better. In contrast, for 20 individuals, the best 
results in relation to reference values are obtained for six iterations for both algorithms. Figure 2b at 1 % distur-
bance of 6 iteration reference values for both algorithms, regardless of the number of individuals, they selected the 
value of the κ parameter at a satisfactory level. Figure 2c at 2 % disturbances in reference values for 15 individuals, 
the ABC algorithm obtains the best values at two iterations. In contrast, ACO obtains the best values for 17 and 
20 individuals with two iterations. Both algorithms obtain comparable results. Figure 2d at 5 % disturbances in 
reference values shows that the ABC algorithm with two iterations for 15 individuals proved slightly better than 
ACO. When considering 17 individuals, both algorithms for six iterations obtained similar values. The ACO 
algorithm for 2 and 6 iterations better chose the κ parameter for 20 individuals. Summarizing at 5 % disturbance 
of reference values, ABC and ACO algorithms for six iterations obtained the best results.

Figure 3 presents the reconstructed value κ depending on the number of individuals (for 15, 17, and 20) and 
iteration (2 and 6) for a finite element mesh with 576 nodes. Figure 3a for 0 % disturbances in reference values 
show that regardless of the number of individuals, both ABC and ACO for six iterations achieve the best results. 
Figure 3b for 1 % disturbances in reference values regardless of the number of individuals, the best results are 
obtained for six iterations of the ACO algorithm. However, the results for ABC and ACO for six iterations and 
15 and 20 individuals are very similar. ABC obtains the values closest to the reference values in Fig. 3c at 2 % 
disturbance after two iterations regardless of the number of individuals. Figure 3d at 5 % disturbances of reference 
values for 15 and 17 individuals, the ABC algorithm is already similar to the reference value at two iterations. 
When considering results for 20 individuals, both ABC and ACO obtain similar results.

Figure 4 presents relative error depending on the number of individuals (for 15, 17, and 20) and iteration (2 
and 6) for finite element mesh with 111 nodes. Figure 4a for 15 and 20 individuals, the error values did not exceed 
0.004% . The smallest error was generated at 0 % disturbance of six iteration reference values for both algorithms. 
Figure 4b regardless of the number of individuals, the ABC algorithm for six iterations showed the smallest error 
in relation to the reference values. However, for two iterations it was an ACO algorithm. Figure 4c the smallest 
error with two iterations was obtained for ABC with 15 individuals and 20 individuals for ACO and did not 
exceed 0.006% . Both algorithms obtain a similar error in the calculation for 17 individuals for six iterations. 
Figure 4d the ABC algorithm already with two iterations for 15 individuals selects values so that the error does 
not exceed 0.002% . ACO for 17 and 20 individuals with six iterations obtained an error not exceeding 0.002%.

Figure 5 presents relative error depending on the number of individuals (for 15, 17, and 20) and iteration 
(2 and 6) for finite element mesh with 576 nodes. Figure 5a taking into account 0 % disturbances values of both 
ABC and ACO give satisfactory results for six iterations regardless of the number of individuals, and the relative 

Figure 2.   Kappa value depends on the number of individuals, iteration, and interference for finite element 
mesh with 111 nodes.
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error did not exceed 0.001% . In contrast, the results obtained for two iterations are more susceptible to changes 
in the number of individuals regardless of the selected algorithm. Figure 5b with two iterations, increasing the 
number of individuals causes a more significant relative error. However, increasing the number of individuals for 
six iterations does not significantly affect a relative error that remains unchanged or slightly decreases. Figure 5c 
the ABC algorithm for two iterations taking into account 15 and 20 individuals obtained an error not exceeding 
0.005% . Six iterations for both algorithms obtained an error oscillating the values of 0.008% , regardless of the 
number of individuals. The results obtained using the ABC and ACO algorithms are very similar regardless of 
the number of individuals, and the relative error oscillates around 0.007% . Figure 5d the ABC algorithm shows a 

Figure 3.   Kappa value depends on the number of individuals, iteration, and interference for finite element 
mesh with 576 nodes.

Figure 4.   Relative error depending on the number of individuals and iterations for finite element mesh with 
111 nodes.
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smaller relative error regardless of the number of iterations and the number of individuals. However, the results 
obtained for 17 individuals have the least relative error in each case.

Table 2 involves calculations for the bee and ant algorithm for 15 individuals and a grid of 111 and 576 nodes, 
respectively, and table 3 shows the relative error for the reconstructed κ coefficient, taking into account two dif-
ferent tessellations and ABC and ACO.

Authors picked up that better, in most cases, results come from using the ABC algorithm for the finite ele-
ment mesh of 111 nodes. For the 1 % , 2 % , and 5 % disturbances, the results obtained with this algorithm have 
values closer to the expected κ factor. On the other hand, the ACO algorithm improved for the 0 % disturbance 
of reference temperatures. Six iterations were sufficient for a minor disturbance (0% , 1 % ) to obtain satisfactory 
values of the κ coefficient. On the other hand, for a more considerable disturbance (2% , 5 % ), both algorithms 
needed only two iterations to obtain results at a satisfactory level relative to the reference values of the κ coef-
ficient. Finally, the differences in the obtained values of the κ coefficient between ABC and ACO needed to be 
more significant to use both algorithms for calculations with equal success.

For a finite element mesh divided into 576 nodes, generally better results are obtained with ACO than with 
ABC. Only for two iterations with 2 % disturbances in the temperature reference values did the ABC algorithm 
obtain better values for the κ parameter. For this finite element mesh density, the differences between the expected 
values obtained by the two algorithms are insignificant.

For a 15 individuals population, the best results are obtained by the ABC algorithm for the tessellation of 
111 nodes. In contrast, for the tessellation of 576 nodes, the ACO algorithm proved to be better. The value of the 

Figure 5.   Relative error depending on the number of individuals and iterations for finite element mesh with 
576 nodes.

Table 2.   Reconstructed value of the coefficient κ for 15 individuals using ABC and ACO algorithms.

Noise Iterations

κ (111 nodes) κ (567 nodes)

ABC ACO ABC ACO

0%
2 1001.794 999.211 998.316 994.122

6 999.640 1000.162 999.598 1000.13

1%
2 1003.622 1012.984 999.497 1003.413

6 1000.079 999.469 998.869 1000.374

2%
2 1002.426 1009.13 1003.033 985.741

6 1005.037 1005.282 991.501 992.997

5%
2 999.890 999.042 1004.475 1018,302

6 999.225 1001,234 1011.439 1014.843



11

Vol.:(0123456789)

Scientific Reports |        (2023) 13:15343  | https://doi.org/10.1038/s41598-023-42536-w

www.nature.com/scientificreports/

coefficient kappa does not differ from the expected value of more than 0.09% (Table 3). Nevertheless, the values 
of the relative error are so small that it can be concluded that both algorithms select the value of the coefficient 
of κ not differing from the reference value by more than 0.02%.

Table 4 presented calculations for the ABC and ACO algorithm for 17 individuals and a grid of 111 and 576 
nodes, respectively, and table 5 shows the relative error for the reconstructed κ coefficient, taking into account 
two different tessellations and ABC and ACO.

For a tessellation equal to 111 nodes at 0 % and 5 % , disturbance of the ACO algorithm was better and needed 
six iterations to obtain results close to the expected value of the κ coefficient. In contrast, for the 2 % disturbance, 
only two iterations were needed. For a 2 % disturbance, this tessellation needed only two iterations, for which 
the error determining the difference between the expected value and the obtained value did not exceed 0.003% . 
The ABC algorithm only for the 1 % disturbance was better than the ACO algorithm, and it needed six iterations 
to obtain results with a relative error of no more than 0.0003%.

The presented results show that for a finite element mesh divided into 576 nodes at 0 % , 1 % , 2 % disturbance, 
the ACO algorithm proved to be slightly better than the ABC algorithm for six iterations. In this case, the relative 
error does not exceed 0.013% . On the other hand, at 5 % disturbance, the ABC algorithm proved to be better, 
with the help of which fair values were obtained in 2 iterations.

Table 3.   Relative error for 15 individuals using ABC and ACO algorithms.

Noise Iterations

δ (111 nodes) δ (567 nodes)

ABC ACO ABC ACO

0%
2 0.002 0.001 0.002 0.006

6 0.000 0.000 0.000 0.000

1%
2 0.004 0.013 0.001 0.003

6 0.000 0.001 0.001 0.000

2%
2 0.002 0.009 0.003 0.014

6 0.005 0.005 0.008 0.007

5%
2 0.000 0.001 0.004 0.018

6 0.001 0.001 0.011 0,015

Table 4.   Reconstructed value of the coefficient κ for 17 individuals using ABC and ACO algorithms.

Noise Iterations

κ (111 nodes) κ (567 nodes)

ABC ACO ABC ACO

0%
2 999.915 997.014 991.737 1002.602

6 1000.429 999.821 999.698 1000.029

1%
2 1010.785 997.702 1002.894 997.281

6 1000.282 999.440 997.684 1000.556

2%
2 993.197 1003.360 1007.46 986.098

6 1004.494 1005.314 992.395 992.700

5%
2 1002.114 991.296 1005.455 1011.746

6 1001.607 1001.249 1010.391 1014.796

Table 5.   Relative error for 17 individuals using ABC and ACO algorithms.

Noise Iterations

δ (111 nodes) δ (576 nodes)

ABC ACO ABC ACO

0%
2 0.001 0.003 0.008 0.003

6 0.000 0.000 0.000 0.000

1%
2 0.011 0.002 0.003 0.003

6 0.000 0.001 0.002 0.001

2%
2 0.007 0.003 0.008 0.014

6 0.005 0.005 0.008 0.007

5%
2 0.002 0.009 0.006 0.012

6 0.002 0.001 0.010 0.015
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The results of numerical simulations obtained for 17 individuals using ABC and ACO give almost identical 
results, as evidenced by the tiny or zero relative error. The values obtained for the two algorithms differ slightly 
from the expected value of the κ coefficient, and the error does not exceed more than 0.013% (Table 5).

Table 6 presented calculations for the ABC and ACO algorithm for 20 individuals and a grid of 111 and 576 
nodes, respectively, and Table 7 shows the relative error for the reconstructed κ coefficient, taking into account 
two different tessellations and ABC and ACO.

The results presented for 111 nodes in the finite element mesh showed that ACO at 0 % , 2 % , 5 % disturbance 
obtains slightly better results than ABC. For the more considerable disturbance (2% , 5 % ), the ACO algorithm 
needed only two iterations to get a value close to the expected value. In contrast, in the other cases, six iterations 
were needed regardless of the type of swarm algorithm. The relative error value in each case did not exceed 
0.003%.

For the tessellation of 576 nodes, the ACO algorithm also proved slightly better. However, in this case, the 
results obtained had the same trends as previous calculations for a smaller number of individuals in the popula-
tion. Correspondingly, the results closest to the expected value were obtained for 0 % and 1 % disturbance and six 
iterations by the ACO algorithm, for 2 % disturbance and six iterations by the ABC algorithm, and 5 % disturbance 
and two iterations by the ACO algorithm.

During the calculations, both algorithms obtain results for both tessellations very close to each other and at 
a satisfactory level. In neither case, even in the worst case, the relative error between the expected and obtained 
values exceeded 0.015%.

Conclusions
This paper presented an analysis of input parameters for reconstructing the value of kappa heat conduction coef-
ficient in the layer separating the cast and the casting mold. The numerical experiment used bee and ant colony 
optimization algorithms. The studied parameters were different tessellations, varying numbers of individuals, 
percentage perturbation of benchmark temperature values, and different the numbers of iterations.

As a result, researchers concluded that all examined parameters’ effect on reconstruction κ coefficient value. 
However, the results obtained by the ABC and ACO algorithms during the calculations are almost identical. 
The relative errors between the values obtained by the optimization algorithms and the expected value of the 
coefficient κ did not exceed approximately 0.02% in the worst case.

Generally, it can be said that six iterations in the vast majority of computational cases give a more successful 
result in reconstructing the coefficient κ relative to the reference values. The reconstructed coefficient values 
never exceed the size of the introduced disturbance of the input parameters. The authors showed similar trends 
during preliminary research presented in the article33.

Table 6.   Reconstructed value of the coefficient κ for 20 individuals using ABC and ACO algorithms.

Noise Iterations

κ (111 nodes) κ (567 nodes)

ABC ACO ABC ACO

0%
2 999.567 1002.37 1003.785 1000.114

6 1000.024 999.952 1000.645 1000.006

1%
2 999.318 1007.047 1008.855 993.864

6 999.512 999.476 1002.378 1000.365

2%
2 1005.618 1001.944 995.367 985.028

6 1003.392 1005.303 992.904 992.737

5%
2 1002.170 1001.706 1013.558 1015.200

6 1002.260 1001.214 1014.360 1014.888

Table 7.   Relative error for 20 individuals using ABC and ACO algorithms.

Noise Iterations

δ (111 nodes) δ (576 nodes)

ABC ACO ABC ACO

0%
2 0.000 0.002 0.004 0.000

6 0.000 0.000 0.001 0.000

1%
2 0.001 0.007 0.009 0.006

6 0.000 0.001 0.002 0.000

2%
2 0.006 0.002 0.005 0.015

6 0.003 0.005 0.007 0.007

5%
2 0.002 0.002 0.014 0.015

6 0.002 0.001 0.014 0.015
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Although the numerical case described in the reviewed article is somewhat simple, the proposed schemes, 
due to their scalability, can be used to solve more realistic problems with high accuracy.

This article is a noteworthy contribution to the field of research on the application of swarm algorithms. 
Swarm algorithms possess the capability to enhance production processes, conduct data analysis, and facilitate 
data-driven decisions. According to the literature34, swarm algorithms have been successfully used to optimize the 
production planning problem or resource allocation process in a rapidly developing field, and swarm algorithms 
are one of many digital technologies that can be used in this sector.

The study described in the article demonstrates the potential of utilizing optimization algorithms as effective 
artificial intelligence tools. These algorithms have shown promise in practical applications, particularly in situa-
tions where it is necessary to replicate experimental settings quickly, albeit with some degree of approximation, 
through computer simulations.

As part of future research, we intend to:

•	 carry out calculations for a more complicated shape and for the case of kappa dependent on temperature,
•	 take into account a larger number of optimized parameters for swarm algorithms,
•	 implement parallelized swarm algorithms in conjunction with numerical modeling of casting solidification 

and cooling,
•	 experimentally verify the results of calculations for complex shapes.

Data availability
The datasets used and/or analyzed during the current study available from the corresponding author on reason-
able request.
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