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A low dimensional embedding 
of brain dynamics enhances 
diagnostic accuracy and behavioral 
prediction in stroke
Sebastian Idesis 1*, Michele Allegra 2,3, Jakub Vohryzek 1,10, Yonatan Sanz Perl 1,7,8,9, 
Joshua Faskowitz 6, Olaf Sporns 6, Maurizio Corbetta 2,4,5 & Gustavo Deco 1

Large-scale brain networks reveal structural connections as well as functional synchronization 
between distinct regions of the brain. The latter, referred to as functional connectivity (FC), can be 
derived from neuroimaging techniques such as functional magnetic resonance imaging (fMRI). FC 
studies have shown that brain networks are severely disrupted by stroke. However, since FC data are 
usually large and high-dimensional, extracting clinically useful information from this vast amount of 
data is still a great challenge, and our understanding of the functional consequences of stroke remains 
limited. Here, we propose a dimensionality reduction approach to simplify the analysis of this complex 
neural data. By using autoencoders, we find a low-dimensional representation encoding the fMRI 
data which preserves the typical FC anomalies known to be present in stroke patients. By employing 
the latent representations emerging from the autoencoders, we enhanced patients’ diagnostics and 
severity classification. Furthermore, we showed how low-dimensional representation increased the 
accuracy of recovery prediction.

There is growing evidence that neural activity is low-dimensional, at various scales, in agreement with theoretical 
work arguing that low-dimensional dynamics exist in the brain because neural circuits operate more effectively in 
low  dimensions1,2. This suggests that the huge dimensionality of functional neuroimaging data (tens of thousands 
of voxels or hundreds of regions) may be highly redundant, and that it may be possible to find low-dimensional 
representations, or “latent signals”3 preserving most of the relevant information content. However, evidence 
that a low-dimensional representation can actually retain the most prominent dynamical features, including, 
crucially, clinically relevant features, is still weak.

In this work, we use dimensionality reduction, which maps high-dimensional data into a new space whose 
dimensionality is much  smaller4, to investigate low-dimensional representations of fMRI data in normal subjects 
and stroke patients. This is an ideal testbed to assess the clinical relevance of low-dimensional representation. At 
the population level there is strong evidence that post-stroke neurological impairments have a low-dimensional 
 structure5. Moreover, stroke produces dysfunction in distributed brain  networks6, which are commonly iden-
tified as low-dimensional abnormalities in functional connectivity (FC) that predict behavioral deficits after 
stroke. These include reductions in interhemispheric network integration, ipsilesional network segregation, and 
network  modularity7–14.

Classic dimension reduction techniques, such as PCA, are linear. When applying a linear method to neural 
activity data and keeping “d” dimensions, one is implicitly assuming that the neural activity sits on a “d”-dimen-
sional plane. However, the actual shape—the manifold—on which the neural activity sits is generally a curved 
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surface, and  nonlinear15. Machine learning can be employed to find low-dimensional, nonlinear representa-
tions of complex data with only a small set of latent variables. While several previous studies have applied deep 
learning in fMRI  data16–18, they have mainly focused on classification accuracy, rather than low-dimensional 
representations. Here, we apply deep learning methods directly to functional time series to extract a nonlinear 
low-dimensional representation of brain dynamics. In addition, we leverage the recently proposed Temporal 
Evolution NETwork (TENET)  framework19,20 to analyze the asymmetry, or “reversibility” in the flow of the brain 
signals. TENET offers critical insight about the degree of non-equilibrium in brain dynamics, a variable that has 
been shown to be severely altered in consciousness  disorders20 and could be of high clinical significance in other 
neurological conditions. TENET requires to compare cross-correlation matrices, whose estimation is affected 
by large error in high dimensional spaces, and therefore is expected to significantly profit from a dimensionality 
reduction step.

Here, we will demonstrate that the latent non-linear components of brain dynamics found by machine-
learning approaches retain the most important dynamical features that are usually identified from the high-
dimensional original data. Furthermore, we will demonstrate that the latent representation is more powerful, both 
for diagnostic and for prognostic purposes. Diagnostically, the latent representation yields a better classification of 
clinical status (healthy/mild—stroke/severe stroke) at the acute stage, and a better prediction of behavioral deficit. 
Prognostically, it improves the prediction of recovery after 1 year of the incident, as compared to other methods.

Materials and methods
Subjects. We used the Washington University Stroke Cohort  dataset21, a large prospective longitudinal (two 
weeks, three months, 12  months) study of first-time single lesion stroke in different locations. The database 
includes patients with first-time stroke, studied at 1–2 weeks (mean = 13.4 days, SD = 4.8 days), 3 months, and 
12 months after stroke onset. Furthermore, a group of age-matched control subjects was evaluated twice at an 
interval of three months. From this cohort we selected 96 stroke patients and 27 healthy subjects.

Stroke patients were prospectively recruited from the stroke service at Barnes-Jewish Hospital (BJH), with 
the help of the Washington University Cognitive Rehabilitation Research Group (CRRG). The complete data 
collection protocol is described in full detail in a previous  publication21. Healthy control group was typically 
constituted of spouses or first-degree relatives of the patients, age- and education-matched to the stroke sample. 
Patients were characterized with a robust neuroimaging battery for structural and functional features, and an 
extensive (~ 2 h) neuropsychological battery.

The participants were selected based on the same inclusion/exclusion criteria as  in21 briefly mentioned below:
Inclusion Criteria. (1) Age 18 or greater. No upper age limit. (2) First symptomatic stroke, ischemic or hem-

orrhagic. (3) Up to two lacunes, clinically silent, less than 15 mm in size on CT scan. (4) Clinical evidence of 
motor, language, attention, visual, or memory deficits based on neurological examination. (5) Time of enrollment: 
< 2 weeks from stroke onset. (6) Awake, alert, and capable of participating in research.

Exclusion criteria. (1) Previous stroke based on clinical imaging. (2) Multi-focal strokes. (3) Inability to 
maintain wakefulness in the course of testing. (4) Presence of other neurological, psychiatric, or medical condi-
tions that preclude active participation in research and/or may alter the interpretation of the behavioral/imaging 
studies (e.g., dementia, schizophrenia), or limit life expectancy to less than 1 year (e.g., cancer or congestive heart 
failure class IV). (5) Report of claustrophobia or metal object in body.

Neuroimaging acquisition and preprocessing. We use data from the Washington University Stroke 
Cohort, extensively described in previous  articles13,21–24. A brief description of the data acquisition and preproc-
essing follows. A complete description of it is explained in detail in a previous  publication14.

Neuroimaging data were collected at the Washington University School of Medicine using a Siemens 3T 
Tim-Trio scanner with a 12-channel head coil. It was obtained sagittal T1-weighted MP-RAGE (TR = 1950 ms; 
TE = 2.26 ms, flip angle = 90 degrees; voxel dimensions = 1.0 × 1.0 × 1.0 mm), and gradient echo EPI (TR = 2000 ms; 
TE = 2 ms; 32 contiguous slices; 4 × 4 mm in-plane resolution) resting-state functional MRI scans from each sub-
ject. Participants were instructed to fixate on a small centrally located white fixation cross that was presented 
against a black background on a screen at the back of the magnet bore. Seven resting-state scans (128 volumes 
each) were obtained from each participant (~ 30 min total) giving a total of 896 time points for each participant.

Resting-state fMRI preprocessing included (i) regression of head motion, signal from ventricles and CSF, 
signal from white matter, global signal, (ii) temporal filtering retaining frequencies in 0.009–0.08 Hz band. This 
frequency band is a standard for rs-fMRI studies and is the default band used in the most widespread software 
studies and connectivity, the CONN  toolbox25; and (iii) frame censoring, FD = 0.5 mm. Finally, the resulting time 
series were projected on the cortical and subcortical surface of each subject divided into 235 ROIs (200 cortical 
plus 35 subcortical). The atlas and the functional labels for each ROI can be obtained together with the scripts 
used in the current manuscript at: https:// github. com/ Sebas tianI desis/ Latent_ Space_ Stroke- 2023-.

These areas are taken from the multi-resolution functional connectivity-based cortical parcellations devel-
oped by Schaefer and  colleagues26, including additional subcortical and cerebellar parcels from the Automated 
Anatomical Labeling (AAL)  atlas27 and a brainstem parcel from the Harvard–Oxford Subcortical atlas (https:// 
fsl. fmrib. ox. ac. uk/ fsl/ fslwi ki/ Atlas es).

A structural connectome atlas was created using a publicly available diffusion MRI streamline tractography 
atlas based on high angular resolution diffusion MRI data collected from 842 healthy Human Connectome 
Project  participants28 as described  previously11.

Stroke deficit assessment. Lesion volume and severity. Lesion volume was calculated based on the to-
pography of stroke using a voxel-wise analysis of structural lesions. Each lesion was manually segmented on 

https://github.com/SebastianIdesis/Latent_Space_Stroke-2023-
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases
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structural MRI scans and checked by two board certified neurologists. The location (cortico-subcortical, sub-
cortical, white-matter) of each individual lesion was assigned with an unsupervised K-means clustering on the 
percentage of total cortical/subcortical gray and white matter masks overlay. The overlap of each lesion group 
with gray matter, white matter and subcortical nuclei is explained in detail in a previous publication  (see21). 
Furthermore, the structural disconnection information consisted of a sparse connection adjacency matrix where 
each cell quantified the percentage of streamlines connecting each region pair in the atlas-based structural con-
nectome that were unharmed by the lesion. Therefore, the multiplication of each structural disconnection ma-
trix with a template SC provides an atlas-based weight for each region pair corresponding to each  patient24.

In addition to the anatomical lesion volume, the patients’ clinical severity was assessed through the National 
Institutes of Health Stroke Scale (NIHSS)29 that includes 15 subtests addressing: level of consciousness (LOC), 
gaze and visual field deficits, facial palsy, upper and lower motor deficits, limb ataxia, sensory impairment, 
inattention, dysarthria and language deficits. The total NIHSS score was used as an averaged measure of the 
clinical severity for each patient. The lesion volume relation with the NIHSS was assessed, showing a significant 
association. In addition, we inspected the total disconnection tracks relation with lesion volume, which also 
revealed a significant relation (Supp. Fig. 1). The metric of total disconnection tracks was described in detail in 
previous  literature14.

FC abnormalities. Local ischemia, which damages cells and neural connections at the site of injury, primarily 
affects white matter, thus altering long-range FC between cortical areas. Three types of large-scale FC alterations 
affect Resting State Networks (RSNs)13: (i) within-network interhemispheric  FC9,11,13,14, (ii) between-network 
intra-hemispheric  FC7,8,10,13; and (iii)  Modularity10,12,22.

Autoencoder. An autoencoder takes an input with a high dimensionality, processes it through a neural 
network and tries to compress the data into a smaller  representation18. In order to achieve this, the procedure 
takes two steps: encoder (embedding) and decoder (reconstruction). The autoencoder, therefore, consists of a 
deep neural network with rectified linear units as activation functions and dense layers, which bottlenecks into 
the d-dimensional  layer30. Gradient descent was implemented to backpropagate the errors, with the purpose of 
training the network. The minimized loss function consists of a canonical reconstruction error term (calculated 
from the output layer of the decoder).

Subsequently, to acquire training and test sets, we produced 80/20% random splits. We employed the training 
set to optimize the autoencoder parameters. The training process involved batches with 256 samples and 100 
training epochs (if needed) making use of a loss function and an Adam  optimizer30.

The encoder network applies a nonlinear transformation to map the input signal into Gaussian probability 
distributions in latent space, and the decoder network mirrors the encoder architecture to produce reconstructed 
matrices from samples of these distributions. By observing the reconstruction loss (comparison between the 
output and input signal), the performance of the autoencoder could be tuned to the appropriate hyperparameter 
configuration (Supp. Fig. 2a). Autoencoders have proven to be effective even when applied on small sample 
 sizes31, such as the one considered here (time points x subjects = 48,384). In order to avoid overfitting, we applied 
10 iterations of cross-validation (80/20) and early stopping techniques (as the performance of the model increases 
to a peak point, training can be  stopped32) As input for the autoencoder we used the BOLD signal of both healthy 
controls and stroke patients (Fig. 1a). Therefore, the input (and the output) of the autoencoder consists of a 
matrix with the number of ROIs as the number of rows and the concatenated time points of the subjects’ time 
series as columns (every subject provides 896 samples for the AE training). This results in a 235-by-896 matrix 
of data representing each subject. Nevertheless, for the classification and prediction analyses, different metrics 
were used as input (see section “Classification”).

Edge-centric analysis. Using a straightforward unwrapping of the Pearson correlation, co-fluctuation 
time series (alternatively referred to as “edge time series”) data can be estimated for each edge. Unlike sliding-
window time-varying connectivity, which requires the parameterization of a window duration, kernel shape, 
and step size, edge time series have the same temporal resolution as the original time series data. Importantly, the 
time-averaged value of edge time series is the correlation coefficient. This means that edge time series are a math-
ematically exact decomposition of a functional connection into its framewise contributions. Previous analyses 
of edge time series data have shown that transient periods of high-amplitude activity make disproportionately 
large contributions to the time-averaged functional  connectivity33–36. In other words, data selected from specific 
temporal slices can be used to reconstruct a similarity matrix with a high correspondence to the functional con-
nectivity matrix constructed from the full  dataset37,38.

In the current study, we applied a peak detection algorithm as previously  implemented39. The collective 
co-fluctuations of brain regions were estimated as the root sum square (RSS) of co-fluctuations between all 
pairs of brain regions (edges) at every given time point. Next, BOLD time series were randomly shifted (using 
MATLAB’s circshift operator), hence approximately preserving each node’s autocorrelation, while randomizing 
the cross-correlation across nodes. This null model was iterated 1000 times. Time points in the original time 
series for which the empirically observed RSS amplitude exceeded the null model (P < 0.001) were maintained. 
The resulting peaks in the original RSS at the corresponding time points were considered as significant events. 
RSS peaks that exceed extreme z-score values (above or below 4.5 deviations) were excluded from the analysis. 
These peaks do not occur frequently (at most once per 1100 frames). The correlation between the FC created by 
the timepoints containing peaks, and the original FC, gives an indication of how much information is contained 
in these specific  points23.
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Edge-centric analysis has been applied to stroke datasets in a previous  study23. This work demonstrated that 
edge-centric measures, such as normalized entropy or high-amplitude co-fluctuations (transient periods of 
high-amplitude activity), can be used as indicators of lesion severity and  recovery23.

Dynamic features preserved/enhanced in latent space. FCD. Time versus-time matrix represent-
ing the functional connectivity dynamics (FCD), where each entry FCD(t1, t2) is defined by a measure of resem-
blance between FC(t1) and FC(t2)40,41. Therefore, the FCD captures the spatiotemporal organization of FC by 
representing the coincidences between FC(t) matrices. It results in a symmetric matrix where an entry (ts1, ts2) 
is defined by the Pearson correlation between FC(ts1) and FC(ts2)42.

Edge metastability. We calculated the standard deviation of the edge time series which represents the temporal 
metastability. This metric gives information about temporal variability in the level of  synchronization43,44.

Modularity. Overall Newman’s modularity was calculated, making a comparison between the number of con-
nections within a module to the number of connections between  modules45. We adopted a constant null derived 
from the Potts  model46. We retained the full FC matrix, including its negative entries, for the purpose of com-
munity detection by applying the Louvain algorithm. Louvain bipartitions are identified by first inspecting a 
wide range of the resolution parameter, selecting upper and lower boundaries within which a two-community 
structure occurs, followed by a finer sampling of the range to retrieve bipartitions.

Functional complexity. Functional complexity was calculated based on previous  literature47. According to this 
definition of the feature, complexity emerges when the collective dynamics are characterized by intermediate 
states, between independence and global  synchrony48. Thus, the authors choose to define complexity as the 
difference between the observed distribution of the functional connectivity and a uniform distribution. Hence, 
functional complexity is quantified as the integral between the two distributions. The latter is estimated by 
approximating the distributions with histograms and replacing the integral with the sum of differences over the 
bins. The equation for the functional complexity is given below; for more information,  see47.

where |.| means the absolute value and Cm = 2m−1
m  is a normalization factor that represents the extreme cases 

in which the p(rij ) is a Dirac-delta function δm.

Reversibility. Reversibility was computed by assessing the difference between the time-shifted correla-
tion matrices for the forward and reversed time series, which reflects the level of non-equilibrium. In previ-
ous publications, significantly lower levels of reversibility were found in deep sleep and anaesthesia compared 
to  wakefulness20. This approach provides a quantification of the level of nonreversibility and consequently the 
degree of non-equilibrium in the brain dynamics of different brain states, or in the case of this study, different 
groups (controls vs stroke patients).

Particularly, the assumed causal dependency between the time series x(t) and y(t) is measured through the 
time-shifted correlation. For the forward evolution the time-shifted correlation is given by

And for the reversed backward evolution the time-shifted correlation is given by

being �t = 1 based on previous  literature20. This amounts to the minimum step size (one frame for the window) 
within which irreversibility is calculated taking away the arbitrary selection of a time window duration.

Where the reversed backward version of x(t) (or y(t)), that we call x(r)(t) (or y(r)(t) ), is obtained by flipping 
the time ordering.

The pairwise level of non-reversibility is given consequently by the absolute difference between the assumed 
causal relationship between these two timeseries in the forward and reversed backward evolution, at a given shift 
�t = 1 . For the current study the shifting was selected at T = 1.

Therefore, the level of irreversibility relies on the idea of finding the arrow of time through the degree of 
asymmetry obtained by comparing the lagged correlation between pairwise time series.

The extent to which the forward and reversed time series are distinguishable determines the reversibility/
equilibrium level. Thus, when the forward and reversed time series are not distinguishable, the system is reversible 
and in equilibrium, whereas when the level of distinguishability increases, the system becomes more irreversible 
and away from the equilibrium.

In summary, the selected approach (Temporal Evolution NETwork—TENET) captures the non-equilibrium 
of brain activity quantified by the non-reversibility of the signal (difference between the “forward” and “reversed” 
signal). For more information,  see19.
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Classification. A random forest  classifier30,49 was used in order to classify the participants. Briefly, the ran-
dom forest algorithm builds upon the concept of a decision tree classifier, where samples are iteratively split into 
two branches depending on the values of their  features30,49.

For the classification procedure, there were two different division criteria:

1. Distinction between controls and stroke patients.
2. Distinction between patients with high vs low lesion volume (see section: “Stroke deficit assessment”). As 

an alternative, we calculated the distinction using thee NIHSS as division criteria, showing similar results 
(Supp. Fig. 10).

We trained random forest classifiers with 1000 decision trees using 80% of the subjects through cross-valida-
tion analysis. All accuracies were determined as the area under the receiver operating characteristic curve (AUC).

The same procedure was applied both in source and latent space, having as possible features either the upper 
triangle of the corresponding FC, or the upper triangle of the reversibility matrix (see “Reversibility” section). 
The latent space information used was obtained from the latent dimension 6 due to the results obtained in Fig. 2c 
and Supp. Fig. 2.

The reversibility matrix is calculated as defined in previous  literature19,20 in which the difference is calculated 
between the signal in “real arrow of time” compared to the “reversed arrow of time”. The resulting measure captures 
how different, or “asymmetrical”, the signal is across time. Key demographic variables such as age and gender 
may strongly affect our findings. Therefore, we verified that the two groups (patients/controls) were matched in 
terms of these variables (Supp. Table 1). In addition, to further control for the possible confounding influence of 
these factors, we checked that the two metrics showing a significant patients/control difference did not present 
any significant age or gender effect. To this aim, we divided subjects by age (using the corresponding median) and 
gender. In both cases, we found no significant differences (p > 0.2) between the groups (Supp. Fig. 13).

Latent space visualization through 2D-projection. In order to visualize the distribution of the sub-
jects and obtain a more intuitive understanding of their variability, we converted the data in the latent space into 
a two-dimensional plane. In order to achieve this goal, we used t-Distributed Statistic Neighbor Embedding 
(t-SNE)50,51. The proposed approach aims to preserve the local and global data structure while visualizing all 
samples in a two-dimensional plane. The higher-dimensional data is transformed into a set of pairwise similari-
ties and embedded in two dimensions such that similar samples are grouped  together51. Figure 3d shows this 
approach performed both in the separation of controls versus patients, and patients with high versus low severity 
of damage. It is relevant to clarify the different amount of participants in both figures, as the first scatterplot is 
a comparison between a subset of patients (to have the same amount of subjects per group) against the healthy 
controls (the dataset consists of 27 healthy controls) while the second is a comparison within all the patients 
presented in the dataset (96 patients).

Neuropsychological and behavioral assessment. The same subjects (controls and patients) under-
went a battery of neuropsychological tests in the domains of motor, attention, language, visual, and memory 
functions at each time point. Briefly, the battery consisted of 44 measures across four domains of function: 
language, motor attention and memory (for a complete description of the tasks measures,  see21). A dimensional-
ity reduction was applied to the individual test data in each domain using principal component analysis as  in21, 
yielding summary domain scores: Language, MotorR and MotorL (one score per side of the body), AttentionVF 
(visuospatial field bias), Average performance (overall performance and reaction times on attention tasks), and 
AttentionValDis (the ability to re-orient attention to unattended stimuli), Memory V (composite verbal memory 
score) and MemoryS (composite spatial memory score). Finally, patients’ behavioral scores were z-scored with 
regards to controls’ scores, to highlight behavioral impairments.

In addition to domain-specific scores, the patients’ clinical severity was assessed through the National Insti-
tutes of Health Stroke Scale (NIHSS)29 that includes 15 subtests addressing: level of consciousness (LOC), gaze 
and visual field deficits, facial palsy, upper and lower motor deficits, limb ataxia, sensory impairment, inatten-
tion, dysarthria and language deficits. The total NIHSS score was used as an averaged measure of the clinical 
severity for each patient.

Association of reduced dimensions with each behavioral domain. The relation between each of 9 
behavioral tasks and the features used for the subjects’ classification (see “Classification” section) was assessed 
by means of Pearson correlation.

The presented result in Fig. 3f was performed with 6 dimensions. Furthermore, Supp. Fig. 3 shows the 
same analysis with 10 dimensions in order to demonstrate the influence of higher dimensions when using 
dimensionality reduction approaches.

FC distance. In order to measure the similarity or distance between the stroke patients FC (at each time 
point) and the healthy controls FC, we used the Frobenius norm of the difference between the two FC matri-
ces. The higher the FC Distance, the higher the damaging impact of lesion on FC. Similarly, the lower the FC 
Distance, the lower is the  impact52. As an alternative approach to calculate the FC, we used the pairwise co-
classification of nodes for a consensus clustering procedure (Supp. Fig. 4). Co-classification yields a full matrix 
of pairwise affinities between nodes (scaled between 0 and 1) and one can thus use existing community detection 
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algorithms for the consensus clustering  step53. This analysis was added as a control as it has proven to overcome 
existing problems while identifying community  structures53.

Correlation FC/SC. For each subject, the structural–functional coupling metric was quantified using Pear-
son’s correlation between structural (healthy control anatomical template, see “Methods”: “Subjects”) and func-
tional connection strengths as reported in previous  studies54–56.

Previous work has shown how the acute stages after stroke incidents reveal a low relation between the two 
matrices while the strength of their relation increase as the patients recovered which enable its use as a metric of 
recovery across  time54. As reported in previous  studies57, we calculated the correlation between the SC and FC 
values for each network in order to assess how the stroke incident altered the structural–functional coupling in 
the corresponding areas (Supp. Fig. 5).

Prediction of recovery. A random forest classifier was used in order to classify the participants based 
on their recovery, comparing the ones with high level (better recovery) against low level (worse recovery). For 
more details, see section “Classification”. The same procedure was applied both in source and latent space, using 
as possible features either the upper triangle of the corresponding FC, or the upper triangle of the reversibility 
matrix. The latent space information used was obtained from latent dimension 6 due to the results obtained in 
Fig. 2c.

The division between high vs low recovered was made by splitting the sample in two using the median of 
three distinct metrics.

1. Behavior: Amounts of domains recovered after 1 year.
2. FC Distance: Distance between the subjects FC after 1 year and the healthy control FC.
3. Correlation FC-SC: FC-SC correlation of each subject after 1 year.

As an alternative for the behavioral metric, we applied a principal component analysis of the behavioral 
recovery scores ((1 year–2 weeks)/2 weeks) as used in previous  literature58. We used the first component’s median 
as a separation criterion (Supp. Fig. 6).

Relationship of each dimension with FC abnormalities. We estimated the relation between previ-
ously explained anatomical and functional features (see section “Stroke deficit assessment”) with the mean and 
standard deviation of each time-pattern in the latent space giving as a result 30 possible associations (5 fea-
tures × 6 dimensions). Results are presented in Supp. Fig. 7.

Latent FC means per dimension. The Pearson correlation was calculated at the latent space with all the 
estimated dimensions giving as an output a matrix of D × D (Dimensions). The mean of the resulting matrix was 
obtained in order to compare across the different dimensions of the latent space. (Supp. Fig. 2b).

Results
We derived a low-dimensional embedding of the BOLD signal of a group of healthy controls and stroke patients 
and analyzed the latent information contained in it (Fig. 1). The technique calculates the reconstruction error 
at each latent space dimension (2 through 10) to identify the point at which the error stabilizes (Supp. Fig. 2a). 
The correlation between the source and the latent space exceeds the value of 0.9 at dimension 6 (see section 
“Preserved features in latent space”). Once obtained the latent representation, the resulting matrix of size D × T 
(Dimensions by time points) of the testing set is used to analyze the embedded properties of the signal. As a first 
step, several functional features were calculated in both source and latent space to determine whether the infor-
mation is preserved after the dimensionality reduction. Next, the latent representation was used to classify healthy 
controls vs patients at the acute stage (2 weeks after the stroke incident). Last, the low-dimensional embedding 
at the acute stage was used to predict recovery, in order to compare the recovery prediction accuracy with that 
obtained with the source space signal. The present study shows how the embedded information obtained through 
autoencoders can improve well-studied metrics of diagnostic and prediction of recovery.

Preserved features in latent space. The latent representation obtained through the autoencoder exposed 
how non-trivial dynamic features were preserved. To illustrate this point, we selected 5 different metrics that 
demonstrate various time series attributes (Co-fluctuations peak agreement, Functional Connectivity Dynam-
ics, Edge metastability, Modularity, and Functional complexity). In all cases, the features were maintained, and 
in some cases, enhanced. For some of the analysis, we focus on a specific dimensionality, with 6 dimensions, 
based on the results provided by the reconstruction error calculation (Supp. Fig. 2a). It is worth clarifying that 
as the latent reduction requires a division between training and testing dataset, the amount of subjects used for 
the latent space is slightly lower, as visible in the different degrees of freedom. The same analyses were performed 
using a classical linear dimensionality reduction method, principal component analysis (PCA). To compare PCA 
with the latent representation obtained through the autoencoder, we used the same number of dimensions for 
the two methods, considering the 6 first principal components. These components accounted for only 85 percent 
of the total variance, implying that the autoencoder achieved a more efficient degree of dimensional compres-
sion. The results showed a higher performance of the autoencoder compared to PCA in preserving the dynami-
cal features and discriminating between healthy controls and stroke patients (Supp Fig. 14). This suggests that 
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the non-linear dimensionality reduction achieved though the autoencoder is much more efficient at capturing 
relevant dynamical features.

In order to assess the amount of temporal information that was preserved after the dimensionality reduc-
tion, we first calculated the edge time series (see “Methods” section) (Fig. 2a). Furthermore, we compared how 
many time points classified as peaks coincided in both spaces (peaks agreement). The metric was normalized by 
dividing it by the sum of Peak Hits (coincidence) plus Peak Miss (not coincidence) (Fig. 2b). We calculated the 
metric across all latent dimensions. There is a significant increase in the peak agreement between dimension 5 
and dimension 6 (t(170) = − 8.75, p < 0.01), while no other consequent dimension exhibited significant differences 
revealing how the level of agreement stabilized after reaching dimension 6 (Fig. 2c). Remarkably, the stabilization 

Figure 1.  Summary of the analysis. fMRI signals from both groups (healthy controls and stroke patients) 
were used as input signals for the autoencoder. Reconstruction error was calculated by assessing the difference 
between the output and the input signal. The latent information was used to perform three different analyses: 
Top segment shows the features both in source and latent space to verify if the information was preserved after 
the dimensionality reduction. Middle segment shows the accuracy of the classification used to separate healthy 
controls from stroke patients and to separate stroke patients with low and high lesion volume. Lower segment 
shows how the latent representation is used to predict the recovery after one year after the stroke.
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Figure 2.  Preserved features in latent space: (A) Calculation of edge time series by means of Hadamard 
product at each time point. The highest top amplitude frames (top %10 of co-fluctuation root-sum-squared) 
were selected. (B) The collective co-fluctuations of brain regions were estimated as the root sum square (RSS) 
of co-fluctuations between all pairs of brain regions (edges) at every given time point. The peaks that occur at 
the same time point in the source and latent space were labeled as “peak hits” and used to calculate the “peak 
agreement”. This amount was used as an indicator of preserved dynamics. (C) The amount of peak agreement 
was calculated for each dimension revealing dimension 2 as the lowest. There was a significant difference 
between dimension 5 and 6 (p < 0.01). Following dimension 6, the level of agreement stabilizes. (D) The 
original FC was contrasted with the FC created only by the timepoints containing peaks, showing a correlation 
of R = 0.93. The FC strength (average of each node) was projected onto surface in order to observe the spatial 
pattern similarity. (E) The correlation between the FC of the timepoints containing peaks and the complete 
FC was performed for all the subjects in order to characterize the variability across subjects. (F) We compared 
the distribution of the FCD of healthy controls and stroke patients. The difference observed in source space 
(p < 0.01) increased when observing the latent representation (p < 0.01). (G) Edge metastability was compared 
between controls and stroke patients showing no significant difference in the source space (p = 0.9) in contrast to 
the latent space (p < 0.01). (H) Level of modularity was significantly different in controls and stroke patients both 
in source (p < 0.01) and latent space (p < 0.01). (I) Level of functional complexity was significantly different in 
controls and stroke patients both in source (p < 0.01) and latent space (p < 0.01).
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of the peak agreement coincided with the one observed in the reconstruction error. These findings support the 
selection of 6 as the optimal dimension for performing the following analysis.

We compared the co-fluctuation high-amplitude peaks (see “Methods” section: “Edge-centric analysis”) in 
source and latent space. It has been reported that the aforementioned peaks contain a large amount of the signal 
 information36,39. A way to assess this is by observing the correlation between the FC component, created by the 
timepoints containing peaks, and the original FC. Therefore, we calculated the association between the standard 
FC and the FC computed only using the timepoints that revealed to contain peaks, resulting in a maximum 
Pearson correlation value of R = 0.93 (Fig. 2d). Furthermore, the same correlation was displayed for all subjects 
showing an average association of R = 0.84 (Fig. 2e).

We compared the distribution of FCD between controls and stroke patients, revealing a significant difference 
in the source space (t(1790) = − 7.89, p < 0.01). Nevertheless, the difference gets enhanced when comparing in 
the latent representation (t(1790) = − 36.20, p < 0.01)) (Fig. 2f).

While there is no significant difference in the source space while comparing the level of edge metastability 
between controls and stroke patients (t(52) = 0.12, p = 0.9), the difference is significant when comparing in the 
latent representation (t(46) = 3.5, p < 0.01) (Fig. 2g).

While there is a significant difference in the source space when comparing the level of Modularity between 
controls and stroke patients (t(121) = 4.48, p < 0.01), the difference is enhanced when comparing Modularity in 
the latent representation (t(46) = 8.77, p < 0.01)) (Fig. 2h).

While there is a significant difference in the source space when comparing the level of Functional Complexity 
between controls and stroke patients (t(52) = 3.23, p < 0.01), the difference is comparable when calculating 
Functional Complexity in the latent representation (t(46) = 4.1, p < 0.01) (Fig. 2i).

In summary, the latent representation highlights crucial dynamical differences between patients and controls.

Classification in acute stage and relation with behavior. We assessed patients’ diagnostics and 
severity classification through machine learning algorithms. We performed the same analysis in both source, 
and latent space, in order to compare if the embedded information in the latent representation was informa-
tive. To achieve that goal, we relied on two different metrics, the widely used FC mean, and the brain signal 
reversibility (see “Methods”) as a novel metric inferring signal dynamics and complexity. The results revealed 
how the dimensionality reduction benefits both the metrics, but specially the reversibility one, which obtained 
the maximum classification accuracy. Furthermore, the content of the latent representation was projected into 
2-dimensions (see “Methods”) in order to visualize how the group separation is better described in a non-linear 
way (Fig. 3d).

We used a random forest classifier to discriminate healthy controls from stroke patients at the acute stage. 
As an input to the classifier, we considered two summary metrics, the reversibility (assessing the degree of 
reversibility of BOLD time series, see “Methods”), and the mean FC, comparing the results in the source and 
latent space. The latent information used for this analysis was explained in detail in the “Methods” section. As 
an alternative, we performed the same analysis but replacing the mean FC by the standard deviation, showing 
similar results (Supp. Fig. 11).

The mean FC and the reversibility matrix were selected as metrics as they integrate spatial and temporal 
dynamics, together with the complexity of the system. Furthermore, this study aimed to use a traditional metric 
(mean FC) next to a novel one (reversibility), which has already been used with promising results in previous 
 publications19,20.

Reversibility in the latent space showed the highest accuracy performance (mean = 0.84, SD = 0.11), followed 
by Reversibility in the source space (mean = 0.70, SD = 0.10), mean FC in the latent space (mean = 0.67, SD = 0.13) 
and mean FC in the source space (mean = 0.61, SD = 0.11) (Fig. 3b).

While classifying between stroke patients with high and low lesion volume of damage, reversibility in the 
latent space showed the highest accuracy performance (mean = 0.73, SD = 0.09), followed by mean FC in the 
latent space (mean = 0.72, SD = 0.09), Reversibility in the source space (mean = 0.65, SD = 0.10) and mean FC in 
the source space (mean = 0.59, SD = 0.09) (Fig. 3c).

We searched for the association between the previously reported metrics and all the behavioral scores dif-
ferences normalized ( 1 year score−2 weeks score

2 weeks score  ) assessing the degree of behavioral recovery (Fig. 3f). Furthermore, 
we performed the same analysis but using the behavioral scores at the acute stage (2 weeks) in order to see the 
relations at the initial state (Supp. Fig. 8). Each radar plot shows the relation of each metric with each of the 9 
behavioral domains. The further the point is from the center, the higher the Pearson correlation value is. Fur-
thermore, significant relations are indicated with asterisks (Fig. 3f).

When using the FC at the source space, there was a significant relation with Motor L (r = 0.25, p < 0.05) and Attention 
VF (visuospatial field bias, referred as “AttVF”) (r = 0.24, p < 0.05). When using the Reversibility at the source space, the 
following domains showed a significant relation: Language (r = − 0.21, p < 0.05), and AttentionVF (r = 0.23, p < 0.05). 
When using the FC at the latent space, the following domains showed a significant relation: AttValDis (the ability to 
re-orient attention to unattended stimuli) (r = − 0.26, p < 0.05) and memory S (spatial memory) (r = − 0.22, p < 0.05). 
When using the reversibility at the latent space, the following domains showed a significant relation: MotorL (r = 0.48, 
p < 0.05), AttValDis (r = 0.40, p < 0.05), MemoryS (r = 0.34, p < 0.05) and Motor IC (r = 0.36, p < 0.05) (Fig. 3f). Behavioral 
tasks abbreviations are explained in detail in the “Methods” section.
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Figure 3.  Classification in acute stage and relation with behavior: (A) Reversibility was computed by calculating 
the average of the difference between the time-shifted correlation matrices for the forward and reversed time 
series. Mean FC was calculated from the mean of the upper triangle of the FC. (B) The classification between 
controls and patients at the acute stage showed the reversibility in the source space as the highest accuracy 
(mean = 79%). The right part of the panel shows the comparison between the input and the output signal of 
the autoencoder. (C) The distinction between stroke patients with low and high lesion volume indicated that 
the highest accuracy was given by the reversibility in the latent space (mean = 73%). Same description of the 
autoencoder as in panel (B) was presented in panel (C). (D) 2-dimension projection of the latent representation 
obtained in the controls’ vs patients’ latent space (left) and the patients with low vs high lesion volume latent 
space (right). Asterisks represent the mean of each group. (E) All the metrics used for the classification approach 
were related with each of the 9 behavioral domains recovery values (score after 1 year minus score after 2 weeks, 
divided the 2 weeks score). Asterisks represent which of the relations were significant. (F) For each behavioral 
domain, the corresponding metric with the highest association was represented indicating the respective color. 
Red represents the latent space metric while blue represents the source space.
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In summary, the reversibility matrix got the highest number of significant relations with behavioral domains 
(4), followed by the reversibility matrix in source space, the FC matrix in latent space and the FC matrix in source 
space with 2 significant relations. We performed the same analysis but replacing the average FC for the standard 
deviation showing a higher value in the relationships’ strength (Supp Fig. 9). Mean FC and standard deviation 
are global metrics that allow the comparison of the source space and the latent representation, converting them 
in ideal approaches to assess the comparison between the two spaces.

Lastly, each domain’s highest association is visualized in Fig. 3e, displaying the highest Pearson correlation 
value for each behavioral variable. As a control, we inspected the same analysis while replacing the chosen dimen-
sion. The result of the association between dimension 10 and the 9 behavioral scores is presented in Supp. Fig. 3.

Prediction of recovery. We intended to assess recovery of stroke patients across one year in 3 different 
ways.

We aimed to study the patients’ behavior, next to their functional dynamics and their functional-structural 
coupling. As in the previous analysis, we used FC mean and reversibility of the signal as distinctive metrics, and 
we performed the calculations in both source and latent space in order to demonstrate how latent information 
predicts better the recovery of the patients, especially when using the reversibility as metric. As an alternative, 
we performed the same analysis but replacing the mean FC with the standard deviation, showing similar results 
(Supp. Fig. 12).

To assess the recovery using functional information, for each patient we calculated the FC distance between 
its FC matrix at each measurement stage (2 weeks, 3 months and 1 year after the stroke incident) and the average 
FC matrix of the healthy controls (Fig. 4a). There is no significant difference between acute stage (2 weeks) and 
intermediate stage (3 months) (t(47) = 0.48, p = 0.63), while there is a significant difference between intermedi-
ate stage (3 months) and remote stage (1 year) (t(47) = 38.23, p < 0.01). Therefore, the FC distance with respect 
to healthy controls is a functional metric that indicates a progression of recovery across time. As an alternative 
approach, we calculated the Frobenius distance between the co-classification matrices (see “Methods”), result-
ing in a similar pattern as presented before. The only significant difference observed was between the second 
time point (3 months) and the third time point (1 year) when comparing their corresponding distances with 
the healthy control (Supp. Fig. 4).

In addition to the previous metric, we analyzed the relation between functional and structural connectiv-
ity, which exploits the anatomical data (Fig. 4b). There is a significant difference between healthy controls and 
patients in acute stage (2 weeks) (t(76) = 61.11, p < 0.01). There is no significant difference between acute and 
intermediate stage (t(44) = − 0.16, p = 0.86), while there is a significant difference between intermediate and 
remote stage (t(48) = − 42.62, p < 0.01) revealing a more similar level between controls and stroke patients, after 
1 year of the incident. It is important to clarify that the structural information belongs to the healthy control 
template, and not to each individual patient.

The inclusion of the last two metrics (FC distance and FC/SC coupling) provides a comparison with tradi-
tional techniques in the field as reported in previous  studies59,60. Therefore, it is important to incorporate such 
metrics in future studies in order to be able to compare the obtained results with previous literature.

Behavior. We inspected the recovery of the patients by using 3 behavioral recovery metrics (Fig. 4c).
We classified the recovery level of stroke patients between the ones with a higher (better) recovery against 

the ones with a lower (worse) recovery, by means of behavior as a division criterion (see “Methods” section). 
Reversibility in the latent space showed the highest accuracy performance (mean = 76%, SD = 09%), followed by 
mean FC in the latent space (mean = 65%, SD = 10%), reversibility in the source space (mean = 54%, SD = 12%) 
and mean FC in the source space (mean = 52%, SD = 13%). As an alternative approach, we used the first principal 
component of the recovery scores (see “Methods”) revealing a similar result. The highest accuracy performance 
was in the reversibility in the latent space (mean = 79%), followed by mean FC in latent space (mean = 77%), 
reversibility in the source space (mean = 58%) and last, FC mean in the source space (mean = 52%). These results 
are displayed in Supp. Fig. 6.

FC distance. The FC distance was used to divide the stroke patients with higher against lower recovery level. 
Reversibility in the latent space showed the highest accuracy performance (mean = 71%, SD = 11%), followed by 
mean FC in the latent space (mean = 64%, SD = 14%), reversibility in the source space (mean = 56%, SD = 12%) 
and mean FC in the source space (mean = 55%, SD = 12%).

Correlation FC SC. When classifying between higher and lower recovery level of stroke patients using the cor-
relation between SC and FC as a division criteria, reversibility in the latent space showed the highest accuracy 
performance (mean = 70%, SD = 12%), followed by mean FC in the latent space (mean = 65%, SD = 12%), revers-
ibility in the source space (mean = 58%, SD = 13%) and mean FC in the source space (mean = 55%, SD = 15%).
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Discussion
Deep learning models are being increasingly used in precision medicine thanks to their ability to provide accu-
rate predictions of clinical outcomes from large-scale datasets of patients’ records. However, in the case of brain 
disorders, the deep learning approach is still limited, since clinical neuroimaging datasets typically have a small 
sample size. Thus, data scarcity has forced the adoption of simpler feature extraction methods, which are less 
prone to overfitting.

Figure 4.  Prediction of recovery: (A) FC distance (Frobenius norm of the difference between the two 
matrices) between stroke patients at each time point and the healthy controls indicating the decrease of distance 
after 1 year (p < 0.01). (B) Correlation between SC and FC of healthy controls and stroke patients (at each 
measurement stage) revealing the increase at the remote stage, showing a similar value to controls after 1 year of 
the incident (p < 0.01), while it is not the case after 2 weeks and 3 months (p = 0.86). (C) Prediction of recovery 
using as input of the classifier the FC and reversibility matrix of the source space and the FC and reversibility 
matrix of the latent space. To split the subjects in high vs low recovered, 3 different criteria were used: Amount 
of behavioral domains recovered, the FC distance at remote stage and the correlation between SC-FC at remote 
stage. In all the scenarios, reversibility in the latent space showed the highest accuracy.
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In the current study we tested whether by reducing the dimensionality of fMRI timeseries of stroke patients 
we retain clinically important features of the data. The analysis revealed that the functional features, such as 
modularity, that characterize the alterations caused by stroke, are preserved in the latent representation. Further-
more, the latent information proved to be efficient for clinical classification, discriminating between patients and 
controls, and between patients with low and high lesion volume at the acute stage. Moreover, the information 
of the latent space enhanced prediction of behavioral deficit at the acute stage and recovery after 1 year. These 
results demonstrate the clinical relevance of dimensionality reduction for brain disease and strengthen the case 
of its wider adoption to improve non only diagnosis, but also prognosis, hence allowing for a more effective 
treatment planning.

The results observed in Fig. 4 demonstrate the relevance of this approach for the patients’ treatment assess-
ment. The prediction of recovery, when using the latent information (compared to the obtained using the source 
space) got enhanced. Therefore, the result informs on how embedded dynamics could be leveraged in order to get 
a more accurate baseline on the effects of the disorder at the moment of following the progression across time.

Our study contributes to the literature on dimensionality reduction approaches in  neuroscience61. Reducing 
the dimensionality of the neural data is possible because different areas of the brain do not activate independently, 
but tend to fluctuate in coordinated patterns that can be described in terms of a smaller number of  features62. 
However, a wide variety of dimensionality reduction methods are possible, and it is important to understand 
the relative strengths and weaknesses of the different approaches.

The most widely used approach is certainly PCA. However, PCA assumes  linearity63. A way to tackle the limi-
tations of the PCA (mainly the linearity assumptions), is employing deep learning techniques. These approaches 
have been increasingly used as a generic family of machine learning tools to learn features from fMRI data  (see64 
for a review). However, deep learning approaches are most effective in a supervised learning setting. In an unsu-
pervised setting, autoencoders are more appropriate. At a theoretical level, our autoencoder has benefits over 
classical lineal procedures such as PCA. Autoencoders are non-linear and can learn more complicated relations 
between visible and hidden  units65. A recent study used autoencoders to show that different brain states can be 
captures in terms of trajectories within a low-dimensional latent  space30. In this study, the authors used a vari-
ational autoencoder, rather than a normal autoencoder, due to the necessity to represent new data not used in the 
training stage. In contrast, the current study does not need to include the variational feature to the autoencoder, 
as we encoded real data and analyzed what is obtained in the lower dimensions. By doing so, not only does the 
computational cost gets reduced but also the reconstruction becomes less complicated.

In our study, we find that the latent space time series retain several important properties of the original fMRI 
data, such as having common frames with high-amplitude co-fluctuations, as suggested in previous literature 
given the modular nature of the original  FC66. And critically, the latent space data can be used to successfully 
classify stroke patients and stroke severity. These points underscore the idea that dimension reduction using the 
autoencoder framework is helpful, as it reduces the amount of data under investigation while simultaneously 
retaining relevant characteristics of the original data. Thus, the latent representation can be derived from the 
source space and by sharing the same embedded characteristics while discarding irrelevant information, improve 
the achieved classification accuracy.

One future direction is to explore how autoencoder-based dimension reduction can be employed in con-
junction with whole-brain models and enhanced by using larger datasets (or simulated data). The mechanisms 
underlying the emergence of different brain states can be probed using whole-brain models based on concep-
tually simple local dynamical rules coupled according to empirical measurements of anatomical connectivity, 
for instance, by coupling nonlinear oscillators with the long-range white matter tracts inferred from diffusion 
tensor imaging (DTI)30. Previous studies have already demonstrated the utility of whole-brain models in stroke 
 research23,67,68. The output of these models could similarly be embedded in a low-dimensional space, which could 
be analyzed using similar procedures to the ones described in this project.

Several previous studies have used dimensionality reduction to address stroke. A few studies used Artificial 
Intelligence to predict stroke  incidents69–71 relying on linear procedures such as PCA for dimensionality reduc-
tion. Another study used dimensionality reduction approaches to associate motor and cognitive functions with 
mood disorders subsequent post-stroke72. In the study, the authors proposed a non-linear model that effectively 
predicted post-stroke neuropsychiatric symptoms, outperforming traditional linear classifications. Another study 
proved that distinction between patients with post-stroke vascular dementia and control subjects was enhanced 
by using a dimensionality reduction  technique73. Furthermore, a recent article showed how four well-known 
dimensionality reduction techniques can be used to extract relevant features from resting state functional con-
nectivity matrices of stroke  patients74. Nevertheless, their proposed approach relies on linear assumptions in 
contrast to the ones selected for our study.

To date, machine learning has not been applied to explore in depth the low dimensionality of stroke effects 
in the brain. One study implemented an unsupervised features learning approach based on an autoencoder 
for automatically segmenting brain MR images from stroke  lesions75. Nevertheless, the study focused only on 
anatomical information without considering functional data. Our study is thus novel in that it tries to achieve a 
low-dimensional representation of the functional  data14,76–78. While autoencoders are routinely used for dimen-
sionality reduction across a wide range of fields, their usage in functional neuroimaging is still scant. Our findings 
demonstrate the large, and still underexploited potential of machine learning methods in the study of large-scale 
brain dynamics. Our novel approach may be fruitfully applied to a wide array of brain disorders, subserving 
both the theoretical goal of a clearer understanding of these diseases, and at the same time, the clinical goal of 
maximizing patients’ classification, diagnosis, and prognosis.

In the present study, we reached high classification accuracies by only relying on functional data. In addition 
to the classification of low dimensional description of functional data, not only fMRI, but also EEG, could be quite 
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helpful to select target for non-invasive brain stimulation. Currently, there have been proposals to use patterns 
of functional  connectivity79 to guide invasive and non-invasive brain stimulation. However, high dimensional 
data sets like resting-state fMRI connectivity patterns are difficult to collapse in a small set of coordinates. The 
low dimensional embedding coupled with classification methods to highlight the most predictive components 
could be a strategy to select sensitive targets.

It is important to note that nonlinear dimensionality reduction methods are often fragile in the presence of 
 noise3 in the presence of low data quality, which limits their use when statistics is limited. However, datasets with 
sufficient length, such as the one presented in this article, can avoid this problem. Therefore, before proceeding 
to nonlinear methods, it is worthwhile to ensure a dense enough sampling of the high-dimensional space such 
that local neighborhoods include data points from different trajectories.

In our current study, we used an autoencoder model because of its ease-of-use and flexibility. However, there 
are other interpretable variants that have been proposed to enable the inspection of embedded  information80,81. 
These methods incorporate additional priors to encourage separability across latent dimensions. As our approach 
is relatively general, exploring deep representations could provide a way to visualize the representations formed 
in generative models for other applications in medical imaging. With new strategies for interpreting how deep 
networks represent data, we may be able to develop new regularization strategies to disentangle and interpret 
population-level variability. Moreover, future studies could design visualization techniques in order to interpret 
the features extracted by non-linear dimensionality reduction, which could provide valuable insights to the 
clinicians for the design of more effective rehabilitation protocols.

We selected a whole-brain metric, the average of the FC, in order to perform the classification and prediction 
analyses. Even though this metric is outperformed in literature by other stroke-related  metrics13, we used it in 
order to be comparable to the performance in the latent representation, as when data gets reduced, the anatomical 
properties such as space localization, get lost.

Lastly, whole-brain models introducing anatomical  information24 could be applied directly to the latent 
representation in order to add anatomical restrictions and enrich the information available for the proposed 
analysis.

In conclusion, this study adds new evidence for the relevance of low-dimensional embeddings for fMRI 
signals and proposes a non-linear dimensionality reduction approach as a promising tool to explore altered brain 
dynamics after stroke. In addition, it reveals how complexity metrics such as brain signal reversibility provide 
indicators that relate to lesion severity and predict lesion recovery, making it the first study of this type with 
applications to longitudinal stroke studies. Our findings demonstrate the power of a measure of brain signal 
reversibility as a general marker of pathology. While many complexity measures have been used as biomarkers in 
functional MRI, our measure has the twofold advantage of its simplicity and interpretability. In fact, the degree 
of signal reversibility is a general measure of how distant a physical system is from thermodynamic equilibrium. 
Healthy cognition is associated with complex information processing demanding a far-from-equilibrium  state82,83. 
Therefore, a higher reversibility holds as a strong marker of neurophysiological impairment. We expect similar 
results in a wide array of neurological and psychiatric conditions.

Data availability
Data is available upon request. Code used for the analysis are available at https:// github. com/ Sebas tianI desis/ 
Latent_ Space_ Stroke- 2023-.
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