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Health benefits from risk 
information of air pollution in China
Zhaohua Wang 1,2, Jie Liu 1,2, Bo Wang 1,2*, Bin Zhang 1,2 & Nana Deng 1,2

Risk-related information regarding air pollution can help people understand the risk involved and take 
preventive measures to reduce health loss. However, the health benefits through these protective 
behaviors and the health threat of information inequality have not been systematically measured. 
This article reports the health gains and losses caused by the interaction of “air pollution—air pollution 
information—human”, and studies the heterogeneity and impact of this interaction. Based on field 
investigations and transfer learning algorism, this study compiled the first nationwide city-level 
risk-related information (ERI) response parameter set in China. Then, we developed a Information-
Behavioral Equivalent  PM2.5 Exposure Model (I-BEPEM) model to project the health benefits caused 
by the impact of environmental risk-related information on residents’ protective behaviors under 
different scenarios. The protective behavior led by air pollution risk information reduces 5.7%  PM2.5-
related premature deaths per year. With a 1% increase in regional ERI reception,  PM2.5-related 
premature mortality decreases by 0.1% on average; If the level of information perception and 
behavioral protection in all cities is the same as that in Beijing,  PM2.5-related premature deaths will 
decrease by 6.9% annually in China. Further, changing the air quality standard issued by China to 
the American standard can reduce the overall  PM2.5-related premature deaths by 9.9%. Meanwhile, 
compared with men, other age groups and rural residents, women, older persons, and urban residents 
are more likely to conceive risk information and adopt protective behaviors to reduce the risk of 
premature death from air pollution. Air pollution risk information can significantly reduce people’s 
health loss. Changing the real-time air quality monitoring information indicator standard to a more 
stringent level can quickly and effectively enhance this effect. However, the uneven distribution of this 
information in regions and populations has resulted in the inequality of health gains and losses.

Exposure to air pollution leads to a wide variety of outcomes. Objectively judging the relative impact of these 
risks on personal and population health is fundamental to individual survival and societal prosperity. Many 
people suffer from premature deaths due to air pollution each  year1,2, and its impact is particularly prevalent in 
developing  countries3. Approximately, 1 million people die every year from air pollution (mainly due to  PM2.5, 
 PM10,, and other particulate matter) in  China3–6, causing economic losses of more than 100 billion US  dollars7,8. 
Most of the existing literature discussed the attribution of premature death related to air pollution, such as climate 
 change9, the usage of solid fuels in  kitchen10–12, emissions from different  industries13–15, expense, and  income16,17. 
Further, the health impact of air pollution exposure on individuals over time and space have been  identified18–20. 
Relevant policies and standards, such as the Clean Fuel Alternative  Plan21–24, Comprehensive Clean Air  Plan25, 
and expected air quality compliance on air-pollution-related deaths have been explored to solve this  puzzle26,27.

Most existing studies have considered humans as passive receivers of pollution. The air pollution level that 
humans experience has been measured solely based on the level of ambient air pollution (AAP). However, 
humans do not passively endure the negative effects of air pollution; they take steps to limit or eliminate the 
health risk associated with the air  pollution28,29. In this process, self-protection behavior modifies people’s activ-
ity pattern and subsequently reduces exposure to polluted air, either directly or indirectly. The accuracy of air 
pollution hazard identification will be inevitably affected by not considering people’s active protection behavior 
and will lead to overestimation of premature deaths. Additionally, different groups or regions have different 
accessibility to air-pollution-related information due to differences in economy, politics, culture and belief, 
social status, and so on, creating the so-called “digital divide” or information  inequality30–32. The emergence of 
the internet and social networks serves to exacerbate this phenomenon. The accessibility to information about 
environmental risks such as air pollution differs across regions or populations. To address the potential social 
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equity issues, the identification of potential health losses for disadvantaged  populations33–35 due to information 
inequality is imperative.

After experiencing the widespread haze around 2013 in  China36,37, people started taking initiatives to gather 
information about haze and to protect themselves from air pollution by wearing anti-smog masks, cancelling out-
ings, and using air purification  equipments38–40. Moreover, the government has issued a series of relevant meas-
ures to improve the status quo. One of the most significant changes is to reformulate air quality standards that 
includes harmful pollutants such as  PM2.5 into the air quality evaluation system, and to mandate that each local 
government department releases the current air quality information to the public in real time through multiple 
 channels41. Air quality monitoring and early warning information are readily available in everyday life (similar 
to weather information) based on which individuals can determine whether to take preventive steps based on 
the data released. However, the impact of air pollution information on protective behavior and health benefits 
has not been explored. Incorporating air pollution information and preventive behaviors into human health 
benefit evaluation will help in determining future strategies to reduce air-pollution-related premature mortality.

We developed the information-behavioral equivalent  PM2.5 Exposure Model (I-BEPEM) to project the health 
benefits caused by the impact of environmental risk-related information (ERI) on residents’ protective behaviors 
under six different scenarios (Fig. 1 and Table 1). First, we analyzed the difference in  PM2.5 exposure concen-
tration caused by different behaviors of different populations under the influence of air pollution information 
(see Supplementary Material S1 for model settings). Second, to assess the relationship between perception of 
air pollution information and preventive behaviors, we compiled the first nationwide city level (294 cities) ERI 
behavior response parameter set in China based on field investigations and transfer learning algorism (Section 
“Urban protection data and inference”). Then, we used I-BEPEM (Section “Calculation of equivalent  PM2.5”) 
to calculate equivalent  PM2.5 exposure concentrations for different regions and groups. Finally, the integrated 
exposure–response (IER) model was adopted to quantify  PM2.5-related premature deaths under each scenario. 
Furthermore, the health benefits brought by these protective behaviors and the health threat of information 
inequality have been discussed.

Figure 1.  Effects of air pollution risk-related information on human exposure to  PM2.5. AQI information 
represents the air pollution information, the green people represent receiving air pollution information and 
engaging in protective behavior, such as wearing a protective mask outdoors and activating air purification 
equipment (illustrated by a dashed line) when indoors, and the gray people represent the outdoor activities that 
are directly exposed to  PM2.5. When indoors, all people, represented by light green and green, are shielded by 
buildings.

Table 1.  PM2.5 exposure scenarios and related settings.

Scenarios Settings

S0 Baseline scenario with ambient  PM2.5 as exposure for all people (no protection)

S1 Based on scenario S0, the model adds indoor/outdoor activity time and protection by building (PBH)

S2 Based on scenario S1, the model includes people’s ideal protection from using mask and air cleaner (PBH, PBM, and PBAC)

S3 Based on scenario S2, the model includes people’s attention to AQI information release, leading to different degrees of protec-
tive behavior

S4 Based on scenario S3, the standards of air quality classification that used to publish air pollution monitoring information in 
China will be converted to US standards (adjusted AQI information)

S5 Based on scenario S3, the attention level and protection level of all cities are set to the same as Beijing (adjusted protections)
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We found that the protective behavior led by conceived air pollution risk information decreased the number 
of  PM2.5-related premature deaths by 5.7% per year (scenario S3 compared to scenario S1), which is approxi-
mately 41,000 lives in China. With a 1% increase in regional ERI reception,  PM2.5-related premature mortality 
decreases by 0.1% on average, which is economically significant. When all cities will achieve the same degree of 
information perception and behavioral protection as Beijing (scenario S5), the average yearly  PM2.5-related pre-
mature death will decline by 6.9%. Transforming China’s air quality forecast’s standard to the American standard 
(scenario S4) can reduce  PM2.5-related premature mortality by 9.9%. Moreover, disparities in protective behavior 
among populations have resulted in a disparity in health benefits. Compared with men, other age groups and 
rural residents, women, older persons, and urban residents are more likely to conceive risk information and 
adopt protective behaviors to reduce the risk of premature death due to air pollution. Reportedly, this is the first 
study to incorporate ERI and protective behavior into health loss estimates, which provides a consistent way to 
understand and evaluate the disproportionally distributed ERI’s impact on regional and group health, which is 
fundamental for a tailored policy toward a sustainable future.

Data and methods
Urban protection data and inference. We designed a questionnaire to obtain the cognitive and protec-
tive behaviors data of different regions and groups about air pollution. After a strict quality control (including 
deleting some samples with obvious logical errors, missing data, and inconsistent addresses), we finally received 
1072 valid questionnaires (see Supplementary Figs. 2–6 for the initial statistical information of some important 
indicators in the questionnaire). This study was approved by the Ethics Committee of the Beijing Institute of 
Technology (No. 22-1-103). All procedures performed in this study were in accordance with the 1964 Helsinki 
declaration and its later amendments or comparable ethical standards. All participants are allowed to fill in the 
questionnaire only when they understand the purpose of the survey and agree to the publication of the research 
results. And, online informed consent was obtained from all participants.

The settings of the core variables are as follows:

• ATTR i: The attention ratio (ATTRi) is the proportion of people in different groups i (such as region, gender, 
and age) who pay attention to air pollution information. This data represents the statistical values of all 
samples in the survey questionnaire. For each respondent, we will inquire about the frequency of their daily 
attention to air pollution. There are 5 options for this question, with frequencies ranging from lowest to high-
est being most no, occasionally, generally, often, and most every day. When respondents with a frequency of 
often or above are marked as 1, otherwise it is 0. The group marked as 1 is considered to be concerned about 
air pollution information. In this way, by aggregating different groups, we can calculate the proportion of 
people in different groups who pay attention to air pollution information.

• MRi,  CODRi, and ACR i: The three variables are whether they will wear masks or cancel going out in the air 
polluted weather (not pandemic period), and whether they have air purification equipment in the workplace 
and residential areas. If the answer to each question is “Yes,” select 1, otherwise 0. These variables are also 
used according to the ratio formed after group aggregation: the rate of group i wearing masks  (MRi), cance-
ling going out  (CODRi), and having indoor air purification equipment (ACR i, the average of the rate of air 
purification equipment in workplaces and residential areas).

• ODRi: The proportion of outdoor activity time is mainly to investigate the average daily outdoor activity 
hours of individuals during the non-epidemic period, and then to calculate the outdoor activity proportion 
 (ODRi) of group i.

To extrapolate the questionnaire results to all prefecture-level cities, we introduced transfer learning method 
into our work (see Supplementary material S3). The idea of transfer learning is to use the similarity of data, task 
type, or models to apply the models and knowledge learned in the old fields to the new fields. Including the 
problems and data in this paper, the final required prediction results are calculated as follows:

Step 1 Align provincial statistical characteristic data (source domain) with urban characteristic data (target 
domain) by CORAL  algorithm42:

Equations (1) and (2) represent the feature datasets of the source domain and target domain, respectively; FTm 
is the  mth feature of the dataset, where the source domain feature data are provincial statistical data from China 
Statistical Yearbook  202043, and the target domain feature data are urban statistical data from China Urban 
Statistical Yearbook  202044. The source domain and target domain have the same type of statistical indicators, 
including 18 indicators in the fields such as economics, environment, education, and population structure. As 
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these indicators differ greatly at the city level and provincial level, we divide all indicators by the total population 
of the current region to obtain the per capita value of each indicator so that the characteristic scales of the source 
domain and target domain are the same.

Step 2 Use the transformed source domain data to establish a supervised machine learning model and train 
it and use the trained model to predict the city-level variables.

The model architecture is shown in Fig. 2. Dnew
s  is the feature of input data that includes the five variables, 

which are the five tasks’ goal of training model, respectively. We selected four machine learning models as our 
candidate models: random forest, Lasso regression, Ridge regression, and support vector machine. These models 
are simple and efficient in structure, and their easy-to-use regularization technology limits the occurrence of 
overfitting. In the training process, the grid search method is used to automatically select the best super parameter 
for each task’s model. The fivefold cross-validation method is used to verify the accuracy of each model. Then, 
we select the model with the best performance in each task, and finally predict the corresponding variables of 
each city with city-level dataset ( Dt).

According to the cross-validation and test results of the model, the validity and accuracy of our model are 
established (see Supplementary Material S5 and Table 1). Considering age, gender, and urban and rural groups, 
we used the total original questionnaire to calculate the variables of each group (see of Supplementary Material 
S5 and Table 2).

Calculation of equivalent  PM2.5. This research refers to the integrated population weighted exposure 
(IPWE) model created by Shen et al.45 and enhances it accordingly. The IPWE model distinguishes between 
household air pollution (HAP) and outside ambient air pollution (AAP) and incorporates people’s activity pat-
terns into the model. We added outdoor  PM2.5 permeability and people’s protective behavior led by risk infor-
mation to the model (see Supplementary Material S4) and developed the I-BEPEM to assess people’s real  PM2.5 
exposure concentration.

Equation 6 expresses the I-BEPEM model based on the previous assumptions. The urban attention ratio and 
the protective behavior ratio are obtained from the prediction results of Section “Urban protection data and 
inference”, and both follow the N(µi , θ

2) distribution. µi is the indicator’s forecast data for city i, and θ is the 
indicator’s standard deviation. pmi,t represents the average concentration of  PM2.5 in city i on day t. This indica-
tor is derived from the data of over 2000 monitoring sites for surface air quality in China’s Ministry of Ecology 
and  Environment46. The air quality index for city i on day t is denoted by AQIi,t . IEPEi is the annual equivalent 
comprehensive  PM2.5 exposure value for city i. threshold is the AQI value at which the air quality level of “lightly 
polluted” is reached. DM is the mask’s protective effect or the  PM2.5 attenuation rate after being filtered by the 
mask. The protective effect conforms to the Chinese government-issued group standard F9053 for “PM2.5 protec-
tive masks”47. According to Xiang et al.48, DHi represents the protective impact of buildings in various areas or the 
attenuation rate of  PM2.5 in the outer environment when it penetrates a room. DAC is the purification efficiency 
of air purification equipment, or the rate of  PM2.5 concentration attenuation after air purification equipment 
has cleansed indoor air. This information is derived from the existing relevant measured  data49–52. We consider 
the mean of these studies as the decay rate value. To ensure uncertainty, we assume that all types of decay rate 
data have a normal distribution, with the mean serving as their survey or reference value (see Supplementary 
Material S2 and for the corresponding variance settings).

(6)



















































ODRi = ODRi ∗ (1− CODRi ∗ ATTRi)
MRi = MRi ∗ ATTRi
ACRi = ACRi ∗ ATTRi
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IEPEi = IEPEAAP,i + IEPEHAP,i .

Figure 2.  Model training and prediction process. RF, Random Forest; SVR, support vector machine.
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Table 2 displays the settings for several indicators for scenarios S0–S5. “Yes” indicates that the actual value 
of the indicator should be maintained. The values 0 and 1 denote the setting index value. “No” indicates that the 
indicator is not considered. According to our survey results, residents generally refer to the overall air quality 
level, rather than being limited to the AQI value of  PM2.5. Residents are only likely to take protective measures 
when the air pollution level reaches “light polluted” (AQI > 100) or above. Both China and the United States 
regard the highest AQI value of all pollutants at each moment as the current overall AQI value and designate it 
as the primary  pollutant41,53. According to the overall AQI value, the current air quality is divided into six levels: 
excellent, good, lightly polluted, moderately polluted, heavily polluted, and severely polluted. The difference is 
that when the  PM2.5 concentration is less than 150 μg/m3 and  PM2.5 is the primary pollutant, China’s AQI value 
may be lower than that of the United States (see Supplementary Material S10). Therefore, we map the Chinese air 
quality level to the new air quality level and AQI value based on the  PM2.5 level in the US standard. In summary, 
we will use 100 as the threshold for AQI in our model. The protection level parameter for Beijing residents is set 
to Column S5 with the subscript BJ.

Premature death estimation. This study mainly uses the IER model developed by Burnett et al. and GBD 
2019 disease data to estimate  PM2.5-related premature death. IER model is widely recognized and uses  PM2.5 
concentration-related premature death risk estimation  model54, and its calculation method is shown in Eq. 7.

Among them, z represents the annual mean equivalent  PM2.5 concentration calculated for each city in Sec-
tion “Calculation of equivalent  PM2.5”. zcf  is the minimum  PM2.5 concentration with additional risk.α , γ , and δ 
are computed by fitting this equation. This paper focuses primarily on the four major causes of premature  PM2.5 
mortality, namely ischemic heart disease (IHD), stroke, chronic obstructive pulmonary disease (COPD), and 
lung cancer (LC). The zcf  , α , γ, and δ parameter values corresponding to the above four diseases are from Institute 
for Health Metrics and Evaluation (IHME). Each disease contains 1000 sets of parameter simulations. The final 
calculation method of  PM2.5-related premature death for each city is shown in Eq. 8:

where ACi,k and RRi,k are the number of  PM2.5-related additional deaths and the relative risk of disease k in the 
ith city or group, respectively. Bk is the basal incidence of disease k, which is from GBD  20194. Pi is the total 
population of the city or group i. To obtain interval estimates of  PM2.5-related premature death, 1000 Monte 
Carlo simulations were performed for all parameters.

Reduction amount of premature death and distribution of environmental risk informa-
tion. Weibo (China’s equivalent to Twitter) and Baidu Index are the two main sources of ERI. Sina Weibo is 
the largest open social networking platform in China. It was founded in 2009 and had 450 million monthly active 
users and 250 million daily active users by  201855. Baidu is the largest search engine in China. Through distrib-
uted crawler technology, the public application program interfaces (APIs) of these two platforms were searched 
for content containing environment-related keywords, as shown in Supplementary Table 3. After information 
extraction, cleaning, and conversion, approximately 2.3 million original microblogs related to the environment 
were obtained. These microblogs were forwarded approximately 140 million times and more than 30 million 
people participated in the discussion during 2013–2020. In addition to the Weibo data, we received the daily-
level search index data for 294 cities during 2013–2020 as a supplement. We used all environment-related Weibo 
reposts and originals from different regions and Baidu search index as the total distribution of regional environ-
mental information. Equation (9) defines the per capita access to ERI:

(7)RRIER(z) =

{

1+ α

(

1− e−γ
(

z−zcf
)δ
)

, ifz > zcf

1, else
.

(8)ACi,k =
RRi,k−1
RRi,k

× Bk × Pi ,

(9)ERIi =
1
Pi

∑T+t
T+1

(

Wi,t + Bi,t
)

,

Table 2.  Indicator settings in different scenarios.

Index S0 S1 S2 S3 S4 S5

ATTRi 0 0 1 Yes Yes ATTRBJ

ODRi 1 Yes Yes Yes Yes ODRBJ

CODRi 0 0 Yes Yes Yes CODRBJ

MRi 0 0 Yes Yes Yes MRBJ

ACRi 0 0 Yes Yes Yes ACRBJ

DM 0 0 Yes Yes Yes Yes

DHi 0 Yes Yes Yes Yes Yes

DAC 0 0 Yes Yes Yes Yes

Threshold No No 100 100 35 100
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where Wi,t and Bi,t are the total number of original and reposted environment-related microblogs and the search 
index in city i at time t, respectively. The time range is [T + 1,T + t] . Pi is the total population of city i.

The relationship between the reduction of premature death and the distribution of ERI is shown in Eq. (10).

DDP10ki is the  PM2.5-related premature deaths reduced by active protection per 10,000 people in city i. Xk,i 
denotes the kth covariate of the ith city. All variables are log transformed. γk is the coefficient of the kth covariate; 
β is our target coefficient, representing the percentage change in DDP10ki for every 1% change in ERI.

Results
Comprehensive equivalent  PM2.5 exposure concentration. We compiled the nationwide ERI behav-
ior response parameter set for 294 cities in China based on questionnaires and transfer learning algorism (Sec-
tion “Urban protection data and inference”). The spatial distribution of questionnaire data is shown in Fig. 3A. 
The data samples of the questionnaire survey involved 236 cities, including 186 cities with a sample size less than 
5 and only 9 cities with a sample size greater than 20. There are 294 cities’ city statistics (including economic, 
educational, medical and air quality statistics) data, and their spatial distribution is shown in Fig. 3B. Provincial 
statistics data include all 31 provinces except Hongkong, Macau and Taiwan Province. With these indicators, 
we simulated the comprehensive equivalent  PM2.5 exposure concentration under scenarios S0–S5 by I-BEPEM 
model (Section “Calculation of equivalent  PM2.5”).

The distribution of  PM2.5 exposure concentration in 294 prefecture-level cities in 2020 is shown in Fig. 4. 
Figure 4A shows the spatial distribution of basic scenario S0. We observe that China’s air pollution events mainly 
occur in northern cities, where highly polluting and energy-intensive enterprises are clustered; Fig. 4B–F shows 
that the equivalent  PM2.5 concentration under scenarios S1–S5 has decreased to varying degrees compared with 
scenario S0. This indicates that the differences in population activity patterns and protective behaviors in differ-
ent regions have a direct impact on their  PM2.5 exposure concentrations.

The average equivalent  PM2.5 exposure concentration values under different scenarios are shown in Fig. 5. 
The average ambient  PM2.5 concentration under scenario S0 is 34.1 μg/m3, and the concentration under scenarios 
S1–S5 decreases by 10.9 μg/m3, 13.7 μg/m3, 12.4 μg/m3, 14.3 μg/m3, and 12.7 μg/m3, respectively, compared with 
scenario S0. Scenario S4 has the largest decline, which indicates that the different levels of air pollution informa-
tion release can significantly affect people’s  PM2.5 exposure concentration. Compared with the ideal protection 
behavior (S2), S3 is more realistic with an exposure concentration of 1.5 μg/m3, which is higher than that of 
S2, since people can only take protective actions when they are aware of the degrees of air pollution. When the 
level of risk information reception and perception in each city is the same as Beijing (S5), the average exposure 
concentration will decrease by 0.3 μg/m3 compared with S3, which indicates that the level of risk information 
release and perception in China on average are significantly lower than that of Beijing, which provide evidence 
regarding the underlying risk caused by information inequality.

Overall health benefits under different scenarios. According to the simulated results of  PM2.5 expo-
sure concentration, we used IER model (Sections “Calculation of equivalent  PM2.5” and “Premature death 

(10)DDP10ki = β · ERIi +
∑

kγkXk,i .

Figure 3.  The spatial distribution of data. A is the questionnaire survey data. B is city statistics data. Those areas 
that are not covered by color have no data for the time being. The maps were drawn by Python (v3.10, https:// 
www. python. org/) and Pyecharts (v2.0.3, https:// pyech arts. org/#/), based on the Vector Border Map of China’s 
City level Administrative Division in 2021 (Geographic Coordinate System: CGCS_2000).

https://www.python.org/
https://www.python.org/
https://pyecharts.org/
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Figure 4.  Distribution of  PM2.5 exposure concentration in 294 prefecture-level cities in 2020 under scenarios 
S0–S5. The color from green to red represents the concentration value from low to high. The blank part of the 
map lacks relevant statistical data, and the proportion of this part of the population in the total is less than 10%; 
therefore, it is not considered. The maps were drawn by Python (v3.10, https:// www. python. org/) and Pyecharts 
(v2.0.3, https:// pyech arts. org/#/), based on the Vector Border Map of China’s City level Administrative Division 
in 2021 (Geographic Coordinate System: CGCS_2000).

Figure 5.  Average equivalent  PM2.5 exposure concentration of 284 prefecture-level cities under scenarios S0–S5 
(μg/m3).

https://www.python.org/
https://pyecharts.org/
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estimation”) to calculate the number of premature deaths of different scenarios. The total number of premature 
deaths of each scenario is composed of premature deaths caused by four  PM2.5-related diseases: stroke, IHD, 
COPD, and LC.

Figure 6A shows that under the baseline scenario S0, the premature death related to environmental  PM2.5 in 
China is about 0.958 (0.417–1.500: 95% confidence interval, the same below) million in 2020; when considering 
the pattern of human activity (S1), the  PM2.5-related premature death is about 0.715 (0.318–1.112) million, with 
an average decrease of about 25.4% compared with the baseline scenario. Under scenario S2, adding people’s 
ideal protective behavior to the model, about 84,000 premature deaths can be reduced, which is 11.7% lower than 
scenario S1. Considering that people’s air pollution information attention adjusted actual prevention behavior, 
the number of related premature deaths is 6.8% higher than that of scenario S2 [0.674 (0.303–1.043) million]. The 
gap between S3 and S2 is the result of the difference between people’s protective behavior and practical action. 
Nevertheless, scenario S3 is still about 5.7% lower than that of scenario S1 with a reduction of 41,000 premature 
deaths. Considering the regional differences in air pollution information release and its induced protective 
behavior difference, if we set the level of attention and protection of other regions to the same as Beijing, it can 
reduce 6.9% of premature deaths annually (compare to S1), and a further decrease of 9,000 people compared 
with scenario S3. When the air quality standard of China’s air quality forecast information is changed to that of 
the America’s (scenario S4), the number of premature deaths is about 0.607 (0.278–0.935) million, which is about 
9.9% lower than that of scenario S3, and an additional 67,000 premature deaths can be reduced, which is about 
15.1% lower than S1, and about 108,000 premature deaths are expected to be exempted.

There are positive effects of air pollution information and events on people’s cognitive and protective behaviors 
that have reduced many premature deaths, and an inequality in this effect (scenario S5) has been evidenced. 
Furthermore, there is a significant gap between the recognition and perception of air pollution information and 
the adoption of actual protective actions (scenarios S2 and S3). A more stringent air quality standards can fill 
this gap (scenario S4).

Figure 6B shows the number of premature deaths caused by various  PM2.5-related diseases under different 
scenarios. It is observed that the number of premature deaths under different scenarios maintains the same order, 

Figure 6.  Estimate of  PM2.5-related premature deaths. This includes excess death caused by lung cancer (LC), 
chronic obstructive pulmonary disease (COPD), ischemic heart disease (IHD), and stroke, with a confidence 
level of 95%. A is the number of premature deaths and the proportion of four diseases under different scenarios. 
B is the number of premature deaths of four diseases in different scenarios. C is the ranking of the top 20 cities 
with premature deaths in the S0 scenario when they transition from scenario S0 to S1 and from S1 to S3, as well 
as the magnitude of the change rate in premature deaths.
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which is stroke, IHD, COPD, and LC from high to low. The average proportion of the four disease is 52.4%, 
25.0%, 13.5%, and 9.1%, respectively.

Figure 6C shows the ranking changes of the top 20 cities in scenario S0 with the highest premature deaths. 
Under the benchmark scenario (S0), regions with large populations and relatively serious pollution level gener-
ally rank high, such as Chongqing, Shanghai, Beijing, Chengdu, and Tianjin. However, under scenarios S1 and 
S3, the ranking of premature deaths in these regions has changed significantly. The difference in people’s activity 
patterns in different regions reflected in S1 significantly affected the  PM2.5 exposure concentration per capita 
with a 15.7–35.6% decline in premature deaths. Considering the influence of information (S3), the top 10 cities 
with the highest death basically remain unchanged; however, the average decline of the death (8.0%) under S3 is 
greater than that of the bottom 10 cities (6.9%). This indicates that people’s protection awareness and behavior 
in areas with more serious air pollution are higher than those in areas with less air pollution, thus avoiding more 
premature deaths. Even in cities with similar severity of air pollution, such as Beijing and Chongqing, the number 
of avoided premature deaths are different, that is, it has decreased by 9.4% more in Beijing than that in Chong-
qing. This indicates that people’s awareness and protective behavior are affected by not only the level of actual 
risk but also the differences in risk information perception and cognition caused by the imbalance of economic 
and cultural development. The spatial distribution of premature death can be seen in Supplementary Fig. 7.

In order to investigate the robustness of our study under different premature death computational models, 
we used the GEMM  model56 as an example to recalculate some of the results in this study. The results indicate 
that, overall distribution pattern of premature deaths in different scenarios is completely the same for the two 
models. This means that using other models will not invalidate any conclusions in this study. See detail informa-
tion in Supplementary Materials S9.

Information inequality and premature death related to  PM2.5. To evaluate the impact of informa-
tion inequality on  PM2.5-related premature death, we used Baidu Search Index and Sina Weibo data (same as 
Google Search Index and Twitter in China, Section “Reduction amount of premature death and distribution of 
environmental risk information”) characterized by the inequality degree of receiving ERI in 294 cities in China 
through Gini coefficient. Then, we analyzed the magnitude of the marginal impact of information inequality on 
regional premature deaths through regression (Section “Reduction amount of premature death and distribution 
of environmental risk information”).

Figure 7A shows the inequality degree of ERI spread among 294 cities’ residents from 2019 to 2020. The 
top 20% of residents with the largest amount of ERI release occupy 34% of the total, while the lowest 20% only 
occupy 9.8% of the total. The Gini coefficient is 0.25, which indicates obvious information inequality. Figure 7B 
shows the relationship between the number of premature deaths avoided per 10,000 (DDP10k, the scenario S3 
compare with S1) and the amount of ERI per capita in each city. We observe that there is an obvious positive 
relationship between them.

Figure 7.  Inequality curve and relationship between ERI and DDP10K. A is the Lorentz curve of the 
distribution of environmental-related information dissemination in the city. The vertical axis is the proportion 
of the accumulated information obtained in the total number, and the horizontal axis is the proportion of the 
corresponding population in the total number, which is arranged from low to high. B is the relationship between 
the amount of information received per capita (ERI) related to the environment of different cities and the 
amount of  PM2.5-related premature death reduction per 10,000 people (DDP10k) in cities. The size of the point 
represents the amount of reduction rate of premature death (DDR) caused by protective behaviors. Both the 
vertical and horizontal axes are logarithmic results.
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We use econometric analysis to quantify the marginal impact of ERI on DDP10k. The model (1) in Table 3 
is the benchmark model with ERI as the independent variable; model (2) is the regression result after adding a 
series of control variables, which is our target model (see Section “Reduction amount of premature death and 
distribution of environmental risk information”). The result of model (2) shows that information inequality could 
significantly affect  PM2.5-related premature death; every 1% increase in city per capita ERI access can significantly 
reduce 0.105% (p < 0.01)  PM2.5-related premature deaths per 10,000 people.

Heterogeneity of health benefits among different groups. There are disparities in the number of 
premature deaths among different demographic groups since their activity patterns and self-protective behaviors 
are different. As shown in Fig. 8, the number of premature deaths in the juvenile group (0–14 years old), the 
young and middle-aged group (15–64 years old), and the older persons group (over 65 years old) under scenario 
S3 was 117,000 (52–181, 95% CI), 441,000 (198–684, 95% CI), and 90,000 (41–140, 95% CI), respectively. Under 
the scenario S1, the daily activity patterns of the young and middle-aged group avoided more premature deaths 
(30.6%); the older persons’ group perform more outdoor activity; however, they paid more attention to protec-
tive behaviors, and thus  PM2.5-related premature deaths decreased by about 2.6% in S3. In terms of gender, the 
number of premature deaths in scenario S3 is 312,000 (141–483, 95% CI) for females and 332,000 (149–514, 95% 
CI) for males. Females are also more willing to take protective actions than males, which makes the number of 
premature deaths of women decrease by 0.1% more than that of men. In terms of urban and rural areas, there 
are considerable disparities. Although the number of premature deaths related to  PM2.5 in rural areas under sce-
nario S3 is only 57.9% than that in urban areas due to urban and rural population distribution, compared with 
scenario S1, the number of premature deaths decrease degree rate among rural residents is 2.0 points lower than 
that of urban residents under scenario S3. The number of premature deaths avoided by the activity patterns in 
urban areas under scenario S1 is 1.3 points higher than that in rural areas, which indicates that rural residents 
are at a disadvantage both in terms of direct exposure to  PM2.5 and self-protection level.

Table 3.  The relationship between DDP10k and ERI. *p < 0.1, **p < 0.05, and ***p < 0.01.

Dependent variable:

DDP10k

(1) (2)

ERI 0.109*** 0.105***

(0.014) (0.014)

Second industry ratio 0.001

(0.001)

Hospital beds 0.232***

(0.046)

Population − 0.081*

(0.048)

GDP 0.003

(0.041)

Green ground 0.017

(0.031)

Government general spend − 0.043

(0.032)

Industry company − 0.052***

(0.017)

Income − 0.100*

(0.057)

PM2.5 0.008***

(0.001)

Constant − 0.270*** 1.226**

(0.065) (0.566)

Observations 294 294

R2 0.171 0.561

Adjusted R2 0.168 0.546

Residual Standard Error 0.164 (df = 292) 0.121 (df = 283)

F Statistic 60.269*** (df = 1; 292) 36.166*** (df = 10; 283)
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Discussion and conclusion
This study incorporates both human protective awareness and behavior in  PM2.5-related premature mortality 
estimation. I-BEPEM model has been established to quantify the influence of risk information on protective 
behavior in lowering  PM2.5-related premature death, which is a new benchmark for rediscovering and evaluating 
the disproportionally distributed pollution-related health benefits. This study provides a detailed projection of 
how people’s behavior changes in response to air pollution, illustrates the health benefits of people’s “self-pro-
tective” behavior under the influence of ERI, and examines the inequity involved. The results showed that when 
the protective behavior led by air pollution risk information was incorporated, the number of premature deaths 
decreased by approximately 5.7%, which approximately avoided 41,000 people’s premature death. Moreover, 
disparities in health gains and losses between urban and rural areas have been exacerbated by disparities in health 
awareness and behavior. In terms of premature death reduction rates led by risk information, the older person’s 
group (2.6%) is higher than the adolescent group (1.4%) and the young and middle-aged group (2.6%); the female 
group (4.3%) is slightly higher than the male group (4.2%), and the urban population (5.4%) is significantly 
higher than the rural population (3.6%). Further research establishes that information inequality is a significant 
driver of the disparity in health benefits and losses associated with  PM2.5 among regions. For every 1% increase 
in regional ERI release, there is a 0.1% decrease in  PM2.5-related premature deaths per 10,000 persons on average.

Our results have important implications, not only for China but also for any country or region that seeks 
protection for its citizen from pollution, in a climate with potentially increasing hazards. While developing the 
economy and protecting the environment, we should also pay special attention to the premature death induced 
by information inequality. This inequality exists not only among regions but is also prevalent among subgroups 
of demographic. Ignoring this inequality will result in increased health losses and exacerbate the inequality in 
social development. Governments should prioritize enhancing the scientific education and publicity in disad-
vantaged areas. Furthermore, the hidden health losses led by the relative low pollution threshold standard have 
a negative impact on how the local population perceives the risk information of air pollution from air pollution 
monitoring agency and take protective actions. Raising local air pollution regulations for monitoring and early 
warning could be the quickest and least expensive way to avoid health loss, compared to energy-saving remod-
eling plans and renewable energy plans that involve significant personnel and material resources. Finally, a 6.8% 
gap between people’s willingness to protect themselves from air pollution and their real protective activities have 
been evidenced. Effectively increasing public risk awareness could be a crucial strategy for bridging this gap.

This study has the following limitations. First, the protective behavior data used in this study are primarily 
derived from online questionnaires. Even if the penetration rate of the internet users in China surpasses 90% 
(WeChat has around 1.29 billion monthly active users)57, it may lead to potential choice bias issues. Future stud-
ies should combine online and offline methods. Second, this study disregards the influence of indoor pollution 
sources, which prior research has found to be concentrated in the northern rural  areas24,45. Therefore, this study’s 
estimates of premature deaths in rural regions may be underestimated. Lastly, although our study is conducted 
during the COVID-19 outbreak, it does not consider lockdowns and mandatory mask orders. This may have led 
to an overestimation of the premature mortality toll caused by  PM2.5. It should be highlighted that despite the 
aforementioned flaws in this study, the validity of the conclusions remains unaffected. Future research should 
concentrate on addressing the aforementioned flaws to enhance the estimation accuracy of the number of early 
deaths attributable to  PM2.5.

Figure 8.  Changes in the number of premature deaths of scenarios S3 and S1 compared with S0 in different 
group. The green scatter is the change percentage of S3, the red scatter is the change percentage of S1, and the 
figures in brackets are the number of premature deaths related to  PM2.5 (10,000) and its 95% confidence interval. 
The length of the gray column is the percentage point of the change of scenario S3 relative to S1.
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Data availability
We upload the data on GitHub from https:// github. com/ MR3118/ Health- benefi ts, requiring the password at 
20221108. All data, figures and models are processed in Python, R and office suit. Any additional information 
required to reanalyze the data reported in this paper is available from Bo Wang.
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