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Continual learning approaches 
for single cell RNA sequencing data
Gorkem Saygili * & Busra OzgodeYigin 

Single-cell RNA sequencing data is among the most interesting and impactful data of today and the 
sizes of the available datasets are increasing drastically. There is a substantial need for learning from 
large datasets, causing nontrivial challenges, especially in hardware. Loading even a single dataset 
into the memory of an ordinary, off-the-shelf computer can be infeasible, and using computing 
servers might not always be an option. This paper presents continual learning as a solution to such 
hardware bottlenecks. The findings of cell-type classification demonstrate that XGBoost and Catboost 
algorithms, when implemented in a continual learning framework, exhibit superior performance 
compared to the best-performing static classifier. We achieved up to 10% higher median F1 scores 
than the state-of-the-art on the most challenging datasets. On the other hand, these algorithms can 
suffer from variations in data characteristics across diverse datasets, pointing out indications of the 
catastrophic forgetting problem.

Two significant technological breakthroughs, namely machine learning and single-cell RNA sequencing (scRNA-
seq), have revolutionized our contemporary era. The remarkable progress in these fields paved the way to even 
more remarkable accomplishments through the integration of machine learning algorithms in the analysis of 
scRNA-seq data1. The considerable growth of the number of studies in this domain has led to datasets of thou-
sands of samples and hundreds of cell populations2–12. Although there are inspiring studies on creating bench-
mark scRNA-seq datasets13, as emphasized in14, there is not yet a single reference atlas containing all the cell 
types. Hence, learning from many datasets together is an essential task, and there have been recent efforts to 
build up classifiers that enable this, such as scHPL14 and treeArches15.

Machine learning algorithms have been used for the classification of cell types using scRNA-seq data for 
over a decade. One of the most extensive benchmark articles on this topic compared the performances of 22 
classification algorithms on 27 publicly available datasets13. These machine learning algorithms consist of simple 
classifiers, such as K-Nearest Neighbors (KNN)16,17, and more complex ones build upon neural networks18,19. 
According to their results, linear support vector machine (SVM) classifier was identified as the top performer. 
Furthermore, they measured the complexity of the datasets based on the variation in performance between the 
classifiers. They also measured the complexities of the datasets, and based on their outcomes, large-sized datasets 
such as Zheng 68K10 and AMB9 were among the most challenging for the classifiers to classify the cell types. In 
addition to their challenges in classification, loading these datasets into the memory of an ordinary off-the-shelf 
computer is also a challenge due to their demand for memory. This non-trivial challenge can be addressed via 
continual learning (CL) algorithms, as such algorithms are capable of learning from streams of data without the 
need to use all of it at once for training.

There are a variety of terminologies for CL, such as lifelong learning20–23, incremental learning24–26, and 
sequential learning27. Due to the existence of a variety of terminologies, what exactly CL refers to has been 
largely debatable. In a recent survey of van den Ven et al.28, CL was categorized into three distinct classes: task-
incremental, domain-incremental, and class-incremental. Task-incremental refers to CL algorithms that aim to 
learn incrementally between various different tasks. Domain-incremental learning algorithms, on the other hand, 
focus on the same task over different distributions of data, whereas class-incremental algorithms continually 
learn the same task on batches with varying numbers of classes. De Lange et al.29 surveyed the task-incremental 
domain, stating that CL aims to extend its knowledge through a stream of data. Similarly, Lesort et al.30 defined 
the CL as learning from a stream of data that is not available as a whole at once. Hence, it should not be possible 
to reuse the same training data repetitively for training the CL classifier. We adopted this definition for CL and 
argue that a classifier that learns through batches of training data without considering the same batch twice is a 
CL approach. This strategy of learning through batches of training data rather than the whole of it at once enables 
the utilization of smaller resources in terms of memory, providing a solution to the before-mentioned hardware 
challenge. In addition to its advantage in terms of memory, CL algorithms also facilitate the development of more 
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generalizable models without compromising data privacy by utilizing raw data from multiple institutions without 
the need to share them explicitly, thus making contributions to preserving data privacy31. Not all CL algorithms 
provide similar performances across the stream of data because of the fundamental trade-off, known as plasticity 
and stability32. Plasticity refers to learning from new data, whereas stability refers to retaining knowledge from 
previous learning experiences. Understanding how different CL classifiers perform for the classification of cell 
types using scRNA-seq data is crucial, which constitutes one of the main aspects of this study.

Catastrophic forgetting was introduced by McCloskey and Cohen33 towards the end of the 1980s and persists 
as an important concern for various CL tasks. Catastrophic forgetting, in a nutshell, can be described as the 
tendency of a machine learning algorithm to forget previously learned information when it is trained on new 
data. In fact, catastrophic forgetting happens when a CL algorithm has high plasticity but low stability. While 
harnessing information from larger datasets offers notable advantages, it also entails the inherent risk of potential 
knowledge loss during the retraining process. This problem has been addressed recently via a variety of different 
CL strategies20,23–26,29.

In this study, we opt to find a solution to learning from large and challenging datasets. To achieve this, we 
utilized CL algorithms, which enable learning from small subsets of the data continuously rather than from 
the whole set in one go. Following the common nomenclature, these subsets of the data will be referred to as 
“batches” throughout the paper.

We outline the contributions of our work as follows:

•	 We provide a solution to learning from large datasets without the need to load the full dataset into memory 
while achieving high accuracy on par with the linear SVM and even outperforming on the most complex 
Zheng 68K dataset.

•	 Our experimental results update the existing literature by comparing different CL algorithm performances 
on the most recent scRNA-seq benchmark dataset.

•	 We demonstrate the performance differences between inter and intra-dataset experiments in the CL approach 
in terms of catastrophic forgetting.

Results
scRNA‑seq benchmark results with CL algorithms signifies XGBoost and CatBoost as the top 
performers.  In the context of intra-dataset evaluation, we conducted a comprehensive assessment of the 
performance of six different CL classifiers, along with a linear support vector machine (SVM), across a total 
of 13 datasets. Each dataset was partitioned into batches using a stratified 5-fold cross-validation approach, 
and the classifiers were trained using their default parameter settings. Figure 1 presents the median F1 scores. 
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Figure 1.   Comparison of intra-dataset experiment results for cell identification. Each number indicates the 
median F1-score of 5-fold cross-validation for seven different classifiers on each dataset.
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Interestingly, both the XGBoost and CatBoost algorithms exhibited superior performance compared to the lin-
ear SVM classifier. It is worth noting that when the loss parameter of the SGD classifier is hinge loss (SGD), it 
corresponds to the linear SVM. Since it is the default loss function for SGD, it is denoted as SGD in the results. 
Additionally, when the loss function log_loss is selected, the SGD classifier represents the logistic regression 
classification algorithm which corresponds to ’SGD (loss=log)’. The outcomes of the evaluation demonstrate 
the superiority of the CatBoost and XGBoost algorithms over both the static linear SVM and linear SVM classi-
fiers within the continual learning (CL) framework. Passive-Aggressive classifier, specifically designed for online 
learning tasks, surpassed linear SVM on several datasets. All remaining CL classifiers except the LightGBM 
showed decent performance, if not better than the linear SVM. A more extensive comparison involving mod-
els employing different regularization techniques, such as L1, L2, and elasticnet, can be found in Fig. 1 in the 
Appendix. These results confirm the strong performance of CL algorithms, especially on challenging datasets 
such as Allen Mouse Brain and Zheng 68K. However, it is important to note that all the batches were from the 
same dataset for the intra-dataset experiment, causing consecutive batches to be alike.

Experimental results on the latent space confirm the results of the intra‑dataset experi-
ment.  scArches34 and its recent advanced version with scHPL, treeArches15, map the high-dimensional 
scRNA-seq data to a latent space to combine multiple atlases or datasets for downstream analysis. Although lin-
ear SVM had provided top performance for the classification of high-dimensional data, Michielsen et al.15 noted 
in their study that data in the latent space is not as linearly separable as the high-dimensional space, leading them 
to utilize a KNN classifier rather than linear SVM in their experiments. In this experiment, we also included 
KNN and used the latent spaces from15 to match the classification performances of CL algorithms against linear 
SVM and KNN on the recently released Human Lung Cell Atlas (HLCA)34 dataset. Median F1-scores of all clas-
sifiers on the high-dimensional HLCA dataset and its latent space from15 can be seen in Fig. 2. Following the 
previous results, CatBoost was the top performer, and XGBoost provided on-par performance with CatBoost 
on both high-dimensional data and the latent space. Although the Passive-Aggressive algorithm outperformed 
linear SVM and KNN on the high-dimensional data, it showed worse performance than the other two in the 
latent space. In contrast to the outcome of Michielsen et al.15, linear SVM and KNN performed on par with each 
other on high-dimensional and latent spaces for the HLCA dataset. Similar to the previous results, LightGBM 
was the worst performer in high-dimensional and latent spaces.

Training over diverse datasets can have a detrimental effect on continual learning perfor-
mance.  One of the major problems encountered in CL is catastrophic forgetting. This phenomenon arises 
when the consecutive batches used for training exhibit substantial variations, such as those stemming from dif-
ferent populations or datasets. We conducted inter-dataset experiments to find out whether the CL algorithms 
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Figure 2.   The median F1-scores of all classifiers, including KNN, on high-dimensional and latent spaces of the 
HLCA dataset from15.
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are affected by catastrophic forgetting. Rather than a set of samples from the same dataset, we trained the classi-
fiers continually with different datasets as batches. The feeding order of datasets into the classifiers is presented in 
Fig. 3, and the results were sorted from top to bottom based on the mean of the median F1-scores in decreasing 
order. In this experiment, the top-performing classifier was the Passive-Aggressive classifier, followed by the 
SGD and the Perceptron. Interestingly, the XGBoost and CatBoost classifiers exhibited suboptimal performance, 
as they underperformed not only the linear SVM classifier but also all other CL classifiers, with the exception of 
the LightGBM. A comprehensive comparison of inter-dataset experiments, featuring models employing diverse 
regularization techniques including L1, L2, and elastic net, is available in Fig. 1 in the Appendix.

Figure 4 displays graphical representations that depict the incremental median F1 scores for each batch, where 
a distinct dataset is utilized as the test set (specified on top of each graph) for every training batch. These graphs 
provide valuable insights into the comparative analysis among models on a batch-by-batch basis. Notably, the 
graphs vividly illustrate the notable influence of the similarity between the training set employed in each batch 
and the test set on the overall performance of the model. This phenomenon is indicative of catastrophic forget-
ting. Based on the empirical findings, our analysis suggests that the XGBoost and CatBoost algorithms in the 
CL setup are susceptible to the catastrophic forgetting phenomenon. In contrast to these two classifiers, which 
used their last model as the initial model of their next batch, the SGD, Perceptron, and Passive-Aggressive CL 
algorithms improved their models incrementally from their last state. Eventually, this incremental “fine-tuning” 
approach adapted to varying distributions between different datasets better than the initialization approach.

Batch sizes affect the performance of the continual learning algorithms.  An important hyper-
parameter to be decided before applying the CL classifiers is the batch size. The choice of batch size is crucial as 
having a larger number of smaller-sized batches can introduce diverse distributions that significantly differ from 
both each other and the overall distribution of the training set. This can potentially result in adaptation difficul-
ties and lower overall performance. To evaluate the impact of batch size, we generated 5, 10, and 20 stratified 
batches from the highly challenging Zheng 68K dataset. The median F1-scores obtained from each batch are 
presented in Fig. 5. Similar to the results of the intra-dataset experiment, CatBoost, and XGBoost classifiers were 
the best performers, outperforming the linear SVM classifier with a large margin. However, their performances 
were hampered by the batch size, supporting the results of the inter-dataset experiments. Complementary to 
this, Passive-Aggresive and SGD algorithms, as the top performers of the inter-dataset experiment, were not 
hampered by the batch size variation as much as the CatBoost and the XGBoost classifiers.
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Discussion
In this study, we compared the performance of seven different classifiers, of which six (CatBoost, XGBoost, Light-
GBM, Passive-Aggressive, Perceptron, and SGD) were applied in the CL setup. All of the classifiers were trained 
and tested using a total of 20 datasets for intra- and inter-dataset experiments. One of these datasets, Zheng 68K, 
was particularly emphasized in the earlier study of Abdelaal et al.13 as being the most challenging for all the static 
classifiers in their comparison. In our intra-dataset experiments, we particularly focused on the performances 
of our CL classifiers on the Zheng 68K dataset while comparing their performances against the best-performing 
static linear SVM classifier13,14. The results of XGBoost and CatBoost CL classifiers over 5-fold stratified batches 
outperformed the linear SVM for every dataset, including the Zheng 68K. In addition to XGBoost and CatBoost, 
SGD and Passive-Aggressive classifiers also showed on-par performance with linear SVM except for the AMB92 
(92 cell populations) dataset. It is crucial to highlight that the AMB92 dataset consists of 92 classes with a highly 
imbalanced distribution among them. When splitting this data into batches, the performance of models in the 
CL framework can be negatively affected, as some classes could have a notably low number of samples in the 
batches, even with the application of stratified cross-validation. In all of our experiments, LightGBM in CL setup 
provided lower performance than the other classifiers. We argue that this low performance is due to the leaf-wise 
growth strategy of LightGBM35 that can produce more complex trees than the other boosting algorithms which, 
in turn, decreases the plasticity of the algorithm through the batches.

Linearly separable datasets can be classified with high accuracy using the linear SVM classifier. However, not 
all scRNA-seq datasets are linearly separable. One exception is the latent space of the HLCA dataset. The authors 
of15 used a KNN classifier rather than a linear SVM to address this non-linearity and achieve better classification 
performance. We tested the CL classifiers against both linear SVM and KNN classifiers on both latent space and 
high-dimensional versions of the HLCA datasets. Both KNN and linear SVM classifiers showed on-par perfor-
mances; however, CatBoost, and XGBoost achieved better performances in latent space. This result confirms 
that CL classifiers have the potential to perform better than static classifiers in latent space and on non-linearly 
separable datasets. Interestingly, Passive-Aggressive classifier performed better than both KNN and linear SVM 
on the high-dimensional data; however, its performance got worse in the latent space.

A crucial problem with CL algorithms occurs when the distribution of the data substantially changes along the 
batches. Such a change particularly occurs when the batches come from different datasets. In these circumstances, 
the learning algorithm may catastrophically forget what it has learned previously and adapt to the new distribu-
tion. In order to analyze the effect of learning through different datasets and to find out whether there is an effect 
like catastrophic forgetting, we designed inter-dataset experiments using the aligned datasets from13. The results 
showed considerable differences from the intra-dataset experiments. SGD, Perceptron, Passive-Aggressive, the 
incremental learning classifiers from scikit-learn, outperformed XGBoost and CatBoost substantially while show-
ing better overall performance than linear SVM. It is important to note that XGBoost, CatBoost, and LightGBM 
are originally static classifiers that were applied in a CL setup. At each batch, they were initialized with their most 
recent configuration and trained with the new batch afterward. We argue that such a configuration is prone to 
distributional variations in the batches. The drop in performance through the batches of different datasets can be 
clearly seen in Fig. 4, especially for the CatBoost classifier. In contrast, Perceptron, SGD, and Passive-Aggressive 
classifiers incrementally updated their states as they were trained on a new batch. This eventually led to better 
performance against substantial changes through the batches. Furthermore, it is essential to acknowledge that 
the order in which batches are presented to the CL algorithms can also have an impact on their performance. 
This impact is evident in Fig. 4, where the performance of the CL algorithms consistently exhibits a pattern of 
improvement after training on the 10Xv2 dataset and testing on the 10Xv3 dataset, and vice versa.

An important hyperparameter of our experiments was the number of batches. There are other studies that 
have also delved into the examination of the role of batch size in various aspects, including one that specifically 
focused on the buffer size in the replay method of the CL framework36. In that study, they investigated the role 
of buffer size that would be stored and reused in the next batch during training. Interestingly, they found that 
smaller batch sizes were more effective in mitigating catastrophic forgetting. In our CL approach, contrary to 
the replay method, we do not reuse any samples for training which is in line with our definition of continual 
learning. Akin to13 we used stratified 5-fold CV to create five batches. To analyze how CL algorithms are affected 
by the number of re-trainings applied, we utilized 5, 10, and 20 batches and compared the performances. The 
results showed that CatBoost and XGBoost performed worse as the number of batches increased, i.e., smaller 
batch sizes. On the other hand, Passive-Aggressive and SGD classifiers were not affected by the increase in the 
number of batches.

It is important to note that we did not include a deep neural network (DNN) such as a multi-layer percep-
tron (MLP) in our study. This is mainly because recent state-of-the-art studies achieved considerably higher 
performance with traditional machine learning algorithms than with MLPs. However, we foresee that better 
performances can be achieved using continual learning with DNN architectures. In particular, we believe that 
DNNs can be more successful in the classification of datasets that are not linearly separable. Furthermore, differ-
ent techniques can also be utilized, such as transfer learning, to carry information from several datasets through 
pre-trained networks. Yet, the effect of catastrophic forgetting can be a severe factor that limits the use of such 
techniques, which needs to be researched deeply in a future study.

Conclusions
We presented an extensive analysis of continual learning classifiers to provide a solution for the training of 
machine learning algorithms on large scRNA-seq datasets. Intra and inter-dataset experiments, together with 
experiments on latent space and different numbers of batches showed that continual learning algorithms can 
provide better classification performances than static best-performing classifiers while being trained on batches 
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of data rather than the entire training set. These results are promising since the size of scRNA-seq datasets have 
been increasing and learning from multiple datasets has been the primary focus of many recent studies. Although 
they provide decent performances, some of the continual learning algorithms are hampered more than others 
when the variation between batches increases substantially.

Methods
Classification methods.  We evaluated seven classifiers, including a static linear SVM classifier as the base-
line. Six of the seven classifiers were configured in a continual setting and gradually trained using batches of 
data. These six classifiers include XGBoost37, CatBoost38, LightGBM35, and three CL classifiers from scikit-learn 
library17: SGD, Passive-Aggressive, and Perceptron classifiers.

XGBoost, CatBoost, and LightGBM were essentially static classifiers. To train them continually, we utilized 
initialization. They were first trained using the first batch which was used as the initial configuration for the train-
ing with the next batch. Hence, we used the last models of these three classifiers, which were trained using the 
previous batch as their initial/starting model, to be updated on the recent batch. On the contrary, CL classifiers 
in scikit-learn ensure CL with their partial_fit function which enables incremental improvements of the model as 
the new data comes in for training rather than using the last trained model as the initial model of the next batch.

The performances of classifiers depend on the setting of their hyperparameters, and each of them generally 
has a different number of hyperparameters to be optimized. Furthermore, optimizing these hyperparameters on 
a dataset may induce overfitting. To be fair to each of these classifiers and to alleviate the risk of overfitting, we 
used the default values for the hyperparameters of these classifiers akin to13. The only exception happened with 
the SGD classifier for which different loss functions correspond to different classifier types. Stochastic Gradient 
Descent (SGD) is an optimization method for the model parameters, w , while minimizing the objective func-
tion, Q(w) , with an iterative approach:

where, L(yi , f (xi;w)) represents the loss function or error between the predictions of the model f (xi;w) and the 
target values, yi , of each sample xi and R(w) is the regularization term. At each iteration, SGD minimizes this 
objective function using the derivative of the loss function for each parameter of the model:

where, η is the learning rate.
The hinge loss is equivalent to the SVM classification:

and the log loss corresponds to the logistic regression:

In addition to these two loss functions, we also incorporated three different regularization functions: L1 (eqn. 5), 
L2 (eqn. 6) norms, and Elastic Net (eqn. 7)39:

Apart from these configurations, all of the hyperparameters were set to their default values.

Preprocessing.  The cell populations with less than 10 cells across the entire dataset were eliminated and 
then were log-normalized using loge(count + 1) . Each dataset was divided into batches using stratified k-fold 
sampling akin to13. One of these batches was left out as the test batch, and the remaining batches were fed to the 
classifiers sequentially. This process is the same as stratified K-fold cross-validation; however, rather than provid-
ing all the batches together except the test batch, the batches were provided individually for continual training 
of the classifiers.

Datasets.  In this study, we used a total of 20 datasets to evaluate the performance of various machine learn-
ing models for single-cell RNA sequencing (scRNA-seq) analysis in a CL scenario. The majority of the data-
sets utilized in the experiments came from the benchmark dataset of13. Brief information about the datasets is 

(1)Q(w) =
1

N

N∑

i=1

L(yi , f (xi;w))+ αR(w)

(2)w := w − η
∂Q(w)

∂w

(3)L(yi , f (xi ,w)) = max(0, 1− yif (xi;w)),

(4)L(yi , f (xi ,w)) = log(1+ exp(−yif (xi;w)).

(5)RL1(w) =

m∑

j=1

|wj|

(6)RL2(w) =
1

2

m∑

j=1

w2
j

(7)Relc(w) =
ρ

2

m∑

j=1

w2
j + (1− ρ)

m∑

j=1

|wj|.



8

Vol:.(1234567890)

Scientific Reports |        (2023) 13:15286  | https://doi.org/10.1038/s41598-023-42482-7

www.nature.com/scientificreports/

provided in Table 1. We expanded the benchmark more in order to represent different datasets with varying 
numbers of cells and genes and to evaluate where the CL strategy comes in handy.

For the intra-dataset experiments, we used 13 datasets, which all vary in the sequencing protocol used. We 
utilized all the datasets that were used for the intra-dataset experiments in13. They include the Allen Mouse 
Brain (AMB) dataset; 5 pancreatic datasets (Baron Mouse, Baron Human, Muraro, Segerstolpe, and Xin) from 
both mouse and human pancreatic cells; two CellBench datasets (10X and CEL-Seq2) from a mixture of five 
human lung cancer cell lines; the Tabula Muris (TM) dataset from whole Mus musculus; and two PBMC data-
sets (Zheng68K and Zheng Sorted). Zheng68K, Zheng sorted, and AMB92 (AMB dataset containing 92 cell 
populations) are described as the most complex datasets in13. We also included two datasets in our analysis: 
the PBMC-eQTL dataset, previously utilized in the hierarchical analysis by14, and a subset of the Human Lung 
Cell Atlas (HLCA) dataset described in15, which was updated from the original HLCA dataset in34. The subset 
comprises 61603 samples and 2000 highly expressed genes. The PBMC-eQTL dataset was sequenced using 10× 
Chromium and consists of 24439 cells, 22229 genes, and eleven different cell populations40. The HLCA dataset is 
annotated with different annotation levels; the third level, consisting of 24 cell populations, was used in this study.

We also use the HLCA dataset to evaluate the performance of the classification models on the dataset that 
is projected in latent space. scANVI embeddings created by Michielsen et al. in their work34 were used in this 
experiment.

For the inter-dataset experiments, we utilized PbmcBench datasets, which are sequenced using 7 different 
protocols (10Xv2, Smart-Seq2, 10Xv3, CEL-Seq, Drop-Seq, inDrop, Seq-Well) and also used for the inter-dataset 
experiments in13. We used only pbmc1 datasets to evaluate the classification performance in a CL scenario in 
which each dataset from 7 protocols is used as the test set and fed the model batch by batch.

Data availability
All of the datasets analyzed in the current study are publicly available and can be downloaded from these Zenodo 
repositories: Intra and Inter Datasets13: https://​doi.​org/​10.​5281/​zenodo.​33571​67 PBMC-eQTL14: https://​zenodo.​
org/​record/​37364​93#.​ZGZgX​HZBxPY HLCA latent space15: https://​zenodo.​org/​record/​63379​66#.​YqmGI​idBx3g.

Code availability
The codes used in this study are available in the Github repository, at https://​github.​com/​gsayg​ili/​CL4sc​RNA.

Received: 6 June 2023; Accepted: 11 September 2023

Table 1.   Overview of the datasets used for this study. *For inter-dataset experiments, different datasets were 
extracted such that they share the same type of cell populations (class labels).

Number of cells Number of genes Number of cell populations

Brain

   Allen Mouse Brain (AMB) 12,832 42,625 92

Human Lung

   CellBench 10X 3803 11,778 5

   CellBench CEL-Seq2 570 12,627 5

   Human Lung Cell Atlas (HLCA) 61,603 2000 23

Pancreas

   Baron Human 8569 17,499 13

   Baron Mouse 1886 14,861 9

   Muraro 2122 18,915 8

   Segerstolpe 2133 22,757 9

   Xin 1449 33,889 4

Whole Mus Musculus

   Tabula Muris (TM) 54,865 19,791 55

PBMC

   Zheng68K 65,943 20,387 11

   Zheng-sorted 20,000 21,952 10

   EQTL 24,439 22,229 11

   *10Xv2 6444 33,694 9(4)

   *10Xv3 3222 33,694 8(4)

   *CEL-Seq 253 33,694 7(4)

   *Drop-Seq 3222 33,694 9(4)

   *inDrop 3222 33,694 7(4)

   *Smart-Seq2 253 33,694 6(4)

   *Seq-Well 3176 33,694 10(4)

https://doi.org/10.5281/zenodo.3357167
https://zenodo.org/record/3736493#.ZGZgXHZBxPY
https://zenodo.org/record/3736493#.ZGZgXHZBxPY
https://zenodo.org/record/6337966#.YqmGIidBx3g
https://github.com/gsaygili/CL4scRNA
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