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Smoking and salivary microbiota: 
a cross‑sectional analysis 
of an Italian alpine population
Giacomo Antonello 1,2*, Freida Blostein 3, Deesha Bhaumik 3, Elyse Davis 3, Martin Gögele 1, 
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Christian Fuchsberger 1,4*

The oral microbiota plays an important role in the exogenous nitrate reduction pathway and is 
associated with heart and periodontal disease and cigarette smoking. We describe smoking‑related 
changes in oral microbiota composition and resulting potential metabolic pathway changes that 
may explain smoking‑related changes in disease risk. We analyzed health information and salivary 
microbiota composition among 1601 Cooperative Health Research in South Tyrol participants 
collected 2017–2018. Salivary microbiota taxa were assigned from amplicon sequences of the 16S‑V4 
rRNA and used to describe microbiota composition and predict metabolic pathways. Aerobic taxa 
relative abundance decreased with daily smoking intensity and increased with years since cessation, 
as did inferred nitrate reduction. Former smokers tended to be more similar to Never smokers than 
to Current smokers, especially those who had quit for longer than 5 years. Cigarette smoking has 
a consistent, generalizable association on oral microbiota composition and predicted metabolic 
pathways, some of which associate in a dose‑dependent fashion. Smokers who quit for longer than 
5 years tend to have salivary microbiota profiles comparable to never smokers.

Abbreviations
ASV  Amplicon sequence variant
BH  Benjamini–Hochberg
CHRIS  Cooperative Health Research in South Tyrol
CHRISMB  CHRIS microbiome project
eHOMD  Expanded Human Oral Microbiome Database
FDR  False discovery rate
g  Gram/grams
GLM  Generalized linear model
NO  Nitric oxide
NRB  Nitrate-reducing bacteria
PCR  Polymerase chain reaction

Smoking is a risk factor for several complex, chronic diseases including but not limited to respiratory  diseases1, 
 periodontitis2–4, oropharyngeal  cancers5,6 and cardiovascular  diseases7. Recently, alterations to oral microbi-
ota composition have been observed in cases of  periodontitis8–11, squamous cells  carcinoma12, cardiovascular 
 diseases13,14 and in cigarette  smokers15–19 (Supplementary File 1, Table 1). Therefore, it is possible that smoking 
related changes in the oral microbiota contribute to the etiology of one or more chronic health conditions. 
The oral microbiota performs several functions, including playing an important role in the exogenous nitrate 
reduction pathway and hence blood pressure regulation via nitric oxide (NO)20–23. Diets high in nitrate increase 
the presence of oral nitrate-reducing bacteria (NRB), the most prevalent of which are species in the Neisseria, 
Prevotella and Actinomyces  genera24. when NRB are present, salivary nitrate reduction  increases23,25. Whether 
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tobacco consumption directly or indirectly alters the relative abundance of nitrate reducing bacteria remains to 
be explored; however, smoking was reported to inhibit uptake of blood-circulating nitrate into  saliva26.

The salivary microbiota composition varies by smoking habits. A 2016 meta-analysis of 1204 USA citizens 
from two national cohorts found that compared to former or never smokers, smokers had a decreased relative 
abundance of Proteobacteria, an increase of Actinobacteria and a lower proportion of aerobic taxa after adjust-
ment for age and  sex15. A 2019 study set in New York city confirmed and extended those findings showing that, 
in contrast to former or never smokers (N = 86), the salivary microbiota of smokers (N = 86) showed higher 
abundance of genera Stomatobaculum, Megasphaera, Veillonella, Leptotrichia, Campylobacter and Treponema, and 
lower abundance of Neisseria, Lautropia, Haemophilus, Capnocytophaga16. Studies conducted in Saudi  Arabia17, 
 Asia27,28 and  Europe19 reported comparable findings (Supplementary File 1, Figure 1). In a meta-analysis with 
1204 Americans, Wu and colleagues uniquely found that the relative abundance of classes Betaproteobacteria, 
Gammaproteobacteria and Flavobacteriia was inversely correlated with the number of cigarettes smoked daily 
and directly correlated with the years since quitting  smoking15. While associations between smoking status and 
salivary microbial composition have been previously characterized in Americans, no study has described asso-
ciations of the salivary microbiota composition and metabolic potential with daily smoking intensity or years 
since quitting in a European population.

This study adds to our understanding of the associations of the salivary microbiota taxonomic and predicted 
metabolic functional composition with smoking status, intensity (grams/day) and history (years since cessa-
tion) in a large, novel, homogeneous Italian cohort aged 18–91: the Cooperative Health Research In South Tyrol 
(CHRIS)29 Microbiome study (CHRISMB). We hypothesized that we would observe results consistent with the 
literature and some novel insights attributable to the unique characteristics of CHRISMB and the large sample 
size. We additionally hypothesized that the nitrate reduction pathways could be less abundant in smokers, given 
the previous findings of decreases of taxa in the Neisseria and Haemophilus genera, which harbor several NRB 
 species30.

Results
Characteristics of study population in relation to smoking
After exclusions (see “Methods” and Supplementary File 1, Tables 2 and 3 for details), CHRISMB consisted 
of 1601 individuals with an average age of 45 years (range 18–91) and had slightly more females (52.9%) than 
males. Most had 20 or more natural teeth (72.1%). Almost half (45%) were Current or Former smokers; cigarettes 
were the primary source of tobacco for all but 5 participants. Smokers were more frequently males and younger 

Table 1.  Distribution of selected demographic descriptors in relation to smoking status in the Cooperative 
Health Research in South Tyrol Microbiome (CHRISMB) study. Per-column percentages were also reported in 
brackets. The whole cohort is included under the “CHRISMB” column. Significance was calculated as  X2 test 
for categorical variables. Non-available measures were reported as “Missing”.

Never
(N = 880)

Former
(N = 395)

Current
(N = 326)

CHRISMB
(N = 1601) X2 p value

Sex 2.7e−07

Male 356 (40.5%) 222 (56.2%) 173 (53.1%) 751 (46.9%)

Female 524 (59.5%) 173 (43.8%) 153 (46.9%) 850 (53.1%)

Age category (years) 3.6e−19

18–30 238 (27.0%) 41 (10.4%) 130 (39.9%) 409 (25.5%)

31–40 139 (15.8%) 73 (18.5%) 57 (17.5%) 269 (16.8%)

41–50 196 (22.3%) 75 (19.0%) 64 (19.6%) 335 (20.9%)

51–60 144 (16.4%) 112 (28.4%) 51 (15.6%) 307 (19.2%)

61–70 93 (10.6%) 57 (14.4%) 23 (7.1%) 173 (10.8%)

71+ 70 (8.0%) 37 (9.4%) 1 (0.3%) 108 (6.7%)

N° teeth (self-reported) 0.07

0 50 (5.7%) 23 (5.8%) 16 (4.9%) 89 (5.6%)

1–9 57 (6.5%) 41 (10.4%) 20 (6.1%) 118 (7.4%)

10–19 117 (13.3%) 74 (18.7%) 48 (14.7%) 239 (14.9%)

20+ 656 (74.5%) 257 (65.1%) 242 (74.2%) 1155 (72.1%)

Gums health (self-reported) 0.87

Excellent 45 (5.1%) 18 (4.6%) 16 (4.9%) 79 (4.9%)

Very good 188 (21.4%) 79 (20.0%) 64 (19.6%) 331 (20.7%)

Good 291 (33.1%) 124 (31.4%) 87 (26.7%) 502 (31.4%)

Average 229 (26.0%) 84 (21.3%) 99 (30.4%) 412 (25.7%)

Poor 47 (5.3%) 24 (6.1%) 22 (6.7%) 93 (5.8%)

Very poor 6 (0.7%) 2 (0.5%) 3 (0.9%) 11 (0.7%)

Missing 74 (8.4%) 64 (16.2%) 35 (10.7%) 173 (10.8%)
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than Never or Former smokers (Table 1). Former smokers quit smoking 17.96 years, on average (Range 0–61; 
median 16). When stratified by age group, Current and Former smokers aged 41–60 years with higher lifetime 
exposure to smoke tended to have fewer teeth than smokers with a lower cumulative exposure (Supplementary 
File 1, Figure 2).

Salivary microbiota DNA sequencing of selected samples consisted of almost 36 million reads, with a median 
read count per sample of 22,308 (interquartile range: 11,884, full range 5283–65,837). After filtering by prevalence 
and minimum detection (see “Methods”), the dataset included 627 ASVs assigned to 82 genera (Supplementary 
File 1, Table 4).

Qualitative smoking habits are associated with compositional and functional profiles of sali‑
vary genera
The microbiota composition of CHRISMB at phylum level was dominated by Firmicutes, followed by Bacte-
roidetes Proteobacteria, Fusobacteria and Actinomycetes; while at Genus level it was dominated by Prevotella, 
Streptococcus, Veillonella, Haemophilus, Neisseria (Supplementary File 1, Figure 3). The salivary microbiota was 
significantly associated with smoking (Fig. 1A, PERMANOVA  R2 = 0.04, p = 0.001, 2000 permutations) as well 
as sex, age group and number of teeth, considering the marginal effect of all variables together (Supplementary 
File 1, Table 5). Alpha diversity was not significantly associated with smoking status (Supplementary File 1, 
Figure 4). Principal coordinate analysis and differential abundance analysis together suggested that the salivary 
microbiota of Former smokers was highly similar to Never smokers. Consensus-based differential abundance 
analysis identified 44 genera that were significantly different between Current smokers and Never smokers after 
adjusting for age, sex, and number of teeth (Fig. 1B). To investigate sex-dependent associations, we repeated the 
same consensus differential abundance analysis separately by sex, again adjusting for age and number of teeth. 
Despite finding sex-specific differentially abundant genera, all were in the set of 44 differentially abundant genera 
of the model adjusted for sex, age group, and number of teeth (Supplementary File 1, Figure 5). We annotated 
genera based on their oxygen requirements from a manually curated table by Calgaro et al.31, and observed that 
the relative abundance of aerobic taxa decreased consistently in smokers (from a median of 7% to 3%), in favor 
of anaerobes (Fig. 1C).

Several microbial genera associated with smoking habits are also associated with the grams 
of tobacco smoked daily
We regressed each genus against daily smoking intensity as multiples of 5 g per day (see “Methods”). Fretibacte-
rium was positively associated with increases in daily smoking intensity and 10 with decreases (Fig. 2A). Except 
for Campylobacter and Selenomonas, the remaining 9 genera were also differentially abundant comparing Current 
against Never smokers (Fig. 1B). Additionally, the effect sizes estimated in the daily smoking intensity regression 
were highly correlated with the estimates obtained comparing Current against Never smokers (Pearson ρ = 0.87, 
Supplementary File 1, Figure 6), suggesting that some genera associated with smoking against non-smoking 
were additionally associated with daily smoking intensity. The complete linkage hierarchical clustering in the 
pheatmap function tended to cluster heavier smokers together, further suggesting a dose effect (Fig. 2A). The 
mean relative abundance and variance of aerobes significantly decreased at the increasing daily smoking intensity 
(linear regression β( 1

grams/day ) = 0.027 , p value = 4.6× 10
−4 ; Supplementary File 1, Tables 6, 7), adjusted for 

age as continuous variable, sex and number of teeth; Figs. 2C, 3D), with a plateau at more than 10 g (Fig. 2B). 
Conversely, the relative abundance of anaerobes and facultative anaerobes slightly increased.

Salivary microbiota of Former smokers who quit 5 years or longer tended to resemble Never 
smokers’ profiles
We studied the association between salivary genera of former smokers and the years since smoking cessation 
using the same model framework as the daily intensity regression (Fig. 2), with 1 year scale, finding no statistically 
significant association. We visualized the mean relative abundance of genera associated with smoking (Fig. 1B) 
in the Former smokers’ group with 20 or more natural teeth, grouping them by bins of years since quitting. We 
limited the visualization to individuals with 20 or more teeth to minimize the effect of tooth loss on the micro-
biota of Former smokers, who tended to be older than Current and Never smokers. Looking at the complete 
linkage hierarchical clustering, we noticed a gradual increase of similarity of Never smokers to Former smokers 
who quit for more years, except for the “Former 2–3 y” group. (Fig. 3A). The relative abundance of aerobes mildly 
increased in the first 20 years since quitting ( β0≤years≤20 = 0.001 , p value 0.052 , adjusted for age, sex and number 
of teeth; Supplementary File 1, Tables 8, 9) (Fig. 3B).

Predicted functional profiles associated with smoking highlighted a decrease of aerobic and 
nitrate reducing taxa
After predicting microbial pathway abundance with PICRUSt2, we identified pathways that were differentially 
abundant between Current and Never smokers using the same consensus method used for genus-level taxonomy. 
We identified 21 pathways, which we later visualized in relation to a gradient of smoking exposure, without 
clustering (Fig. 4). It should be noted that some of these were reconstructed from the same sets of predicted 
enzymes, therefore their correlation was 1 (e.g. Ubiquinol pathways). To avoid selection bias, we performed the 
analysis on all pathways regardless of their correlation and reported the correlation matrix of the significant ones 
in Supplementary File 1, Figure 7.
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Discussion
Summary of study and main results
We investigated the associations between salivary microbial genera and predicted metabolic pathways and smok-
ing status, daily smoking intensity and years since cessation in CHRISMB, a convenience sample of 1601 adult 
participants in the CHRIS study in South Tyrol,  Italy29. We confirmed previous findings regarding salivary 
microbiota compositional differences by smoking behavior. Additionally, we demonstrated that aerobic taxa 
varied with the frequency and intensity of smoking exposure, and that the salivary microbiota of Former smokers 
is generally more similar to the salivary microbiota of Never smokers, especially of those who quit longer than 
5 years. Several aerobic or oxygen-requiring predicted microbial pathways decreased in smokers. The nitrate 
reduction pathway was significantly lower in smokers than in non-smokers. The decreases in nitrate reduction 

Figure 1.  Association between qualitative smoking habits (Never, Former and Current) and the salivary 
microbiota in the CHRISMB cohort. (A) Principal Coordinate Analysis on the Bray–Curtis dissimilarity 
at genus level. Confidence areas (95%) were drawn as ellipses. Group separations were mild but significant 
(PERMANOVA  R2 = 0.04, p = 0.001, beta-dispersity p = 0.104). Axes x and y were chosen as the principal 
components which explained most of the overall microbiota variability, which is shown in square brackets. 
(B) Heatmap of the 44 genera differentially abundant between Current and Never smokers. Each genus 
was transformed to relative abundance and Z-score scaled. Red and blue colors indicate a higher and lower 
mean abundance, respectively, while yellow colors indicate no difference. Genera reported in the figure were 
differentially abundant (Benjamini–Hochberg q-value < 0.05, false discovery rate (FDR) = 5%, ALDEx2 Holm 
q-value < 0.05) in at least 4 out of 5 differential abundance methods (DESeq2, LinDA, MaAsLin2, ALDEx2, 
ANCOM-BC), adjusting for age (categorical), sex (binary) and number of teeth (categorical). (C) Relative 
abundance of aerobes, anaerobes, and facultative anaerobes in relation to smoking status. Statistical significance 
was calculated with pairwise Wilcoxon test adjusting p-values (q-values) for a 5% FDR with the Benjamini–
Hochberg method (**q < 0.05; ***q < 0.001, ****q < 0.0001).
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pathways among current smokers and increases in these pathways among former smokers is consistent with 
previous reports of decreases in cardiovascular events among former  smokers32. This suggests that oral micro-
biota functional changes with smoking may be an additional explanation for changes in cardiovascular risk with 
changes in smoking habits.

Comparison with other studies
The relative abundance of salivary microbiota phyla of CHRISMB participants was comparable with the mean 
composition of a  Japanese27 and Middle  Eastern17: Firmicutes were the most abundant, followed by Bacteroidetes, 
Proteobacteria, Actinobacteria and Fusobacteria. Consistent with previous analyses in Americans of Caucasian, 
African and Hispanic  ancestry15,16, and cohorts of  middle17 and eastern Asian  Ancestry18,27, Italian smokers 
had decreased abundance of Neisseria, Lautropia, Haemophilus, Capnocytophaga, and increased abundance of 
Atopobium, Megasphaera and Veillonella when compared to Never smokers (Fig. 1B). This suggests that cigarette 
smoking has a consistent and generalizable effect on the oral microbiota. We also identified 12 novel differentially 
abundant genera between Current and Never smokers: Alloscardovia, Bacteroidetes Genus 3, Bulleidia, Crypto-
bacterium, Fretibacterium, Mitsuokella, Parvimonas, Peptostreptococcaceae XI Genus 9 and Stomatobaculum were 

Figure 2.  Smokers’ (n = 308) daily smoking intensity is associated with relative abundance shifts of several 
genera and a decrease of aerobic taxa relative abundance. (A) Heatmap of genera significantly affected by daily 
smoking intensity. Genera were transformed to relative abundance and Z-score scaled to highlight relative 
differences in mean abundance in relation to the smoking intensity. Significant genera (Benjamini–Hochberg 
q-value < 0.05, FDR = 5%) were obtained modeling each genus in response to daily smoking intensity as 
multiples of 5 g per day as a semi-continuous variable, adjusting for age (continuous), sex and number of teeth 
in the DESeq2 negative binomial generalized linear model framework. (B, C, D) Relative abundance of aerobes, 
anaerobes and facultative anaerobes, respectively, in relation to the grams of tobacco smoked daily.
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increased, while Absconditabacteria (SR1) Genus 1, Ottowia and Peptidiphaga were decreased (Supplementary 
File 1, Figure 1). Further work is required to determine whether these changes are specific to this work.

Salivary microbial genera composition and proportion of aerobes were strongly impacted by 
smoking
Of the 44 differentially abundant genera in smokers, compared to Never smokers, genera in the phylum Pro-
teobacteria (N = 7) were decreased and Actinobacteria (N = 6) were increased among smokers. These two phyla 
harbor mostly aerobic and anaerobic taxa, respectively. Indeed, the proportion of aerobes was inversely propor-
tional to the frequency and intensity of exposure to smoking (Figs. 1, 2, 3). We also predicted functional profiles 
based on our compositional data, observing an increase of Gram-positive associated pathways in smokers, in 
particular teichoic acid biosynthesis (Fig. 4), which we confirmed looking at the relative abundances of Gram 
staining of bacteria across smoking status (Supplementary File 1, Figure 8). Moreover, we observed a decrease 
in pathways associated with aerobes, such as nitrate reduction and ubiquinol synthesis, which is pivotal in the 
electron transport  chain33, and a decrease of pathways that require oxygen and/or produce an excess reducing 

Figure 3.  The salivary microbiota of individuals who quit smoking (n = 369) showed multiple-year perturbation 
and tends to resemble Never smokers’ profiles within 5 years. (A) Heatmap of the relationship between the years 
since quitting smoking and the mean relative abundance of genera previously found significantly associated with 
smoking (see Fig. 1). Taxa were transformed to relative abundance and scaled by row, to highlight differences 
in mean abundance in relation to bins of years since quitting to limit the low sample size of some categories. 
Complete linkage hierarchical clustering was used to cluster columns. Since Former smokers tend to be older 
and given the tendency of the elderly to lose teeth, we limited the visualization to people with 20 or more teeth. 
(B, C, D) Relative abundance of anaerobes, aerobes and facultative anaerobes in relation to years since quitting 
smoking.
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power, such as fatty acid oxidation. These findings support the hypothesis that smoking induces a hypoxic 
environment in the oral cavity.

A decreased abundance of the nitrate reduction pathway in smokers could be an effect of the decrease of 
genera Neisseria, Haemophilus, Kingella, which harbor several NRB. A decrease of NRB may have a detrimental 
effect on enterosalivary nitrate  reduction34, which is a considerable source of blood nitrites for endogenous NO 
synthesis. Decreases in NO, which is a  vasodilator35, might hinder gingival blood flow and increase stress over 
time, which could lead to higher chances of gingival recession and periodontal  diseases36. Indeed, chondroitin 
sulfate degradation was increase in heavier smokers, which may be indicative of higher stress to the gingival 
connective tissue and increase the risk of periodontal diseases. NO deficiency has also been suggested as a risk 
factor for developing cardiovascular  diseases37–39. Taken together, microbiota-derived NO depletion may increase 
the chance of developing periodontal and cardiovascular diseases in smokers, as recently  reviewed40.

Some genera are statistically associated with daily smoking intensity but not with the years 
since smoking cessation
In addition to examining quantitative differences by Current smoking status, we tested for differences in bacte-
rial composition by daily intensity of tobacco exposure (g/day) (Fig. 2). Extending observations by Wu et al.15 at 
lower taxonomic level and higher resolution of exposure variables, genera belonging to classes Betaproteobacteria 
(Lautropia, Neisseria), Gammaproteobacteria (Cardiobacterium) and Flavobacteriia (Capnocytophaga) were sig-
nificantly decreased at increasing grams of tobacco smoked per day. Additionally, we found negative correlation 
with grams of tobacco smoked per day for genera in classes Clostridia (Peptostreptococcaceae Family XI—Genus 

Figure 4.  Microbial metabolic pathways inferred with PICRUSt2 that were differentially abundant in relation 
to smoking exposure, adjusting for age, sex and number of teeth. Heatmap of the 21 differentially abundant 
pathways in Current against Never smokers contrasts. Each pathway was transformed to relative abundance 
and Z-score scaled. Groups were ordered based on decreasing exposure to smoking, from heavier smokers to 
Former smokers who quit for the most years. As a reference for absence of exposure to smoking, never smokers 
were included in the rightmost column. Red and blue colors indicate a higher and lower mean abundance, 
respectively, while yellow colors indicate no difference. Differential abundance analysis was performed with 
a consensus-based approach of 5 differential abundance methods (DESeq2, LinDA, MaAsLin2, ALDEx2, 
ANCOM-BC), modeling each pathway against smoking status and adjusting for age (categorical), sex (binary) 
and number of teeth (categorical). Pathways reported in the figure were differentially abundant (Benjamini–
Hochberg q-value < 0.05, False Discovery Rate = 5%, ALDEx2 Holm q-value < 0.05) in at least 4 methods with an 
absolute effect size larger than 0.5.
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1, Peptostreptococcus), Epsilonproteobacteria (Campylobacter), Fusobacteriia (Fusobacterium, Leptotrichia) and 
Negativicutes (Selenomonas). Genera Actinomyces (class Actinobacteria) and Fretibacterium class Sinergistia) 
were significantly increased. The subsiding of smoking-related microbial taxa was in line with the observation 
of full recovery of cardiovascular health risk within 5 years since  quitting41. It is possible that smoking induced 
oral microbiota alterations may last longer than 5 years (Fig. 3B,C,D), which would align with the subsiding of 
periodontal disease risks in smokers within 10  years42.

Study limitations
Major limitations of this study include the cross-sectional design and the lack of a professional assessment of the 
number of decayed, missing and filled teeth and gum health. While we controlled for age, sex, and number of 
teeth as potential confounders in our models, residual confounding is still possible due to, for instance, medica-
tions usage, diet and alcohol intake. Furthermore, some subgroup strata were small, and structural non-positivity 
could exist. Bacterial metabolic pathways inference was based solely on salivary microbiota composition. While 
it is encouraging that our results regarding changes in salivary microbiota composition with smoking habits are 
consistent with those of previous studies conducted among very different populations, prospective studies are 
required to more directly address whether oral microbiota play a mediating role in the onset of smoking-related 
chronic diseases.

Study strengths
Our analysis also has several strengths. The smoking questionnaire was detailed, allowing for high-resolution 
qualitative and quantitative characterization of smoking habits. We tested for a dose-dependent relationship 
between smoking and perturbation to the oral microbiota, supporting a causal relationship according to the 
Bradford Hill  criteria43. This study cohort was particularly homogenous from the perspective of ethnicity, lifestyle 
and microbiota data generation, which should significantly limit confounding effects.

Our sample size was the largest to date to examine associations between smoking and the oral microbiota 
in a European population. While the salivary microbiota is a composite of multiple oral communities, saliva 
samples are easy to collect, making them ideal for large epidemiological cohorts and for future diagnostics and 
prognostics.

Conclusions
Smoking is associated with changed in the salivary microbiota composition often in a dose-dependent fashion. 
The salivary microbiota of people who quit smoking longer than 5 years resembled Never smokers’ profiles. Irre-
spective of the phylogeny, aerobic taxa are the most sensitive to smoking exposure. Decreased microbial nitrate 
reduction pathway abundance in smokers may provide an additional explanation for the effect of smoking on 
cardiovascular and periodontal diseases risk, a hypothesis which should be tested in future studies.

Materials and methods
Study ethical approval, design, and data collection
The CHRIS study was approved by the local Ethical Committee within the South Tyrol healthcare on April 
19, 2011, and registered with code 21.2011. The legal base for personal data handling and protection was the 
informed consent explained to and signed by each participant. The personal data protection warrant of CHRIS 
constantly ensures that all data are handled and protected in full compliance with the European Regulation (EU 
2016/679) and Italian law (D.L.vo 196/2003).

The CHRIS study includes adults of both sexes aged 18 and older. Participants were recruited starting in 2011 
with extensive outreach including advertisements, electronic and paper mail to cover most people residing in the 
Vinschgau/Val Venosta district (South Tyrol, Italy). On the day of visit, participants answered lifestyle, dietary, 
general health, and socio-economic status  questionnaires29. The CHRIS Salivary microbiota (CHRISMB) project 
is a convenience sample of CHRIS participants recruited between January 2017 and February 2018.

Epidemiological data generation
We defined age as the difference between the examination date and the birth date, rounded to the closest integer, 
and categorized age into six groups as shown in Table 1. CHRISMB participants filled in an adapted version of 
the World Health Organization oral health  survey44, from which we extracted information about the number of 
natural teeth in 4 ranges: 0, 1–9, 10–19 and 20 or more. We derived smoking variables from smoking question-
naires harmonized from the European Community Respiratory Health Survey III  questionnaire45. We defined 
qualitative smoking habits—“Never”, “Former”, “Current with reduction”—Current (R), and “Current without 
reduction”—Current (NR)—according to Murgia et al.46. Former smokers were smokers who quit for longer 
than 1 month prior to the visit. Current (R) were individuals who reported being smokers at the day of exami-
nation but that reduced the daily smoking intensity at least 1 month prior to the visit. Since we did not observe 
differences in the microbiota composition of Current (R) and Current (NR) (Supplementary File 1, Figure 9), 
we decided to aggregate the two smoking groups. For completeness, included in the supplement is a description 
of the study population showing the separate characteristics of the Current and Former smoker groups (Sup-
plementary File 1, Table 10). Cigarettes were the primary source of tobacco, except for 5 participants. To include 
all sources of tobacco as one variable of smoking intensity, we converted the number of cigarettes, cigars, and 
cigarillos into grams of tobacco equivalents, respectively 1, 5 and 3 g (g), and converted g/week to g/day as previ-
ously  proposed46,47. We defined “smoking history” as the difference between the age of the participant to CHRIS 
and the reported age at which the participant quit smoking, rounded to the closest integer.
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Salivary microbiota data generation
Saliva sample collection and storage
CHRISMB participants were required to drink only water and fast from the night before. Additionally, they 
were required not to drink, eat or smoke within 1 h prior to the visit. During the visit, they provided 2–5 mL 
unstimulated saliva samples into Oragene OG-500 tubes. Within a few hours after the collection, samples were 
vortexed, split into 0.5 mL aliquots, and promptly stored at − 80 °C.

DNA extraction and sequencing
Salivary DNA extraction and sequencing were conducted by the University of Michigan microbiome core. DNA 
was extracted using the Eppendorf epMotion liquid handling system and Qiagen MagAttract PowerMicrobi-
ome Kit protocol and quantified with the PicoGreen dsDNA Assay kit (Thermo Fisher Quant-iT, cat# P7589).
We amplified the V4 hypervariable region of the 16S rRNA gene by polymerase chain reaction (PCR) using a 
dual indexing  strategy48. PCR products were visualized using E-Gel 96 with 2% SYBR Safe DNA Gel Stain (Life 
Technologies cat# G7208-02). PCR products were then pooled and normalized using SequalPrep Normaliza-
tion Plate Kit (Life Technologies, cat# A10510-01) following the manufacturer’s protocol for sequential elution.

The final pooled library consisted of equimolar amounts of each plate, normalized to the pooled plate at the 
lowest concentration. Sequencing libraries were prepared according to the Illumina MiSeq guidelines, adding 
phiX phage genome to ease diversity and quality control. Each of the 5 libraries contained 2 negative and 2 
positive controls, respectively using water from the extraction step and commercially available DNA from com-
munities of known composition from the PCR step (Zymo Research, cat# D6306). We sequenced reads on an 
Illumina MiSeq machine.

Sequencing data processing
Sequencing data processing
We assessed the sequencing quality of the 69,286,448 obtained reads using “MultiQC” (v. 1.7) to visually deter-
mine read trimming length. We performed FASTQ read trimming, filtering, and taxonomic assignment with the 
“DADA2” package (v. 1.14)49 in R (v. 3.6.0)50. This method generates a high-resolution sequence table of amplicon 
sequence variants (ASVs), each differing by at least one nucleotide. We removed the first 20 and last 8 nucleotides 
to eliminate primer and barcode sequences and to ensure homogeneity of ASV calling across batches. After these 
steps, we submitted 59,331,563 reads to the LearErrorRates step, separately for each run, using 1 ×  108 bases as the 
learning rate parameter, which helps infer technical and real sequence differences. Then, we merged paired ends, 
resulting in 57,122,521 reads. Removal of chimeras using the consensus method resulted in an additional loss of 
1.05% and 44,136,182 total reads used for taxonomic assignment. We assigned taxonomy from kingdom to genus 
level using the Bayesian classifier and the expanded Human Oral microbiome Database (eHOMD), while the 
species level was assigned using the 100% identity addSpecies strategy. To increase the likelihood of assignment 
at the species level, we enriched the eHOMD database with publicly available 16S rRNA FASTA sequences from 
known oral species in the genera Lactobacillus, Streptococcus, and Prevotella (Supplementary File 1, Table 11). 
We confirmed homogeneity across batches based on positive compositional profiles (Supplementary File 2).

Microbiota data preparation for analysis
We generated a phyloseq object starting from the counts table, taxonomic table and taxonomy tree using the 
Bioconductor package “phyloseq” (v. 1.42.0)51 and “ape” (v. 5.7). We retained only those taxa that were present 
with at least 10 reads in at least 1% of samples with the function core of the “microbiome” package (v. 1.20.0)52. 
We aggregated ASVs at the genus level with the tax_glom function in the GitHub package “speedyseq” (“mikemc/
speedyseq”), a faster version of phyloseq for microbiome data manipulation.

Samples availability for statistical analysis
Participants with missing data on smoking habits (N = 4), number of teeth (N = 44) and antibiotic usage within 
3 months prior to the visit (N = 83) or who reported taking antibiotics within 3 months prior to saliva collection 
(N = 191) were excluded, leaving 1601 analytic samples. Additionally, we excluded 17 smokers from the “Regres-
sion of microbial genera against smoking intensity” due to missing or inconsistent grams of tobacco smoked per 
day and 1 participant who declared smoking 60 cigarettes per day, which was far beyond the range of the rest of 
the data (0.5–30). We further excluded 4 participants from the analysis “Regression of microbial genera against 
smoking history” due to inconsistent or missing answers.

Statistical analysis
Unless reported otherwise, we performed all statistical analyses using R (v. 4.2.2) and RStudio Server (v. 
2022.07.2).

Pairwise relationship between demographics
We tested the independence of smoking habits from age groups, sex, self-reported gum health and self-reported 
number of natural teeth using a χ2 test of independence with Yates’s correction for low-frequency groups. We 
considered traits with a p-value lower than 0.05 as statistically non-independent.

Beta diversity and dimensionality reduction visualization
We estimated between-sample microbiota dissimilarity transforming genera counts to relative abundance and 
calculating the Bray–Curtis dissimilarity with the distance function in “phyloseq”. We obtained eigenvectors 
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with ordinate and visualized the two vectors explaining the most variance with plot_ordination, drawing 95% 
confidence interval ellipses with stat_ellipse in the “ggplot2” package (v. 3.4.0). We estimated the impact of 
smoking habits, number of teeth, sex and age group on the beta diversity using a permutational multivariate 
analysis of variance (PERMANOVA)53 with adonis2 in the “vegan” package (v. 2.6-4), with 2000 permutations 
considering the marginal effect of all variables. We ensured even intraclass dispersion of smoking status groups 
(Never, Former and Current) using betadisper followed by permutest, with 2000 permutations (Supplementary 
File 1, Table 5).

Differential abundance analysis in relation to smoking
To study the association between each oral genus abundance and smoking, we performed differential abundance 
analysis comparing Current with Never smokers adjusting for age group, sex and number of teeth. We performed 
a consensus based differential abundance analysis, as advised by Nearing et al.54, using 5 different methods hav-
ing: DESeq2 (v. 1.38.2)55, LinDA (v. 1.1)56, MaAsLin2 (v. 1.12)57, ALDEx2 (v. 1.30)58 and ANCOMBC (v. 1.6.4)59.

We defined significant differentially abundant genera if Benjamini–Hochberg (BH) corrected q-values were 
below 0.05 in at least 4 out of 5 methods with a false discovery rate (FDR) = 5%60. We used Holm multiple testing 
correction in ALDEx2 as it was the only method implemented in its generalized linear model (GLM) framework.

Regression of microbial genera against smoking intensity
To study the compositional changes of microbial genera in response to the grams of tobacco smoked per day, 
we modeled each genus in against the grams of tobacco per day as a continuous variable in a Negative binomial 
GLM (DESeq2). We binned the daily tobacco smoked into multiples of 5 g as those were the most frequent 
answers (Supplementary File 1, Figure 10). We considered genera as significant when BH-corrected q-values 
were lower than 0.05 with FDR = 5%.

Regression of microbial genera against smoking history
To study the compositional changes of microbial genera in response to smoking history, we modeled each genus 
in response to years since smoking cessation as a continuous variable, at 1-year interval in a Negative binomial 
GLM (DESeq2). We considered genera as significant when BH-corrected q-values were lower than 0.05 with 
FDR = 5%.

Insights into the functional potential of the salivary microbiota
We inferred the functional potential of the oral microbiota at the ASV level using picrust2_pipeline.py with default 
parameters implemented in PICRUSt2 (v. 2.5)61. We investigated differential abundant pathways with the same 
strategy used for genera differential abundance. We considered pathways as significant if the absolute effect 
size was above 0.5 and the q-value below 0.05 in at least 4 methods. To further confirm the impact of smoking 
in relation to the proportion of aerobic taxa, we mapped each genus to a table of curated annotations of three 
oxygen metabolism classes: aerobic, anaerobic and facultative  anaerobic31. We visualized the relative abundance 
of aerobes, anaerobes and facultative anaerobes in each sample with respect to smoking status with pairwise 
Wilcoxon tests, correcting p-values with BH (FDR = 5%).

Data and analysis scripts availability
CHRIS and CHRISMB data can be requested from https:// chris portal. eurac. edu/, upon approval of the research-
er’s proposal by the CHRIS data access committee. Analysis scripts are freely accessible at https:// github. com/g- 
anton ello/ CHRIS MB- smoki ng- epide miolo gy.
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