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Built environment microbiomes 
transition from outdoor 
to human‑associated 
communities after construction 
and commissioning
Gregory R. Young 1,2, Angela Sherry 1,2 & Darren L. Smith 1,2*

The microbiota of the built environment is linked to usage, materials and, perhaps most importantly, 
human health. Many studies have attempted to identify ways of modulating microbial communities 
within built environments to promote health. None have explored how these complex communities 
assemble initially, following construction of new built environments. This study used high‑throughput 
targeted sequencing approaches to explore bacterial community acquisition and development 
throughout the construction of a new build. Microbial sampling spanned from site identification, 
through the construction process to commissioning and use. Following commissioning of the 
building, bacterial richness and diversity were significantly reduced (P < 0.001) and community 
structure was altered  (R2 = 0.14; P = 0.001). Greater longitudinal community stability was observed 
in outdoor environments than indoor environments. Community flux in indoor environments was 
associated with human interventions driving environmental selection, which increased 10.4% in 
indoor environments following commissioning. Increased environmental selection coincided with 
a 12% reduction in outdoor community influence on indoor microbiomes (P = 2.00 ×  10–15). Indoor 
communities became significantly enriched with human associated genera including Escherichia, 
Pseudomonas, and Klebsiella spp. These data represent the first to characterize the initial assembly of 
bacterial communities in built environments and will inform future studies aiming to modulate built 
environment microbiota.

Humans spend roughly 87% of their time in indoor  environments1. Substantial proportions of the remaining 13% 
of time is spent in other built environment (e.g. commuting in towns/cities). Recent studies have explored the 
composition of microbial communities in these built environments, specifically focusing on indoor  air2,3 as well 
as common household and public  surfaces4–7. These studies have shown distinct microbial communities across 
different built environments, even within individual buildings. Microbial colonization of these environments is 
related to space  utilization8, materials  used9 and ventilation  strategies10.

As a product of these new indoor environments, the multitudes of microbes living around and inside of 
humans differ from those of our ancestors or those living in more rural  environments11,12, which can impact 
on health. As such, the microbiome of the built environment has been widely studied in relation to long-term 
 health13–15 and nosocomial  infections16–19. In the same way our microbial neighbors can influence human health, 
human (or non-human) occupancy may also influence the microbial communities of the built  environment10,20.

The concept of the microbiome as a malleable entity, which can be altered to reduce likelihood of disease 
onset, is not  new8,21. However, to make informed interventions on built environment microbiotas to promote 
human health we must first develop an understanding of how these complex networks react to environmental 
change. Like any living system, microbial environments favour  homeostasis22. Similarly to humans, the microbial 
communities of buildings develop over time. Unlike humans, buildings are not created in a sterile  environment23. 
While others have explored the development of microbiota in hospital environments following public  access24, no 
studies to date have explored the acquisition and longitudinal development of the built environment microbiota 
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across the entire construction and commissioning process of a new building. Instead, studies have often focused 
on cross-sectional analyses between one built environment and another, identifying greater diversity in infre-
quently cleaned homes or homes where canines lived alongside  humans5. While purely cross-sectional studies 
are well suited to discount the influence of environmental variables such as occupancy at sampling or cleaning 
regularity, they fail to capture the influence of seasonality on the microbial communities  explored25. Commu-
nity temporality is especially important when exploring the longitudinal development of built environment 
microbiota.

The OME is an experimental building in Newcastle upon Tyne, England. It was built as part of a Research 
England Expanding Excellence in England, funded Hub for Biotechnology in the Built  Environment26, and 
facilitates microbial experimentation and architectural exhibition. In this study we employed longitudinal sam-
pling to define timeframes of microbial acquisition in the built environment by conducting a temporal study at 
high sampling depth within a single, purpose-built building, The OME. We primarily aimed to quantify the time 
taken for stable microbial communities to engraft in newly erected structures and assess how commissioning 
the building influenced the microbial communities as specialist locations (e.g. kitchens & hallways) were used 
for their specific purpose.

Results
Over a study period of 36 months, 439 microbial community samples were collected from The OME site (Sup-
plementary Table 1). Samples were taken from 8 different objects (soil, floor, shelving, doorframes, windowsills, 
doorpushes, splashbacks and sinks) spanning 7 sampling locations including outdoor (shrubs, borders and car 
park) and indoor (foyer, hallway, kitchen and bathroom) locations (Fig. 1A). Interrogating microbial communi-
ties longitudinally facilitated this study to account for changes in temperature, humidity and occupancy (using 
 CO2 level as a proxy) throughout the construction process and over seasons. This enabled quantification of the 
true impact of increasing occupancy within the building after the build was commissioned (Fig. 1B).

High quality bacterial community sequences can be gained from swabbing surfaces. Sequenc-
ing of the V4 region of the 16S rRNA gene yielded a median 1.76 ×  105 bacterial reads per sample (IQR: 
4.64 ×  103–2.58 ×  105) and identified 568 different bacterial taxonomic units. Microbial samples had significantly 
greater library sizes than swab (median = 4.5; IQR = 3.25–5.75; P = 0.01), extraction kit (median = 2.9 × 103; 
IQR = 1.2 × 103–1.3 × 104; P = 0.003), and sequencing control samples (median = 38; IQR = 37–76: P = 0.0007) 
(Supplementary Fig. 1). Overall community composition of samples and controls were also significantly differ-
ent  (R2 = 0.45, P = 0.001).

Figure 1.  illustrates the locations (A) and longitudinal nature (B) of sampling employed in this study. A 3D 
render of the OME building as well as ground and first floor floorplans illustrate sampling locations interrogated 
during this study (A). Longitudinal environmental data including relative humidity (blue),  CO2 levels (green) 
and temperature (red) records collected as well as sample types taken at each sampling timepoint are also 
illustrated (B). Shaded areas around humidity,  CO2 and temperature trendlines represent the 95% confidence 
interval associated with each environmental record (top panel). Each point on the lower panel represents an 
individual sampling timepoint, coloured by object and arranged by location on the y axis. The impact of Covid-
19 on sampling continuation is apparent in the scarcity between spring 2020 and summer 2021. Humidity, 
temperature and  CO2 records were only taken during sampling timepoints and were therefore not recorded 
during this same period.
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Built environment bacterial communities show seasonality. Temperature, relative humidity 
and  CO2 levels were significantly associated with alpha diversity measures of bacterial richness and Shannon 
diversity in microbial samples (P < 0.05; supplementary Fig. 1). Parabolic relationships were observed between 
temperature, humidity and alpha diversity. Lowest alpha diversity in microbial communities occurred at tem-
peratures between 10 and 20 °C and relative humidity between 50 and 60%. Additionally, date of sampling was 
significantly associated with rarefied bacterial richness (P = 0.004) and diversity (P = 0.008).

Taken together, these phenomena could be due to seasonal changes in temperature and humidity, although 
differences in alpha diversity associated with temperature and humidity changes could be attributed to location. 
Microbial community compositions were determined from all sampling locations (Fig. 2A). Outdoor samples 
were taken at lower temperature and were similarly more diverse than indoor samples (Fig. 2B; Table 1). Unsur-
prisingly, bacterial diversity was highest in temperatures of 30  °C and 80% humidity, which are closest to ideal 
growth conditions for many host-associated microbes.

The impact of occupancy and materials is greater than seasonality on the built environment 
microbiota. Temperature and humidity changes between seasons may explain some of the longitudinal dif-
ferences in bacterial richness and diversity observed. However, the impact of commissioning the building on 

Figure 2.  illustrates the overall community compositions of samples analysed in this study. Each tile in 
the heatmap represents an individual bacterial genus (A). Only genera with mean abundance across all 
samples > 0.5% were included in each panel and arranged along y axis by phylum. Samples were arranged on 
the x axis according to the sampling timepoint with earliest samples collected on the left and latest on the right 
within each panel. Intensity of tile colour indicates the relative abundance of the genus in that sample. Sample 
diversity and richness are illustrated as violin plots across locations (B) and timepoints (C), where individual 
samples are represented by points and violin width represents density of samples at that richness/diversity 
value. Sampling location is illustrated by the hue of points or heatmap tiles with outdoor sampling locations 
represented by darker purple hues and indoor locations represented by lighter yellow hues, as annotated in the 
heatmaps.



4

Vol:.(1234567890)

Scientific Reports |        (2023) 13:15854  | https://doi.org/10.1038/s41598-023-42427-0

www.nature.com/scientificreports/

both bacterial richness and diversity (P < 0.001), were greater than those of seasonality. Significantly reduced 
richness and diversity was observed after the building was commissioned (Fig. 2C).

In addition to seasonal environmental factors and commissioning of the building, sampling locations and 
object type (P < 0.001) were also significantly associated with rarefied bacterial richness (Fig. 2B). Outdoor loca-
tions were significantly richer and more diverse than indoor locations (Table 1). Bacterial communities of shrubs 
and borders specifically, were significantly more diverse than all indoor locations (P < 0.001).

Several bacterial genera commonly found in soils including Solirubrobacterales, Kaistobacter and Nocardioi-
daceae spp. were more abundant in outdoor environments than indoor environments, which harbored more 
human associated bacteria such as Klebsiella, Pseudomonas and Escherichia spp. (Fig. 2A).

Outdoor communities show greater stability over time. Compositions of bacterial communities 
were significantly associated with sampling location  (R2 = 0.31; F = 31.99; P = 0.001) and timepoint  (R2 = 0.16; 
F = 26.70; P = 0.001). The greatest community dissimilarity across locations was observed between outdoor and 
indoor sampling locations, all of which were significantly dissimilar  (R2 > 0.32; P < 0.005; Fig. 3A,C).

Indoor bacterial communities shared high similarity immediately following construction (Median = 0.96, 
IQR = 0.94–0.97; Fig. 3A,B) but became increasingly divergent over time, with many showing very little intra-
location similarity following commissioning (Median = 0.05, IQR = 0.01–0.17; Fig. 3A,B). Conversely, outdoor 

Table 1.  Displays results of generalized mixed linear models produced to test the effect of environmental 
variables on alpha diversity measures of rarefied bacterial richness and normalized bacterial Shannon diversity 
of samples included in this study. Generalised mixed linear models were built including humidity, temperature, 
 CO2, and date as continuous variables and location, object type and commissioning as categorical variables. 
Pairwise estimated marginal means were calculated for locations to identify significant differences in alpha 
diversity between sampling locations and corrected for multiple hypothesis testing with Tukey’s method. 
(Chisq = Chi-squared statistic; df = degrees of freedom; SE = standard error).

Analysis of deviance (type II Wald chi-square test

Variables

Rarefied richness Shannon diversity

Chisq df P value Chisq df P value

Humidity 12.9295 1 0.0003 20.2943 1  < 0.0001

Temperature 12.2812 1 0.0005 16.7282 1  < 0.0001

CO2 5.02 1 0.025 20.6419 1  < 0.0001

Location 268.3375 6  < 0.0001 188.4859 6  < 0.0001

Object type 266.3059 7  < 0.0001 170.9299 7  < 0.0001

Commissioning 21.9153 1  < 0.0001 17.8579 1  < 0.0001

Date 8.1150 1 0.004 6.8884 1 0.008

Pairwise estimated marginal means (averaged over season and commissioning variables)

Locations

Rarefied richness Shannon diversity

Estimate SE df T ratio P value estimate SE df T ratio P value

Shrubs—borders − 0.292 0.65 408 − 0.45 0.9994 2.3965 0.72 408 3.328 0.0165

Shrubs—car park 0.299 0.184 408 1.624 0.6671 0.7394 0.21 408 3.518 0.0087

Shrubs—foyer 1.476 0.661 408 2.232 0.2805 4.0827 0.735 408 5.557  < 0.0001

Shrubs—hallway 2.011 0.653 408 3.08 0.0356 4.3893 0.731 408 6.003  < 0.0001

Shrubs—kitchen 1.726 0.652 408 2.647 0.1149 4.1396 0.728 408 5.689  < 0.0001

Shrubs—bathroom 2.022 0.652 408 3.102 0.0333 4.2858 0.731 408 5.863  < 0.0001

Borders—car park 0.591 0.64 408 0.924 0.9686 − 1.6572 0.705 408 − 2.35 0.2232

Borders—foyer 1.768 0.178 408 9.924  < 0.0001 1.6862 0.183 408 9.228  < 0.0001

Borders—hallway 2.303 0.163 408 14.159  < 0.0001 1.9928 0.172 408 11.561  < 0.0001

Borders—kitchen 2.018 0.152 408 13.262  < 0.0001 1.7431 0.159 408 10.931  < 0.0001

Borders—bathroom 2.314 0.172 408 13.466  < 0.0001 1.8893 0.181 408 10.443  < 0.0001

Car park—foyer 1.177 0.651 408 1.807 0.5443 3.3434 0.72 408 4.642 0.0001

Car park—hallway 1.712 0.643 408 2.662 0.1108 3.6499 0.717 408 5.093  < 0.0001

Car park—kitchen 1.427 0.642 408 2.222 0.2859 3.4003 0.713 408 4.768 0.0001

Car park—bathroom 1.723 0.642 408 2.684 0.105 3.5465 0.716 408 4.95  < 0.0001

Foyer—hallway 0.535 0.115 408 4.634 0.0001 0.3066 0.127 408 2.416 0.1944

Foyer—kitchen 0.25 0.118 408 2.116 0.3449 0.0569 0.131 408 0.435 0.9995

Foyer—bathroom 0.546 0.166 408 3.279 0.0193 0.2031 0.177 408 1.145 0.9136

Hallway—kitchen − 0.285 0.113 408 − 2.516 0.1561 − 0.2497 0.127 408 − 1.964 0.4391

Hallway—bathroom 0.011 0.153 408 0.072 1 − 0.1035 0.166 408 − 0.623 0.996

Kitchen—bathroom 0.296 0.145 408 2.042 0.3898 0.1462 0.154 408 0.949 0.9641
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communities showed far more temporal stability. While they were not as similar as all indoor communities imme-
diately following construction, outdoor communities remained consistently similar throughout the sampling 
period (Median = 0.73, IQR = 0.62–0.81; Fig. 3A,B). The influence of sampling location and commissioning the 
building are further reflected in the within-group dissimilarity between sampling locations, where indoor bacte-
rial communities were significantly more dissimilar than outdoor locations (P < 0.0001) (Supplementary Table 2).

Community differences between indoor and outdoor surfaces were largely due to the community flux 
observed in indoor communities over time. As such, indoor communities became increasingly dissimilar to 
outdoor communities following completion of construction and subsequent commissioning of the building 
 (R2 = 0.47; P = 0.001; Fig. 3C). Prior to commissioning, bacterial genera were widely dispersed between outdoor 
and indoor sampling locations (defined as homogenising dispersal). Homogenising dispersal accounted for 
74% of community determinism before commissioning but reduced to 34% after commissioning. By contrast, 
environmental factors shaping microbial communities (defined as environmental selection) increased from 0.3 
to 10.5% following commissioning of the building (Fig. 3D). This was paired with a significant reduction in the 
mean proportional influence of outdoor microbiota on indoor communities from 17 to 0.004% (P = 2.04 ×  10–15; 
Fig. 3E). Increased environmental selection can be attributed to human-associated factors which escalated after 
commissioning as locations around the building began to be used for their individual, specific purposes.

Soil‑associated metabolic generalist bacteria are replaced by specialists and human associ‑
ated bacteria as environmental selection increases. Increased environmental selection brings 
external factors which shape bacterial communities. Environmental selection increased after construction was 
completed and the building was commissioned in this study. Increased footfall in indoor environments along 
with introduction of specific cleaning and usage regimes had measurable effects on the taxonomic composi-
tions observed across sampling locations (Fig. 4A,B). Klebsiella spp. are common, human-associated, enteric 
commensals that were significantly associated with indoor environments and pre-commissioning timepoints 
(Fig. 4B,C). Soil-associated Actinobacteria such as Solirubrobacterales and Gaiellaceaea spp. as well as the nitro-
gen fixing Bradyrhizobiaceae and the archaea Nitrososphaeraceae spp. were all significantly associated with out-
door environments while halotolerant Oceanospirillales spp. were significantly associated with pre-commission-
ing communities.

Figure 3.  Illustrates overall community structure of samples analysed in this study. Bray–curtis dissimilarity 
was used to ordinate samples across each of the sampling timepoints (A). Each point represents an individual 
sample and is coloured by location. Longitudinal sample dissimilarity is represented by line graphs (B) coloured 
by the same logic. Lines represent best-fit for inter-sample community similarity at each location with shaded 
areas representing the 95% confidence interval. Community dissimilarity between communities from all 
locations and over time are illustrated in bubble plots (C). Size of bubbles indicated dissimilarity between two 
comparators with significance indicated by colour of bubble outline. Raup-Crick similarity between samples 
was used to define impacts of community determinism on overall community structure (D). Bars represent the 
proportional impact of each phenomenon on samples collected, stratified by locations and timepoints. Influence 
of outdoor environments on the community structure of indoor communities was identified by SourceTracker 
(E). Sampling timepoint: Pre-comm. = Pre-commissioning; Post-comm. = Post-commisioning.
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Discussion
This study represents the first to our knowledge to characterize the original acquisition and subsequent factors 
influencing community structure of any built environment microbiota to such depth. The study deliberately 
included a longitudinal sampling aspect to account for seasonality of microbial communities which we found to 
be significantly linked with temperature, humidity and  CO2 concentrations. Furthermore, by collecting micro-
bial samples within the built environment site prior to construction starting, we were able to benchmark any 
subsequent microbial communities with that of the indigenous or well-established microbes that preceded them. 
The importance of doing so became increasingly apparent upon analysing the data, where we highlight the rela-
tive stability of outdoor, pre-established, microbial communities by comparison to the highly turbulent indoor 
communities developing following completion of the structure.

A previous study highlighted the importance of space utilization on bacterial community  composition5. 
Surprisingly, Chase et al., found surface material has minimal influence on microbial community  composition25, 
which is consistent with the findings of this study. We found microbial communities across multiple surfaces 
in different indoor locations to cluster according to the room they were in and the usage patterns, rather than 
according to material surface. These results may be a product of the insensitivity to microbial viability of the 
sampling methods used to assay these  environments27,28 as other studies have found surface material to be 
important in shaping built environment microbial  communities29. To facilitate high-throughput processing of 
the microbiomes interrogated here no viability determinism was performed, therefore the presence of relic DNA 
from non-viable bacteria cannot be discounted in this, or previous, studies. Approaches that can differentiate 
viable from non-viable microbes such as  culturing30,31 or use of viability  dyes32 may serve to answer these ques-
tions in the future.

Roughly three months after construction of the built environment investigated in this study, a regular cleaning 
regime was established. The introduction of biocidal agents at this time matched well with the timepoints at which 
indoor microbial communities begin to specialise, converging at the commissioning date in communities display-
ing very high degrees of environmental selection. This is not the first time this phenomenon has been observed. 
Flores et al. showed specific communities of bio-film forming Gram-negatives associated with regularly cleaned 
 areas6, while others have shown homes in more urban areas, which are cleaned more frequently, have reduced 
 diversity12,33. We found increased abundances of Escherichia, and multiple Bacilli following commissioning and 
establishment of cleaning regimes within the built environment we explored here. Multiple antimicrobial resist-
ant strains of Escherichia are reported in clinical studies while Bacilli are known to produce  glycosphingolipids34 
which stabilise the bacterial membrane and confer resistance to polymixin class  antibiotics35. These data add to 
the growing evidence base that where communities are regularly exposed to biocidal interventions, the intended 
sterility may not be achieved. Instead, frequent cleaning may simply act as a selective pressure for microbes 
resistant to the killing mechanisms  employed36, resulting in more robust survivor communities.

Figure 4.  Significant associations of bacterial genera with locations and sampling timepoints. Genera included 
were significantly associated (Maaslin2 qval < 0.25) with at least one of the environmental variables tested. 
Only genera with a coefficient of variance > 0.005 are included in each panel. Tile colour indicates the Maaslin2 
effect size of each environmental variable on genus proportional abundance (reduced = red; increased = blue). 
Sampling locations were included as fixed effects with ‘Shrubs’ as the comparator variable (A). Indoor 
communities were compared to outdoor communities (B) and pre-commissioning communities were compared 
to post-commissioning communities (C).
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This study found indoor microbiota to become increasingly dissimilar to the outdoor communities that seeded 
them over time. A longitudinal study of the home microbiota of 7 families over 6 weeks found bacteria in indoor 
spaces to be predominantly of human  origin37. The same study also found that the human associated microbial 
signatures in indoor environments diminished as quickly as three days after a human vacated their home. In the 
study by Lax and colleagues, however, the influence of human microbes had already been established in each 
home. Our study identified that indoor microbiota were still developing as late as 34 weeks after completion of 
the construction of the building. This phenomenon may be specific to commercial properties and related to a 
lag period between completion of construction and commissioning of the building. As such, these findings may 
not be consistent with those observed in residential properties, which are generally occupied sooner following 
completion. Likewise, in family homes the influence of one individual on microbial community structures may 
be greater due to them spending substantially more time in their own home compared to visitors to the com-
pleted structure investigated here. Nonetheless, as in the study by Lax et al. we found the indoor microbiota to be 
significantly enriched with multiple commonly human-associated microbes including Klebsiella and Escherichia 
spp. after  commissioning37.

Covid-19 lockdowns impacted our ability to consistently collect longitudinal microbial samples and record 
environmental variables throughout this study. As a result, numbers of samples and observations available at 
each timepoint are unbalanced. While the statistical methods employed were specifically chosen to address 
these limitations, by comparing ranked means rather than actual values, it must be noted that the strength of 
conclusions drawn on temporal microbiota development could be strengthened via a balanced study design. It 
can be difficult to identify contaminant bacterial features in low-biomass environmental samples during targeted 
amplicon sequencing, especially since many common contaminants observed in microbial community analyses 
originate from soils and  watercourses38,39, both of which are sampled locations in this study. To address this we 
have sequenced blank swabs, kit negative and sequencing reagent controls as recommended by previous studies 
assessing the influence of contamination. Sample library size and compositions were significantly different to 
controls, demonstrating the legitimacy of bacterial features identified in this study.

Through high-throughput, longitudinal sampling of a single, newly-built structure, this study demonstrates 
the impact of human interaction and interventions on the microbiota of the built environment. A transient 
community of bacteria, initially dominated by those from outdoor environments and showing high degrees 
of homogenizing dispersal, precedes more location specific communities once humans begin to inhabit and 
interact with spaces in the built environment. These microbial community changes are likely due to increasing 
environmental selection.

Methods
Bacterial sample collection. The OME is an experimental building constructed and commissioned as 
part of the Hub for Biotechnology in the Built Environment. Throughout the construction process between 
December 2019 and November 2021, and until the official launch in June 2022, a total of 439 microbial samples 
were collected from multiple surfaces on the OME site. The sites included both indoor and outdoor surfaces, 
consisting of natural and synthetic materials orientated both vertically and horizontally.

The longitudinal nature of this study enabled sampling of The OME site before ground was broken during 
the construction process. At this point, only outdoor samples were taken, as no building existed to take samples 
inside. Supplementary Table 1 describes the location, material and construction timepoints spanned during 
sampling at each site.

Samples were collected by swabbing a 10  cm2 area for 30 s using Microgen Path-check swabs (Novacyt, UK). 
Immediately following each collection, batches of swabs were transported back to laboratories at Northumbria 
University and processed for bacterial nucleic acid isolation. At each sampling timepoint temperature, humidity, 
and  CO2 levels were recorded using an ELKLIV SR-SIO Indoor  CO2 meter. Recordings were taken every 90 s for 
a minimum of 15 min across outdoor, foyer, kitchen and hallway locations. Readings from the ELKLIV SR-SIO 
meter were validated by cross-referencing against those from a ParticlesPlus Model 7501 Remote Particle counter.

Nucleic acid isolation, library preparation and sequencing. Swab tips were cut off using sterile scis-
sors and suspended in 1 × PBS (1 ml) in sterile microfuge tubes (2 ml). Tubes were vortexed horizontally at high 
speed for 25 min to release biological material before swab tips were discarded and remaining solution was 
centrifuged (5000 xG, 30 min) to pellet bacterial cells. The supernatant at this stage was discarded and bacterial 
pellets were resuspended in DNeasy bead solution (750 µL, (QIAGEN, DE)). Nucleic acids were isolated from 
resulting bacterial suspension using DNeasy PowerLyzer PowerSoil Kit (QIAGEN, DE) according to manufac-
turer’s instruction save for an extended bead beating time of 25 min to ensure full lysis of gram positive bacteria 
and 15 min incubation of filters at room temperature after addition of elution buffer to increase nucleic acid 
yields. An isolation kit negative control (1 × PBS, 1 ml) was processed with each batch of swab samples.

Sequencing was performed by NUOMICS DNA Sequencing Facility (Northumbria University, Newcastle, 
UK). Bacterial communities were determined by targeted sequencing of the V4 region of the 16S rRNA gene 
using primers 515F and  806R40. Prepared genomic libraries were sequenced on the Illumina MiSeq using V2 
2 × 250 bp chemistry (Illumina, UK). A sequencing negative control (nuclease free water) was processed with 
each plate of samples during library preparations.

Raw sequencing output consisted of fastq files which were filtered to include only those with quality phred 
scores of > Q30. Taxonomic classification of resulting fastq files was performed in  QIIME241. Briefly, paired 
end reads were  merged42, trimmed to a maximum 253  bp43 and clustered at 97%  similarity42. Chimeric reads 
were screened and  removed44 before taxonomy was assigned using custom-trained classifiers, aligned to the 
Greengenes2 database (v2022.3)45. Features classified at sub-phylum level taxonomy were culled and taxonomic 
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features were merged at the genus level before biom files were  exported46 and compositional analyses were per-
formed in  R47 using the phyloseq  package48.

Statistical analyses. Comparisons between means of continuous data were performed by Kruksal-Wallis 
(KW) rank sum test. Bacterial feature abundances were normalized by converting raw counts to proportional 
abundances per sample. Alpha and beta diversity were calculated using  vegan49. Alpha diversity metrics were 
calculated from raw feature counts as rarefied (10  k reads) bacterial richness and from proportionally nor-
malized abundances as Shannon diversity. Beta diversity was calculated from proportionally normalized abun-
dances as Bray–Curtis dissimilarity and from raw feature counts as rarefied (10 k reads) Raup-Crick similarity 
between samples.

Generalised linear mixed models (glm) were built to determine associations of environmental factors includ-
ing (as fixed effects): temperature, humidity,  CO2 levels, building location, object type, commissioning and 
sampling date on alpha  diversity50. Least-square means of significantly associated environmental factors were 
 compared51 with multiple pairwise comparisons and corrected where appropriate using Tukey’s method.

PERMANOVA was performed to identify significant associations between Bray–Curtis dissimilarity and 
environmental factors including location and sampling timepoint. Where significant associations were observed, 
pairwise  PERMANOVA52 was used to identify classes of each variable with significantly different community 
composition. Comparisons were corrected for multiple hypothesis testing using Bonferroni’s method. Within 
group dispersal for sampling locations and timepoints was assessed using PERMDISP. ANOVA was used to 
compare mean distances from individual sample compositions to group Euclidean centroids and Tukey’s HSD 
identified significant differences in dispersal between location/timepoint groups.

Community determinism was compared by rescaling Raup-Crick similarity to values between − 1 and + 1. 
Environmental selection, where environmental factors have large determinative effects on the community com-
position of samples, was defined as samples with Raup-Crick similarity values < − 0.95. Alternatively, homog-
enising dispersal, describes situations where environmental pressures have a minimal impact on community 
composition, with multitudes of shared features between samples. This was defined as samples with Raup-Crick 
similarity values > 0.95. Raup-Crick similarity values between − 0.95 and 0.95 were defined as ecological drift, 
being the case where environmental factors influenced microbial populations but did not prevent transfer of 
bacteria between them.

The influence of outdoor on indoor communities was determined by  SourceTracker53 with outdoor locations 
defined as “sources” and indoor locations as “sinks”. Differential bacterial features between sampling locations 
and timepoints were identified using  Maaslin254. Results were visualized with  ggplot255.

Data availability
Data are available on the European Nucleotide Archive under accession PRJEB58762.
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