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MSFC: a new feature construction 
method for accurate diagnosis 
of mass spectrometry data
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Mass spectrometry technology can realize dynamic detection of many complex matrix samples in a 
simple, rapid, compassionate, precise, and high-throughput manner and has become an indispensable 
tool in accurate diagnosis. The mass spectrometry data analysis is mainly to analyze all metabolites 
in the organism quantitatively and to find the relative relationship between metabolites and 
physiological and pathological changes. A feature construction of mass spectrometry data (MSFS) 
method is proposed to construct the features of the original mass spectrometry data, so as to reduce 
the noise in the mass spectrometry data, reduce the redundancy of the original data and improve the 
information content of the data. Chi-square test is used to select the optimal non-redundant feature 
subset from high-dimensional features. And the optimal feature subset is visually analyzed and 
corresponds to the original mass spectrum interval. Training in 10 kinds of supervised learning models, 
and evaluating the classification effect of the models through various evaluation indexes. Taking two 
public mass spectrometry datasets as examples, the feasibility of the method proposed in this paper 
is verified. In the coronary heart disease dataset, during the identification process of mixed batch 
samples, the classification accuracy on the test set reached 1.000; During the recognition process, 
the classification accuracy on the test set advanced to 0.979. On the colorectal liver metastases data 
set, the classification accuracy on the test set reached 1.000. This paper attempts to use a new raw 
mass spectrometry data preprocessing method to realize the alignment operation of the raw mass 
spectrometry data, which significantly improves the classification accuracy and provides another 
new idea for mass spectrometry data analysis. Compared with MetaboAnalyst software and existing 
experimental results, the method proposed in this paper has obtained better classification results.

Metabolomics plays a crucial role in biological systems and aims to investigate the development of biology and 
disease by studying all metabolites in biological  samples1–3. Compared with upstream genomics, transcriptomics, 
and proteomics research, metabolomics can expand from the field of genes to the area of small molecules, realize 
the integration of small molecules into bioinformatics, and combine other omics technologies to discover system-
atic biomedicine research in the field. Nowadays, as one of the most widely used platforms of metabolites, mass 
spectrometry can repeatedly detect thousands of metabolites from  cells4–6, tissues, and biological fluids, assist 
biomedical research in detecting multiple feature subsets, and is of great significance in promoting biomarker 
 screening7–9, pathological  research10–12, and drug  development13–15. In metabolomics, researchers used mass 
spectrometry to analyze changes in the levels of metabolites in organisms to study the dynamic development of 
organism physiology. Although histopathology is still the gold standard for modern disease diagnosis, proteom-
ics and metabolomics studies based on mass spectrometry technology have been widely used in the diagnosis 
of various diseases, which can Achieve early and accurate diagnosis of clinical-level  diseases16. Exploring the 
metabolite molecules corresponding to biomarkers in the metabolic process of conditions will help elucidate 
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the mechanism of disease in the disease process and find marker molecules that play an essential role in the 
occurrence and development of  diseases17.

Due to the difference in sample sampling time, the sample length is different. At the same time, mass spec-
trometry data has a high feature dimension, which contains much biological information and a large amount 
of redundant information and noise. How to remove noise and errors from such high-dimensional features 
and extract useful biological information has become one of the leading research points of  bioinformatics18. 
Therefore, there is an urgent need to find an efficient data processing method to extract and analyze large-scale 
multidimensional raw spectral data, especially raw Mass spectral data generated from clinical samples.

At present, many machine learning (ML) models have been widely used for accurate diagnosis of diseases 
and biomarker mining under mass spectrometry data, such as support vector machine (SVM), random forest 
(RF), Bayesian neural network (NB), and Linear discriminant analysis (LDA) has achieved good  results19–22. 
These machine learning methods are suitable for preprocessed mass spectrometry data, but differences in pre-
processing pose a significant challenge for any comparative analysis. As a critical step in sample classification, 
data preprocessing is used to align mass spectrometry sample data and eliminate noise errors and redundant 
information from original mass spectrometry data. However, taking inappropriate preprocessing operations 
will result in the loss of useful information in the data. Therefore, proper preprocessing methods should be used 
when performing data  preprocessing23.

This paper mainly aims at the uneven raw data containing noise and uses two-dimensional mass spectrometry 
data to achieve accurate diagnosis of diseases and mining of biomarkers. The features of mass spectrometry data 
are constructed by the data preprocessing method, and the feature selection is carried out by the chi-square test 
method. In training ten supervised learning models, the model’s classification effect is evaluated through vari-
ous evaluation indicators.

Materials and methods
Experimental design. A step-by-step overview of the data processing in this paper is shown in Fig. 1. The 
experiment is mainly divided into three main steps. The first step uses MZmine to extract the critical informa-
tion in the original RAW file. In the second step, the sliding window method is used to construct the features 
of the original mass spectrum data, and the M/Z dimension is used as the window index to realize the feature 
construction of the peak area and peak height, so that each sample has the same length in the M/Z dimension, 
and at the same time, the noise and redundant information in the data are removed. The third step is to filter 
out the minimum non-redundant feature subset by chi-square test and evaluate the classification effect through 
various evaluation indicators on ten supervised learning models.

Summary of the dataset. The datasets used in this experiment mainly include the colorectal and liver 
datasets from Proteome Xchange and the coronary heart disease datasets provided by Thermo Fisher Scientific. 
Table 1 presents an introduction to the coronary heart disease and rectal liver sample datasets.

The first dataset was provided by Thermo Fisher Scientific in Massachusetts and included plasma and urine 
samples from 59 coronary heart disease (CHD) patients and 43 healthy controls (Control)24. The plasma data is 
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Figure 1.  Experimental flow chart.
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divided into two batches, in which 1-Batch contains 21P samples and 20N samples, and 2-Batch contains 38P 
samples and 23N samples. The pathogenesis of coronary heart disease is studied by identifying new biomarkers 
in plasma (Dataset connection: https:// datad ryad. org/ stash/ datas et/ doi: 10. 5061% 2Fdry ad. s8k81).

The second dataset is from the Proteome Xchange platform, including 30 colorectal liver metastasis (CRLM) 
samples from the same patient with colorectal liver metastasis and 30 adjacent normal tissue samples (Control)25. 
The liver metastases of the same colorectal liver metastases and their adjacent tissue samples have certain simi-
larities in the related proteins. Still, they have significant differences in the number of distributions, and the liver 
metastases are much more extensive in some essential proteins. Therefore, try to use the critical information of 
its high-precision mass spectrometry samples to distinguish the two samples through machine learning algo-
rithms. (Dataset connection: http:// prote omece ntral. prote omexc hange. org/ cgi/ GetDa taset? ID= PXD00 8383).

Feature construction. In the process of mass spectrometry data collection, the collection length of each 
sample is inconsistent, and the collected data is relatively sparse, so it is necessary to find a way to align the mass 
spectrometry data. In addition, there is external interference in the process of mass spectrometry data acqui-
sition, and the collected data will contain a lot of noise. This feature construction method can align samples 
with different lengths, reduce the noise in mass spectrometry data and reduce the redundancy of original data. 
Figure 2 is a schematic diagram of MSFS feature construction principle. MSFS has realized the characteristic 
structure of peak height and peak area in the mass-to-core ratio (M/Z) range. The basic idea is to scan the 
original mass spectrum and compare the phases of the data. Neighbors are grouped into data bins to reduce 
the dimension of data. Then select the representative members of each group, representing the mass-to-charge 
ratio, peak height and peak area of the whole group. Using M/Z as the window index, the average value of peak 
height and area in the window is calculated. The constructed M/Z value is taken as the characteristic index, and 
the average value of peak height and peak area in the window is taken as the characteristic value. The difficulty 
in the construction of sliding window features lies in choosing a suitable width of sliding window to scan mass 
spectrometry data. If the window is too large, the feature dimension will not be significantly reduced, and the 
redundant information in the original data can not be removed well. If the window is too small, the feature 
dimension reduction is not obvious, and the redundant information in the original data can not be removed 
well. Suppose the window width is set too large. In this case, a lot of different information in the window will 
be eliminated, so the reduced data can not fully express all kinds of information between samples. Setting an 
appropriate window size can eliminate redundant information in the original data and effectively extract the 
model classification results.

Feature selection method based on chi-square test. Data feature selection is widely used in extensive 
data mining, analysis, and machine learning. Especially in high-dimensional mass spectrometry data, selecting 
important data features is a critical factor in identifying disease biomarkers. The chi-square test is a conventional 
feature selection algorithm used for feature selection in different research  works26.

The Chi-square test is a statistical analysis method specially used for counting data in statistical analysis. Using 
the χ2 distribution and degrees of freedom, the probability P of the current statistic under H0 is obtained. The 
Chi-square test can measure the correlation between feature F and category Li . Assuming that F and Li obey the 
χ2 distribution with one degree of freedom, the calculation formula of the chi-square test is:

Among them, F is the feature; Li is a specific category; A represents the number of subsets with feature F in 
Li ; B represents the number of subsets that do not belong to the Li category and include feature F; C represents 
the number of subsets belonging to Li but not including feature F, D denotes the number of subsets that neither 
belong to Li nor have feature F. When χ2(t, ci) = 0 , the features F and ci are independent, and the greater the 
value of χ2, the stronger their correlation. Get a sorted list of features according to the χ2 value, then select 
features according to the list. The chi-square test is used for feature selection, and the chi-square value estimates 
the importance of high-dimensional data features. This method can quickly find the relevant information in 
the data features and select the feature subset with the most significant correlation and the least  redundancy27.

(1)χ2(F, Li) =
(AD − CB)2

(A+ C)(B+ D)(A+ B)(C + D)

Table 1.  Dataset introduction.

Disease Dataset Ids Raw file

Sample

(positive, negative)

Coronary heart disease CHD_serum_102samples 102

21 (1-batch)

20 (1-batch)

38 (2-batch)

23 (2-batch)

Colorectal liver metastasis tissue PXD008383 60
30

30

https://datadryad.org/stash/dataset/doi:10.5061%2Fdryad.s8k81
http://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=PXD008383
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Figure 2.  Schematic diagram of MSFS method.

Table 2.  Ten supervised learning models used in this paper.

Algorithm category Algorithm Parameter

Conventional machine-learning algorithms

Random forest (RF) n_estimators = 10

Decision tree (DT) Penality = 1.0

Support vector machine (SVM) cache_size = 200

K-nearest neighbors (KNN) n_neighbors = 5

Logistic regression (LR) Penalty = l2

Light gradient boosting machine (LightBGM) n_estimators = 100

Naive Bayes (NB) Alpha = 1.0

Ensemble-learning frameworks
Bagging (Bagging) n_estimator = 100

Adaptive boosting (AdaBoost) n_estimators = 50

Deep-learning algorithms Multilayer perceptron (MLP) Layer = 32
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Supervised learning algorithms. In order to verify the original mass spectrum, Table 2 lists the salient 
features screened by Chi-square test method, and classifies the results on seven traditional machine learning 
algorithms, two integrated learning frameworks and one deep learning algorithm. Model training. Regression 
analysis (LR)28 fits the relatively linear data with less loss and enables the fitted model to better predict the 
data. A Support Vector Machine (SVM)29 defines a linear classifier with the most significant margin in the fea-
ture space, capable of separating samples from two different classes. When predicting a new sample, K-Nearest 
Neighbor (KNN)30 judges which category the sample belongs to according to which type the K samples closest 
to the sample belong. The decision tree (DT)31 obtains the final result through the decision-making process 
and discrimination of the problem by the tree. Random Forest (RF)32 is a method that uses multiple decision 
trees to train, classify and predict sample data. Lightweight Gradient Boosting Machine (LightGBM)33 is a fast, 
distributed, high-performance decision tree-based gradient boosting algorithm that starts with weak models 
and trains models iteratively, each model adding to the predictions of previous models to produce a reliable 
Overall forecast. Naive Bayes (NB)34 estimates the conditional probability of each category by calculating the 
frequency of occurrence of each type in the training samples and dividing each feature attribute, and records 
the results, and finally outputs the classification of the samples.  Bagging35 estimates a sample by averaging the 
posterior probabilities of the non-uncounted nodes it falls into. Reinforcement learning (Adaboost)36 trains dif-
ferent classifiers on the data set and then combines these weak classifiers to form a more robust final classifier. 
The classification effect is better than the conventional weak classifier. Classifier model effect. The deep learning 
model is a multilayer perceptron (MLP)37 or a multilayer perceptron. This forward-structured artificial neural 
network maps a set of input vectors to a group of output vectors and is used to fit complex functions or solve 
problems—classification problem.

Evaluation method of performance. To evaluate the prediction model, this paper uses seven evaluation 
indicators widely used in the medical field to assess the classification effect of ten models, including Precision, 
Specificity, Sensitivity, Matthew Coefficient (MCC), Accuracy, F1-score, and Area under roc curve (AUC)38.

To evaluate the feasibility of the method proposed in the paper, the precision rate, sensitivity, specificity, Mat-
thew coefficient, and accuracy rate were evaluated, respectively. The calculation formula is as follows:

Among them, true negatives (TN) are the number of predicted healthy labels that match the true healthy 
labels; true positives (TP) are the number of predicted disease labels that match the actual disease labels; false 
negatives (FN) refer to the number of patients with disease The number of sick labels that are misidentified as 
healthy; false positives (FP) are the number of healthy labels that are predicted to be diseased.

F1-score is the harmonic mean of precision rate and recall rate. The F1 score is calculated to measure the 
classification performance of samples of different categories. The calculation formula is:

AUC refers to the area covered by the ROC (receiver operating character) curve. Since it is difficult for ROC 
to reflect the difference between models, AUC can remember the difference between models as a numerical value. 
The closer the AUC is to 1, the better the performance of the  model39. Calculated as follows:

Among them, positive class indicates that the category is a positive example, xi is the ith sample, rank is the 
order of the probability of being a positive example in the model prediction instance, M is the actual number of 
positive examples, and N is the exact number of negative examples.

(2)Precision =
TP

(TP + FP)

(3)Specifity =
TN

(TN + FP)

(4)Sensitivity = Recall =
TP

(TP + FN)

(5)MCC =
TP ∗ TN − FP ∗ FN

√
(TP + FP) ∗ (TP + FN) ∗ (TN + FP)(TN + FN)

(6)Accuracy =
TP + TN

TP + TN + FP + FN

(7)F1score = 2 ∗
Precision ∗ Recall

(Precision+ Recall)

(8)AUC =

∑
xi∈positiveclass rankxi −

M(M+1)
2

M ∗ N
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Results and discussion
Data preprocessing. Considering that the original mass spectrometry data set is too large and inconven-
ient for analysis, it is necessary to use open sources of mass spectrometry software such as MZmine2.53, Raw 
Converter, and MSConver for sampling to extract detailed key data information in mass spectrometry. The main 
steps of sampling through MZmine2.53 mass spectrometry software in this paper are: (1) Input the original 
Raw file into MZmine2.53 software and save important mass information through mass detection; (2) Set the 
mass detector to exact Mass for sampling, set the noise level to 0, and finally, generate chromatographic column 
information through ADAP Chromatogram builder, to ensure that all data are complete; (3) Export all mass 
spectrometry information related to this experiment from the generated feature lists, and the exported CSV file 
contains 24 columns Mass spectral information, where important information includes Mass, retention-time, 
peak-height, and peak-area. These raw data are sequentially transformed into regular feature matrices through a 
series of subsequent preprocessing methods for subsequent supervised learning models.

Feature construction of mass spectrometry data. In the process of data collection, the length of 
each sample is different because of the different sampling time. In order to maintain the consistency of each 
sample in the M/Z dimension and construct suitable data for the machine learning model, it is necessary to use 
feature engineering method to construct and align the original data. Due to the difference of sampling time in 
the public coronary heart disease data set, the data set is divided into two batches. In this part of the experiment, 
the difference between the two batches was ignored and the samples of the two batches were mixed. The peak 
area and peak height of M/Z dimension are constructed by MSFS method, and the M/Z values in all samples are 
traversed, and the minimum and maximum M/Z values of 54 and 1223 are obtained. The minimum value and 
the maximum value are taken as the start value and the end value of the sliding window. Then, by setting the 
sliding window step size, the average of peak area and peak height in each sample window is taken as the feature 
value after feature construction.

Taking two mixed coronary heart disease data sets as the research objects, the training set and the test set 
are divided according to the ratio of 2:1, the step size of the sliding window is 0.1, and the feature construction 
is carried out on the original data. The chi-square test is used to screen the minimum non-redundant feature 
combination. Training is performed on ten supervised learning models, and the classification results are evaluated 
by various evaluation metrics (Table 3). The optimal classification results on Peak-area and Peak-height when 
the sliding window step size is 0.1. On Peak-area, when selecting the KNN model, when there are three features, 
the evaluation index ACC is 1.000. On Peak-height, when selecting the bagging model, when there are three 
features, the evaluation index ACC is 1.000. Through the experimental results on Peak-area and Peak-height, 
it can be concluded that good classification results can be obtained after using the sliding window to construct 
the original mass spectral data.

The 1.20.3 version of Numpy and the 1.3.4 version of Pandas were used to process the data, using the CH2 
feature screening algorithm provided in the 0.24.2 version of Sklearn and ten kinds of Supervised learning algo-
rithms (AdaBoost, Bagging, LightGBM, MLP, LR, KNN, SVM, NB, DR, RF).

Effect of different sliding window sizes on the results. Under different window steps, the data exhib-
its different distributions, which provide different degrees of information for the machine learning model. This 
part compares the feature information extracted from five sliding windows with different step size parameters 
and finally determines the optimal sliding window step size parameters through the classification results on ten 
supervised learning models. Table 4 shows that with the increase of the window step size parameter, the more 
original features contained in the M/Z dimension of each window, the original sparse feature information also 

Table 3.  When the sliding window is 0.1, the optimal classification results.

Peak type Feature number Best model ACC 

Area 3 KNN 1.000

Height 3 Bagging 1.000

Table 4.  Statistics of sample length and missing values on positive and negative samples after feature 
construction under different window steps.

Window sizes Sample length Average missing value on health Average missing value on disease

0.1 11,699 10,739 10,736

0.5 2330 1694 1689

1.0 1169 693 691

1.5 779 436 434

2.0 584 313 311
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increases with the increase of the window step size, the peak value, and peak area in the window become denser. 
As the sliding window increases, the missing values on positive and negative samples also become sparser.

To explore the effect of different sliding window step sizes on sample prediction, the same data preprocessing, 
feature screening, and model validation methods are used throughout the experiment, under the condition that 
only the window step size is changed. The influence of five different window steps on the classification results was 
verified on the coronary heart disease data set to determine the optimal window parameters. Through Table 5, 
comparing the classification results of five different steps, the classification accuracy of each scale window can 
reach one under the different number of features. Still, the main difference is that fewer features are used to 
achieve the best classification effect, which also indicates that the window size setting is too large or too small to 
extract the difference information between samples well.

As shown in Fig. 3, setting an appropriate window step size can eliminate redundant information in the origi-
nal data and effectively extract the difference between coronary heart disease and normal samples. By comparing 
the classification results under different sliding window parameters, it is verified that when the sliding window 
step size is 1 (a total of 1169 windows), it is more suitable for the coronary heart disease data set. The window 
under this step size can reduce the noise in the original data and extract the crown Differential information 
between heart disease samples and healthy samples.

Table 5.  Model and number of features for optimal classification results under different window step sizes.

Peak type Window size Feature number Best model

Area

0.1 3 KNN

0.5 9 Bagging

1.0 2 AdaBoost

1.5 6 AdaBoost

2.0 7 LightGBM

Height

0.1 3 Bagging

0.5 8 LR

1.0 2 Bagging

1.5 7 RF

2.0 9 NB

Figure 3.  Prediction accuracy changes with window size.
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Independent test validation with in the dataset. This part of the experiment uses the widely used 
mass spectrometry software MetaboAnalyst 5.0 version to analyze the public coronary heart disease data set. 
The results are compared with the method proposed in this  paper40. Table 6 shows that, on Peak-area and Peak-
height, each evaluation index of the model is 1.000 for two features, and each evaluation index is higher than the 
results tested on MetaboAnalyst5.0 software.

Divide the coronary heart disease data set according to the ratio of the comparison papers (training set: 
healthy 29, coronary heart disease 29; test set: healthy 14, coronary heart disease 30)41, and verify the classifica-
tion results under the optimal window step size. When there are two features on peak area and peak height, on 
the bagging model, the AUC is 1.000. The AUC of the comparison paper is 0.999 when there are eight features. 
Compared with the results of the comparison paper, the method proposed in this paper uses fewer features to 
achieve the same results as the comparison paper, proving the feasibility of the method proposed. The experi-
mental results show that the method proposed in this paper has superior performance in distinguishing coronary 
heart disease and normal samples.

Significant difference analysis of features on positive and negative samples. With a sliding 
window of 1 as the step size, using the chi-square test, Peak-area and Peak-height screen out the two feature 
combinations with the most considerable chi-square value on the data of two batches mixed and two batches of 
mutual verification, respectively. Using visualization, use these feature combinations to draw scatter plots and 
further verify the classification effect between coronary heart disease samples and healthy samples. At the same 
time, it is confirmed that batch differences between batches 1 and 2 due to differences in collection time are gen-
erated on the coronary heart disease data set. Figure 3-2 is a scatter plot drawn by the two features (F_254 and 
F_59, F_59 and F_256, F_59 and F_115, F_59 and F_462, F_59 and F_313) with the smallest chi-square value in 
the feature combination corresponding to the optimal classification results of the two batches of mixed samples 
and batched samples on Peak-area and Peak-height.

From Fig. 4a,b, two batches of coronary heart disease mixed data sets, the characteristics corresponding to 
the two maximum chi-square values are drawn to draw a scatter plot. It can be seen that in the training set and 
the test set, the chi-square test method screened out the two. Each feature can distinguish coronary heart disease 
samples from healthy samples well. It is proved that the feature selection method used in this paper can deeply 
mine the significantly different biomarkers in the coronary heart disease data set and distinguish the two types 
of samples substantially. At the same time, the high-dimensional mass spectrometry data can find a combina-
tion of significantly different features, which can reduce the model’s time complexity and improve the model’s 
classification effect.

From Fig. 4c–f coronary heart disease batch mixed data set, the characteristics corresponding to the two 
most significant chi-square values are drawn into a scatter plot. It can be seen that on the Peak-area and Peak-
height, the chi-square test is used to filter. The two features are optimally combined on the scatter plot. The two 
batches of samples are divided into two clusters, which proves that there are significant batch differences between 
batches 1 and 2 due to differences in collection time, which also increases the difficulty with which the model 
learns batch-by-batch variability.

Dataset external in dependent test validation. By visualizing the results in the previous summary, it 
can be found that there is a significant difference between different batches in the coronary heart disease dataset. 
To verify the influence of the differences between the two batches of samples on the experimental results, this 
part of the experiment uses different batches of samples to test each other to verify the classification effect of the 
model. The coronary heart disease data set contains two batches of samples. This part of the experiment consid-
ers the differences between the two batches of samples. Based on the optimal parameters of the previous model, 

Table 6.  Comparison results with MetaboAnalyst software.

Evaluation indicators Method Area Height

Sn
MetaboAnalyst 0.983 0.983

Self-Method 1.000 1.000

Sp
MetaboAnalyst 0.977 0.977

Self-Method 1.000 1.000

Pre
MetaboAnalyst 0.983 0.983

Self-Method 1.000 1.000

Acc
MetaboAnalyst 0.983 0.983

Self-Method 1.000 1.000

MCC
MetaboAnalyst 1.000 1.000

Self-Method 1.000 1.000

F1
MetaboAnalyst 0.983 0.983

Self-Method 1.000 1.000

AUC 
MetaboAnalyst - -

Self-Method 1.000 1.000
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one batch of samples is used as the training and verification sets. One batch of samples is left as the test set to 
verify the classification effect of the model further.

The results in Table 7 show that on Peak-area and Peak-height when the two data sets are tested against each 
other, the lowest classification accuracy in the independent test set is 0.836. When using 2-Batch as training and 
validation sets, the classification accuracy is 0.950 on the 1-Batch separate test set. It is further proved that the 
method proposed in this paper still achieves a good classification effect on batches with significant differences, 
indicating that it is superior.

The optimal feature combination corresponds to the original M/Z interval. The significantly dif-
ferent mass-to-charge ratio intervals found by the method proposed in this paper have biological significance. By 
measuring the proteome expression profile and phosphorylated proteome profile of coronary heart disease and 
normal samples, it is possible to discover the precise treatment of coronary heart disease—potential biomarkers. 
Taking the feature subset corresponding to the optimal classification result in the mixed dataset when the sliding 
window step size is one as an example, two different features are found on Peak-area and Peak-height, Peak-
area and Peak-height. The intersection is the F_59 difference feature. Using the feature to construct the index 
can determine the original cytoplasmic ratio interval and the biomarker of coronary heart disease. Formula 3.1 
calculates the original feature interval through the feature through the sliding window calculation method. The 
calculation formula is as follows:

Figure 4.  (a) Two batches of mixed samples on the Peak-area, the scatter plot visualization results of the 
optimal combination of the two features; (b) two batches of mixed samples on the Peak-height, the optimal 
combination of the two features Scatter plot visualization results; (c) 1Batch as the training set and validation 
set, 2Batch as the test set on the Peak-area, and the scatter plot visualization results of the optimal combination 
of the two features; (d) 1Batch as the training set and validation set, 2Batch is used as the test set on the Peak-
height, and the optimal combination of the two features is used to visualize the results; (e) 2Batch is used as the 
training set and validation set, and 1Batch is used as the test set on the Peak-area, and the optimal combination 
of the two features is scattered. Dot plot visualization results; (f) 2Batch as the training and validation set; 1Batch 
as the test set on Peak-height, the optimal combination of the two features scatter plot visualization results.

Table 7.  Mutual verification results of first and second batches.

Batch Peak type Feature number Best model Valid Test

1
Area 5 LR 1.000 0.933

Height 4 Bagging 0.929 0.836

2
Area 4 Bagging 0.950 0.950

Height 3 Bagging 0.952 0.927
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Among them, Findex is the feature index after feature construction, Wstep is the step size of the sliding window, 
and Wstart is the starting point of the sliding window. Table 8 shows the original M/Z interval corresponding to 
the optimal features. Due to the large sampling dimension of mass spectrometry samples, it is difficult to analyze 
the difference information of a single mass-to-nucleus ratio in detail. Only the mass interval of salient features 
can be roughly obtained, and more detailed information cannot be obtained.

The original quality interval can be calculated by formula (9) by using the salient features F_59, F_254 and 
F_256 screened by the chi-square test of peak area and peak height in the revised paper. The smaller mass interval 
can provide ideas for the study of basic pathogenic mechanism, but the mass interval will contain many bio-
logical metabolite molecules, which can not better determine the significant pathogenic metabolite molecules. 
In order to better determine the significant pathogenic metabolite molecules, we searched for the significant 
pathogenic metabolite molecules by traversing the common mass values of all samples in the interval (in the 
process of mass analysis, substances with similar mass values belong to the same category, with three decimal 
places as the critical point here).

On the Peak-area and Peak-height, aiming at the remarkable feature F_59 corresponding to the original Mass 
interval 113–114, we traverse the common Mass values of all samples in the interval, and find that the mass value 
of 113.02 is the remarkable marker of healthy samples and sick samples, and the corresponding biological com-
pounds can be obtained by combining metabolomics to compare the database in the later stage, thus revealing 
the pathogenesis of coronary heart disease.

The effect of validating the model on another data. This part of the experiment uses the public 
colorectal liver metastases dataset to verify the classification results of the proposed method on other mass 
spectrometry datasets. In this part of the experiment, the training set and the test set are randomly divided 
according to the ratio of 7:3. By traversing the M/Z values in all colorectal liver metastases samples, the mini-
mum and maximum M/Z values were 400 and 1600, which were used as the starting and ending values of the 
sliding window, respectively. Since the original data sparsity of the colorectal liver metastases is different from 
that of the coronary heart disease dataset, it is found that setting the sliding window step size parameter to 0.1 
can effectively extract the effective original information of the colorectal liver dataset. Finally, the chi-square test 
is used for feature screening, model training is carried out on ten supervised learning models, and the classifica-
tion effect is evaluated through various evaluation indicators.

The results in Table 9 show that in the peak area, when there are ten features, each evaluation index of the 
model is 1.000. At Peak-height, the classification accuracy is the highest at 0.944. It shows that the method 
proposed in this paper also applies to other mass spectrometry data and can achieve good classification results, 
which further verifies the feasibility of the proposed method.

Conclusion
In this study, MSFS method is used to construct the features of the original mass spectrometry data, so as to 
realize the alignment operation of the original mass spectrometry data and reduce the redundant information 
and noise in the data. Chi-square test is used to select the least non-redundant feature combination, and the 
classification effect is verified on 10 models, and the feasibility of this method is verified on two public data sets. 
Different batches of sample mixtures were tested and verified internally on the coronary heart disease data set. 
When there are two features, the classification accuracy of peak area and peak height can reach 1.000, and the 
classification result is better than MetaboAnalyst software and the current experimental results. At the same 
time, chi-square test was used to find out two significantly different chi-square characteristics corresponding to 
two batches of samples in coronary heart disease data set, and visual analysis was made. It is found that the two 
batches of samples are quite different. External verification is carried out on different batches to verify the clas-
sification effect of the method proposed in this paper on samples with significant batch differences. The results 

(9)Original_mass = Findex ∗Wstep +Wstart

Table 8.  The characteristics of the optimal classification result correspond to the original interval.

Peak type Feature index Chi-square value Original mass

Area
254 33.262 308–309

59 39.374 113–114

Height
256 32.267 310–311

59 41.912 113–114

Table 9.  Classification results in the colorectal liver dataset.

Peak type Best-model Sn Sp Pre Acc MCC F1 AUC 

Area RF/LR 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Height LR 0.889 1.000 1.000 0.944 0.894 0.941 0.975
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show that the classification accuracy is as high as 0.950 when there are four features in the peak area, which 
verifies the method proposed in this paper. Feasibility. At the same time, the approximate interval of biomark-
ers of coronary heart disease can be further determined by mapping the two groups of features with the best 
classification results back to the original M/Z interval. Finally, the method proposed in this paper is verified on 
the data set of liver metastasis of colorectal cancer. When there are 20 features in the peak area, the classification 
accuracy can reach 1.000, which shows that the method proposed in this paper is feasible in mass spectrometry 
data sets (Supplementary Information S1).

Data availability
The datasets generated and/or analysed during the current study are available in the Proteome Xchange and 
Thermo Fisher Scientific repository. Dataset 1: https:// datad ryad. org/ stash/ datas et/ doi: 10. 5061% 2Fdry ad. s8k81. 
Dataset 2: http:// prote omece ntral. prote omexc hange. org/ cgi/ GetDa taset? ID= PXD00 8383.
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