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Effects of C‑reactive protein 
trajectories of critically ill patients 
with sepsis on in‑hospital mortality 
rate
Xuandong Jiang 1*, Chenlu Zhang 2, Yuting Pan 1, Xuping Cheng 1 & Weimin Zhang 1

Sepsis, a life‑threatening condition caused by an inflammatory response to systemic infection, results 
in a significant social burden and healthcare costs. This study aimed to investigate the relationship 
between the C‑reactive protein (CRP) trajectories of patients with sepsis in the intensive care unit 
(ICU) and the in‑hospital mortality rate. We reviewed 1464 patients with sepsis treated in the ICU 
of Dongyang People’s Hospital from 2010 to 2020 and used latent growth mixture modeling to 
divide the patients into four classes according to CRP trajectory (intermediate, gradually increasing, 
persistently high, and persistently low CRP levels). We found that patients with intermediate and 
persistently high CRP levels had the lowest (18.1%) and highest (32.6%) in‑hospital mortality rates, 
respectively. Multiple logistic regression analysis showed that patients with persistently high (odds 
ratio [OR] = 2.19, 95% confidence interval [CI] = 1.55–3.11) and persistently low (OR = 1.41, 95% 
CI = 1.03–1.94) CRP levels had a higher risk of in‑hospital mortality than patients with intermediate 
CRP levels. In conclusion, in‑hospital mortality rates among patients with sepsis differ according to the 
CRP trajectory, with patients with intermediate CRP levels having the lowest mortality rate. Further 
research on the underlying mechanisms is warranted.

Sepsis is a serious condition that affects tens of millions of people  worldwide1. It is a life-threatening disease 
caused by the inflammatory response to systemic infection and can cause multiple organ dysfunction syndrome 
and death in case of no prompt diagnosis and  treatment2,3. Advances in modern medical technology have led to 
gradual improvements in intensive care unit (ICU) treatment. However, the sepsis-related mortality rate remains 
up at to 40%, resulting in significant social burden and healthcare  costs4,5.

C-reactive protein (CRP), an acute reactive protein produced by the liver, is an indicator whose level rapidly 
increases in response to acute inflammation and infection. Thus, it is crucial in the diagnosis, treatment, and 
monitoring of  sepsis6–8. However, CRP is affected by numerous factors in critical care settings, including trauma, 
surgery, immune system dysregulation, and drugs, which may also increase CRP  levels9–11. Therefore, it is clini-
cally important to examine the CRP trajectories of patients with sepsis in real-world ICU settings.

Latent growth mixture modeling (LGMM) is a popular longitudinal data modeling method used to identify 
groups with different trends over time as well as explore the characteristics of the trends and trajectories in vari-
ous  subgroups12–14. This study aimed to apply LGMM to investigate the effects of CRP trajectories in critically 
ill patients with sepsis on the in-hospital mortality rate.

Methods
Study design. We retrospectively included patients with sepsis admitted to the ICU of Dongyang Hospital 
for the first time. The exclusion criteria were age < 18 years, ICU stay < 72 h, and > 20% missing data. The study 
followed the reporting guidelines of the Strengthening the Reporting of Observational Studies in Epidemiology 
(Table S1).

Data collection. Data were collected using the medical record data mining software provided by Le9 Health 
(Shanghai, China). The following information was collected: (1) basic clinical and demographic characteristics 
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such as age, sex, acute physiology, chronic health evaluation (APACHE) score, sequential organ failure assess-
ment (SOFA) score, and comorbidities such as hypertension, diabetes, and chronic obstructive pulmonary dis-
ease (COPD); (2) biochemical indicators such as procalcitonin level, complete blood cell count, blood gas con-
centration, liver function, kidney function, and coagulation function; and (3) daily CRP values for 5 days after 
ICU admission.

The primary study outcome was in-hospital mortality rate, and the secondary outcomes were duration of 
mechanical ventilation, duration of ICU stay, and total length of hospital stay.

Definition of sepsis. According to Sepsis 3.0, sepsis was defined as organ dysfunction triggered by an infec-
tion that endangers the patient’s life and causes a rapid increase in SOFA score >  = 2 points)3.

Data processing. Variables with > 20% missing values were deleted. The missing values of variables with 
loss rates < 20% were replaced using multiple imputations. Outliers were detected using the interquartile range 
(IQR) and handled as missing values.

Statistical analysis. All statistical analyses were performed using R (software version 4.1.3). Descriptive 
statistics were performed using the CBCgrps package in  R15. Normally and non-normally distributed measure-
ment data are expressed as the mean ± standard deviation and median (IQR), respectively. Among-group com-
parisons of continuous and categorical variables were performed using analysis of variance and chi-square tests, 
respectively. Statistical significance was set at p < 0.05.

LGMM is used to classify the CRP trajectories and is based on the Extended Mixed Models Using Latent 
Classes and Latent Processes (lcmm) of the R package (version 2.0.0)12,16. A crucial factor in creating LGMM is 
determining the number of latent classes. To select the optimal number of latent classes, we built models with 
two to six classes. Indicators reflecting the goodness of fit of LGMM include log likelihood, entropy, and infor-
mation criteria. The lower the Akaike information criterion (AIC), Bayesian information criterion (BIC), and 
sample-adjusted BIC (SABIC), the better the model  fit17. The entropy value (range: 0–1) indicates the accuracy 
of a model in classifying individuals into the corresponding classes. Generally, an entropy value > 0.80 is con-
sidered indicative of high classification accuracy, with a higher entropy value indicating a better goodness-of-fit 
of the  model18. Additionally, to ensure the stability of the model, we controlled the sample size of each class to 
be > 1% of the total study population. Furthermore, the goodness-of-fit of the model was ensured by verifying 
that the average posterior probability of all classification members was ≥ 70%. Finally, we considered the clinical 
interpretability of the model.

Logistic regression analysis was used to explore the association between CRP trajectories and the in-hospital 
mortality risk. Three models were used to calculate the crude and adjusted odds ratios (ORs), with trajectory 1 
as the reference. Model 1 was unadjusted; model 2 was adjusted for age and sex; and model 3 was adjusted for 
age, sex, and other confounders. The adjusted ORs were reported with 95% CIs and p values. The models com-
prised variables with a p value < 0.10 in univariate analysis and clinically important variables. Multicollinearity 
was tested using the variance inflation factor (VIF), with VIF ≥ 5 indicating multicollinearity. The Kaplan–Meier 
method was used to calculate the 30-day in-hospital survival rate.

Ethics approval. This study was conducted in accordance with the tenets of the Declaration of Helsinki. 
This study was approved by the Ethics Committee of Dongyang People’s Hospital (DRY-2023-YX-103). This 
study followed all related local guidelines and regulations, including human genetics-related regulations. The 
requirement for informed consent was waived by the Ethical Committee of Dongyang People’s Hospital due to 
the retrospective nature of this study, and the study involved no human tissue collection or storage process. The 
data were analyzed anonymously by removing patients’ personal information.

Results
Among 4448 patients with sepsis from December 2012 to December 2020, 2984 patients were excluded and 1464 
patients were included. Figure 1 shows the study flowchart. The mean age was 66 years. The proportion of male 
patients was 65%; further, the overall in-hospital mortality rate was 24%.

Table 1 shows the fitted statistical results of the LGMM models. The AIC, BIC, and SABIC values continuously 
decreased from the one- to six-class models; however, the decreasing trend slowed down for the four- and five-
class models. Although the two-class model showed the largest entropy value, the entropy value of the four-class 
model showed a turning point and was > 0.8. Although the four-class model had the smallest sample size, its 
proportion was 6.83% > 1%, which met the predefined criteria. Further, considering the clinical interpretability, 
we eventually selected the four-class model.

Figure 2 shows the changes in CRP trajectories in the four-class model. Trajectory 1 accounted for 33.9% of 
patients; the CRP values were at the intermediate level, with an initial increase followed by a gradual decrease. 
Trajectory 2 accounted for the smallest proportion (6.8%) of patients and showed a gradually increasing trend 
following ICU admission. Trajectory 3 accounted for 21.4% of patients and showed persistently high CRP values. 
Trajectory 4 accounted for 37.9% of patients, and the CRP values were persistently low. Table 2 shows the baseline 
characteristics of the four latent classes. There were significant among-class differences in age, sex, and SOFA 
score (p < 0.05) but not in the proportion of hypertension and diabetes mellitus. Patients with trajectory 3 had 
higher creatinine levels and the largest proportion of renal replacement therapy (RRT; 15.7%). Table 3 shows 
the among-class differences in the site of infection and outcomes. There was a significant among-class difference 
in the site of infection in the population (p < 0.001), with the most common being chest infections followed by 
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abdominal infections. Further, there was a significant among-class difference in the in-hospital mortality rate 
(p < 0.001), with trajectory 1 having the lowest rate (18.1%) and trajectory 3 having the highest rate (32.6%).

Table 4 presents the logistic regression models, unadjusted and adjusted ORs, 95% CIs, and p-values of the 
in-hospital mortality rate, with trajectory 1 (lowest mortality rate) as the baseline reference. The adjusted con-
founders included age, sex, APACHE score, COPD, RRT, pH, lactate, lymphocytes, and mechanical ventilation. 
Figure 3 shows a forest plot presenting the final results of model 3. Moreover, Kaplan–Meier survival analysis 
revealed a significant among-class difference in the 30-day in-hospital mortality rates (p < 0.001, see Fig. 4).

Discussion
Our findings demonstrated that the in-hospital mortality rates in critically ill patients with sepsis differed accord-
ing to the CRP trajectories, with a certain level of clinical significance. Notably, patients with sepsis who had 
intermediate CRP levels had the lowest in-hospital mortality rate.

CRP is a non-specific indicator that reflects the intensity of the inflammatory response. Higher CRP levels 
indicate a more severe disease status and a worse prognosis in patients with  sepsis19,20. Therefore, CRP changes 
in the ICU are often used to monitor disease progression and prognosis as well as to evaluate the effectiveness 
of  treatment21. Notably, we observed that patients with trajectory 1 (intermediate CRP values exhibiting an 

Figure 1.  Flow chart of the study. ICU, Intensive Care Unit.

Table 1.  Statistics for choosing the best number of classes. AIC, Akaike information criterion; BIC, Bayesian 
information criteria; SABIC, sample-adjusted information criteria.

G Loglik Conv npm AIC BIC SABIC Entropy %Class 1 %Class 2 %Class 3 %Class 4 %Class 5 %Class 6

m1 1 − 36,891.10 1 4 73,790.20 73,811.36 73,798.65 1.0000000 100.00000

m2 2 − 35,529.74 1 8 71,075.47 71,117.78 71,092.37 0.8517868 52.52732 47.47268

m3 3 − 35,199.73 1 12 70,423.46 70,486.93 70,448.81 0.8027449 38.31967 37.97814 23.70219

m4 4 − 35,060.42 1 16 70,152.84 70,237.47 70,186.64 0.8299584 33.87978 6.830601 21.37978 37.90984

m5 5 − 34,956.54 1 20 69,953.08 70,058.86 69,995.33 0.7886274 30.05464 24.31694 11.27049 26.775956 7.581967

m6 6 − 34,866.60 1 24 69,781.20 69,908.13 69,831.89 0.7860618 20.08197 1.70765 26.91257 20.765027 21.516393 9.016393
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initial increase followed by a gradual decrease) showed the lowest mortality rate. Contrastingly, patients with 
trajectory 3 (persistently high CRP levels) had the highest mortality rate, which could be attributed to uncon-
trolled infection or the persistence of inflammatory factors. The latest research indicates that CRP is not merely 
a prognostic marker but also has a direct pro-inflammatory effect, further exacerbating local tissue damage 
under pathological  conditions22,23. Moreover, many studies have confirmed the feasibility and efficacy of a single 
blood plasma decrease on CRP  concentration24–26. Therefore, for patients with persistently high levels of CRP, 
decreasing the CRP concentration may be a future treatment strategy, such as using extracorporeal separation 
or low-molecular-weight CRP  inhibitors26–28.

Patients with trajectories 2 and 4 had low initial CRP levels in the ICU; however, they had higher mortality 
rates than patients with trajectory 1. This suggests that initial CRP values do not reflect the prognosis of patients 
with sepsis in the ICU. Recent studies have suggested that CRP levels have poor diagnostic and prognostic utility 
in patients with  sepsis29. Thus, there has been an increase in the number of sepsis-related biomarkers identified. 
A recent review identified nine novel markers with higher diagnostic utility than that of routine markers such 
as CRP and procalcitonin, indicating the need to reevaluate the biomarkers for  sepsis30. Patients with trajectory 
2 showed a rapid increase in CRP values, representing a possible nosocomial infection in the ICU; however, the 
subsequent decrease in CRP levels could not be observed due to time constraints. Patients with trajectory 4, who 
had persistently low CRP values probably due to immunosuppression, had a higher in-hospital mortality rate 
than patients with trajectory 1. Bhavani et al. used temperature trajectories to identify novel sub-phenotypes 
of sepsis and found that the patients in the hypothermia group had the lowest CRP levels. Subsequent studies 
confirmed that these patients were in an immunosuppressed state and had the highest mortality rate among 
the four  subgroups31,32. Immunostimulatory therapies may be beneficial when CRP levels cannot be elevated by 
stress, especially in the complex environment of the ICU, contributing to the advancement of precision medicine.

Horvat et al. conducted a similar study using a similar approach of group-based multi-trajectory models. Five 
groups with different CRP and ferritin trajectories were identified in critically ill pediatric patients with sepsis, 
with the mortality rate showing among-group  differences33. Another study on patients with ventilator-related 
pneumonia examined dynamic changes in CRP levels and classified the patients into four groups according to 

Figure 2.  CRP-based trajectories of patients with sepsis. The shaded area indicates the 95% confidence interval 
for each mean trajectory. The percentages in the parentheses indicate the percentages of patients each class 
accounts for. CRP, C-reactive protein; ICU, Intensive Care Unit.
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their CRP response pattern as follows: fast responders, slow responders, non-responders, and biphasic respond-
ers. Similarly, there were among-group differences in the mortality  rates34. However, the previous study had a 
small sample size, and the classification method was based on clinical summaries. Contrastingly, we used the 
latest statistical method to analyze more longitudinal data. The greatest advantages of LGMM are that it allows 
the combination of continuous and categorical latent variables as well as the division of groups with heterogeneity 
into subgroups to describe the developmental trajectory of each subgroup and within-subgroup differences in 
developmental changes. LGMM has additionally been successfully applied in several medical  fields35–37.

This study had several limitations. First, this was a retrospective study; thus, there may be some missing data, 
especially CRP values. Several patients did not undergo daily CRP tests; however, we excluded patients with 

Table 2.  Comparisons of baseline characteristics of four classes. COPD, chronic obstructive pulmonary 
disease; UTI, urinary tract infection; RRT, renal replacement therapy; SOFA, sequential organ failure 
assessment; APACHE, Acute Physiology and Chronic Health Evaluation; ICU, intensive care unit; PCO2, 
partial pressure of carbon dioxide; PO2, partial pressure of oxygen; APTT, activated partial thromboplastin 
time.

Variables
Class 1
(n = 496)

Class 2
(n = 100)

Class 3
(n = 313)

Class 4
(n = 555) p-value

Age, (years) 63.9 ± 16.4 61 ± 18.7 61.1 ± 17.3 64.5 ± 16.1 0.011

Sex, men (%) 326 (65.7) 71 (71) 233 (74.4) 327 (58.9)  < 0.001

Hypertension (%) 229 (46.2) 48 (48) 150 (47.9) 259 (46.7) 0.96

Diabetes (%) 84 (16.9) 14 (14) 48 (15.3) 90 (16.2) 0.868

COPD (%) 49 (9.9) 6 (6) 24 (7.7) 96 (17.3)  < 0.001

RRT (%) 35 (7.1) 7 (7) 49 (15.7) 43 (7.7)  < 0.001

SOFA score 6.5 ± 3 7 ± 3.3 7.2 ± 3.3 6.5 ± 3.1 0.018

APACHE-II score 20.4 ± 6.2 20.8 ± 5.7 20.6 ± 6.2 19.8 ± 6.3 0.18

Laboratory indexes on first ICU admission day

White blood cell count, (×  109/L) 13 ± 6.8 11.6 ± 5.4 12.6 ± 6.7 12.7 ± 6.3 0.242

Lymphocyte count, (×  109/L) 0.9 ± 0.6 0.9 ± 0.6 0.9 ± 0.6 0.9 ± 0.6 0.209

Neutrophil count, (×  109/L) 11.5 ± 6.4 10.1 ± 4.9 10.9 ± 6.2 11.3 ± 5.9 0.175

Platelet count, (×  109/L) 158.8 ± 75.2 160.6 ± 72.1 161.1 ± 75.5 168 ± 79.4 0.244

C-reactive protein, (mg/L) 108.95 (35.67, 160.62) 19.5 (7.34, 59.99) 127.9 (37.3, 184.2) 47.61 (11.71, 81.1)  < 0.001

Procalcitonin, (ug/L) 13.1 ± 38.1 16.8 ± 55 18.3 ± 41.5 8.9 ± 33.2 0.005

pH 7.4 ± 0.1 7.4 ± 0.1 7.4 ± 0.1 7.4 ± 0.1 0.3

PCO2, (mmHg) 35.6 ± 7.5 36 ± 6.2 35.8 ± 7.5 37.4 ± 10.4 0.003

PO2, (mmHg) 144.3 ± 57.3 157.3 ± 60.5 148 ± 59 140.2 ± 55.7 0.026

Lactate, (mmol/L) 2.7 ± 2 2.8 ± 1.8 2.9 ± 2.1 2.6 ± 2.2 0.264

Prothrombin time, (s) 15.2 (14.2, 16.6) 15.5 (14, 16.7) 15.1 (14.1, 16.5) 14.7 (13.7, 16.2) 0.002

APTT, (s) 40.4 (35.6, 46.6) 39.8 (35.7, 45.23) 39.2 (35.9, 44.9) 39.1 (35, 45.7) 0.305

D-dimer, (μg/L) 4.78 (2.13, 12.22) 5.14 (1.8, 10.77) 4.45 (2.55, 10.34) 3.79 (1.63, 8.38)  < 0.001

Creatinine, (mmol/L) 96.3 ± 72.4 99.2 ± 78.5 112.9 ± 88.1 98.2 ± 81 0.024

Table 3.  Comparisons of Site of infection and outcomes of four classes. ICU, intensive care unit.

Variables
Class 1
(n = 496)

Class 2
(n = 100)

Class 3
(n = 313)

Class 4
(n = 555) p-value

Site of infection (%)  < 0.001

 Thorax 303 (61%) 68 (68%) 182 (58%) 360 (65%)

 Abdomen 65 (13%) 15 (15%) 55 (18%) 51 (9.2%)

 Blood 48 (9.7%) 6 (6.0%) 25 (8.0%) 45 (8.1%)

 Soft tissue 19 (3.8%) 6 (6.0%) 19 (6.1%) 17 (3.1%)

 UTI 37 (7.5%) 3 (3.0%) 21 (6.7%) 47 (8.5%)

 Other 24 (4.8%) 2 (2.0%) 11 (3.5%) 35 (6.3%)

Outcomes

 Hospital mortality (%) 90 (18.1) 26 (26) 102 (32.6) 133 (24)  < 0.001

 Ventilation duration (days) 5.89 (1.69, 11.84) 8.97 (3.64, 15.28) 7.48 (2.81, 12.97) 6.21 (2.05, 12.52) 0.004

I CU length of stay (days) 10.06 (5.74, 18.06) 12.23 (6.61, 21.62) 11.45 (6.88, 20) 9.86 (5.77, 16.98) 0.055

 Length of hospital stay (days) 23 (15, 30.25) 22 (14, 32) 21 (13, 29) 21 (14, 30) 0.122
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excessive missing values. Moreover, LGMM can handle data with a few missing values. Second, our patients 
were selected for admission to the ICU due to sepsis. Since the duration of sepsis cannot be standardized, the 
proportion of patients with the course of sepsis within 24 h was extremely small. In the real world, patients 
with sepsis admitted to the ICU have often already developed organ failure; therefore, further prospective stud-
ies are necessary. Third, this was a cohort study, and the classification results were mainly clinically relevant. 
Accordingly, we could not elucidate the causal relationship between CRP trajectory and in-hospital mortality 
rate, and there was a lack of relevant immunity-related indicators. Further studies are warranted to elucidate 
the underlying mechanisms.

Conclusion
We identified four different trajectories of changes in CRP in patients with sepsis in the ICU. We found that the 
in-hospital mortality rate differed across the trajectories and that initial CRP values did not reflect prognosis. 
The trajectories of persistently high and low CRP levels were associated with increased in-hospital mortality 
rates, which could inform future precision medicine.

Table 4.  Logistic regression model for hospital mortality. 95% CI, 95% confidence interval; Adjusted OR: 
adjusted odds ratio from the logistic regression model; Model 1: unadjusted model; Model 2: adjusted for age, 
sex; Model 3: adjusted for age, sex, machine ventilation, APACHE II score, chronic obstructive pulmonary 
disease, ph, Lactate, renal replacement therapy, and Lymphocyte.

Class

Model 1
Model 2
Age/Sex

Model 3
Age/Sex + covariates

Adjusted OR (95% CI) p-value Adjusted OR (95% CI) p-value Adjusted OR (95% CI) p-value

Class 1 1.00 Reference 1.00 Reference 1.00 Reference

Class 2 1.58 (0.95–2.59), 0.072 1.65 (0.98–2.71) 0.053 1.63 (0.95–2.73) 0.069

Class 3 2.18 (1.57–3.03)  < 0.001 2.28 (1.63–3.18)  < 0.001 2.19 (1.55–3.11)  < 0.001

Class 4 1.42 (1.05–1.92) 0.022 1.42 (1.05–1.92) 0.024 1.41 (1.03–1.94) 0.035

Figure 3.  Forest plots of multivariate Logistic regression analyses for hospital mortality. RRT, renal replacement 
therapy; APACHE, Acute Physiology and Chronic Health Evaluation; COPD, chronic obstructive pulmonary 
disease.
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Data availability
The data are available from the corresponding author on reasonable request. The R codes are available at https:// 
github. com/ fzs14 12/ Latent- growth- mixtu re- model ing. git.
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