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Mathematical modeling 
and topological graph description 
of dominating David derived 
networks based on edge partitions
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Chemical graph theory is a well-established discipline within chemistry that employs discrete 
mathematics to represent the physical and biological characteristics of chemical substances. In the 
realm of chemical compounds, graph theory-based topological indices are commonly employed 
to depict their geometric structure. The main aim of this paper is to investigate the degree-based 
topological indices of dominating David derived networks (DDDN) and assess their effectiveness. 
DDDNs are widely used in analyzing the structural and functional characteristics of complex networks 
in various fields such as biology, social sciences, and computer science. We considered the FN

*, M∗

2

 , and 
HM

N
 topological indices for DDDNs. Our computations’ findings provide a clear understanding of the 

topology of networks that have received limited study. These computed indices exhibit a high level of 
accuracy when applied to the investigation of QSPRs and QSARs, as they demonstrate the strongest 
correlation with the acentric factor and entropy.

In the field of graph theory, specifically in chemical graph theory, a chemical molecule is represented by a 
molecular graph, which is a simple graph. In this representation, vertices denote the atoms and edges represent 
bonds or connections. The edges goes beyond simple connectivity; it encompasses the type of bond as well. For 
instance, a single edge might denote a single covalent bond, while a double edge could represent a double bond 
involving the sharing of two pairs of electrons.

The emerging field of cheminformatics, which explores the relationship between quantitative structure–activ-
ity and structure–property, is gaining momentum as it aids in the prediction of biological activities. Topological 
indices are important invariants derived from graph theory that enable the characterization of a graph’s topology. 
A topological index is a numerical value that provides information about the structure of a graph. Topological 
indices help in identifying various characteristics of a graph. Furthermore, the topology of a graph remains invari-
ant under the automorphisms of graphs. Comperisons of the degree based toplogical indices hold a particularly 
significant place in research1,2.

The first toplogical index introduced by Wiener, during the research of paraffin melting point. Initially termed 
“path number”, it was later renamed and has since become known as the Wiener index. Researchers have put a 
lot of effort into studying chemical graph theory. A key component of graph theory’s work involves honeycomb 
networks. The honeycomb shape, with its hexagonal pattern of cells, finds a wide range of applications across 
various fields due to its unique structural and geometric properties. Some of the notable applications of the 
honeycomb shape include as: In structural engineering and architecture the honeycomb structure’s hexagonal 
arrangement provides exceptional strength and stability while using minimal material. This makes it suitable for 
applications in construction, such as in lightweight yet strong support structures, building facades, and panels. 
On the other hands, in art and design, the visually appealing hexagonal pattern of the honeycomb has inspired 
artists, designers, and architects to incorporate it into their creations. From decorative elements in interior design 
to art installations, the honeycomb pattern adds a unique aesthetic.

In this article the notation E denotes an edge set and V denotes the vertex set of a graph G. The expression 
ηG(v) is the number of edges overall connected to a particular vertex v.
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For the sake of simplicity, assume that a and b are two adjacent vertices and E is an edge between them, then 
the edge partition of E is denoted by Ea,b and formulated as Ea,b = {ηG(a) , ηG(b)}.

The degree-based topological indices shows a significant role in the field of mathematical chemistry3–7, and 
widely used to develop models that accurately predict the boiling points of alkanes with carbon atom8. Some cur-
rent discovered degree-based neighborhood indices are presented in9,10 and shown strong connections between 
entropy and the acentric factor.

In11–16, different chemical significant graphs’ topological indices are considered. Baig et al.17 considered the 
topological indices for several silicates and oxide networks. Ullah et al.18, compared and examined the compu-
tational characteristics of two carbon nanosheets using some innovative topological indices. The topological 
characteristics of rhombus-type silicate and oxide networks were explored by Javaid et al.19. Recently, Koam 
et al.20, established the entropy measures of Y-junction based nanostructures. Ali et al.21 give some properties 
of ve-degree based topological indices for hex-derived networks. In this study, an examination was conducted 
on distance-based topological polynomials that are associated with zero-divisor graphs, as discussed in22. The 
authors of23 obtained the polynomials of degree-based indices of metal–organic networks. Zaman et al., deter-
mined the kemeny’s constant and spanning trees of hexagonal ring network24. Some upper bound and lower 
bound of graphs and also the spectral analysis of graphs are discussed in25–28. In this research, inspired by earlier 
studies, we establish some exact expressions of the different types of Dominating David derived networks and 
their comparisons.

We have calculated the forgotten index ( F∗
N

)29, the second zargeb index ( M∗
2)30 and the Harmonic index ( HMN

)31 for DDD networks. These topological indices are defined as F∗
N
=

∑

uv∈E(G)

[

ηG(u)
2 + ηG(v)

2
]

 , 

HMN (G) =
∑

uv∈E(G)

[ηG(u)+ ηG(v)]
2 , M∗

2 =
∑

uv∈E(G)

[ηG(u)+ ηG(v)].

Constructions of dominating David derived networks (DDDN)
In the field of chemistry, honeycomb networks are utilized as representations for benzoid hydrocarbons. Hon-
eycomb networks find extensive applications in various domains, including graphics, such as cell phone base 
stations and image processing. The honeycomb network is formed by enclosing the boundaries with a layer of 
hexagons. Based on the honeycomb network, different types of Dominating David derived networks can be 
derived. One can follow the below steps to construct the DDDN (t dimension):

Step 1: Consider a t-dimension honeycomb network (see Fig. 1a).
Step 2: Add another vertex to divide each edge into two pieces (see Fig. 1b).

Figure 1.   The steps to derive DDD (2).
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Step 3: In each hexagonal cell, connect the new vertices by an edge if they are at a distance of 4 within a 
hexagon (see Fig. 1c).

Step 4: Add new vertices at new edge intersections. (see Fig. 1d).
Step 5: Remove the starting vertices and edges of the honeycomb (see Fig. 1e).
Step 6: Divide each horizontal edge into two parts by addind a new vertex (see Fig. 1f).

Main results
Our key findings rely on the edge partitions of Figs. 2, 3 and 4 as given below. We have calculated these edge 
partitions based on the degrees of the end vertices of each edge. For instance, the first row of Fig. 1 shows the 
degrees of the end vertices of edges, while the second row illustrates the count of edges with those specific degrees. 
In the same way, we have obtained the other tables.

The FN
* topological index for dominating David derived networks.  Let G be a graph in D1(t), D2(t) 

and D3(t) then according to the definition of F∗
N

 and Table 1, we have

Figure 2.   First type of D1(2) network.

Figure 3.   First type of D2(2) network.
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Similarly, from Table 2, we have

And from Table 3, one has

The M∗

2

 topological index for DDDN.  Let G be a graph in D1(t), D2(t) and D3(t) then according to the 
definition of  M∗

2  and Table 1 we have

F
∗
N (G) =

∑

uv∈E(G)

[

ηG(u)
2 + ηG(v)

2
]

=
∣

∣E(2,2)
∣

∣

[

(2)2 + (2)2
]

+
∣

∣E(2,3)
∣

∣

[

(2)2 + (3)2
]

+
∣

∣E(2,4)
∣

∣

[

(2)2 + (4)2
]

+
∣

∣E(3,3)
∣

∣

[

(3)2 + (3)2
]

+
∣

∣E(3,4)
∣

∣

[

(3)2 + (4)2
]

= 4t(8)+ 4t − 4(13)+ 28t − 16(20)+ 9t2 − 13t + 5(18)+ 362 − 56t + 24(25)+ 36t2 − 52t + 20(32)

= 32t + 52t − 52+ 560t − 320+ 162t2 − 234t + 90+ 900t2 − 1400t + 600+ 1152t2 − 1664t + 640

= 2214t2 − 1951t + 958

F
∗
N (G) = 32t + 234t2 − 286t + 78+ 560t − 320+ 900t2 − 1400t + 600+ 1152t2 − 1664t + 640

= 2286t2 − 2758t + 998

F
∗
N (G) =

∣

∣E(2,2)

∣

∣ (4+ 4)+
∣

∣E(2,4)

∣

∣ (4+ 16)+
∣

∣E(4,4)

∣

∣ (16+ 16)

= 32t + 720t2 − 400t + 2304t2 − 3456t + 1408

= 3024t2 − 3824t + 1408

Figure 4.   Third type of D3(2) network.

Table 1.   Edges partition D1(t).

(ηG(u) , ηG(v)) (2, 2) (2, 3) (2, 4) (3, 3) (3, 4) (4, 4)

Frequency 4t 4t − 4 28t − 16 9t2 − 13t + 5 36t2 − 56t + 24 36t2 − 52t + 20

Table 2.   Edge partition D2(t).

(ηG(u) , ηG(v)) (2, 2) (2, 3) (2, 4) (3, 4) (4, 4)

Frequency 4t 18t2 − 22t + 6 28t − 16 36t2 − 56t + 24 36t2 − 52t + 20

Table 3.   Edge partition D3(t).

(ηG(u) , ηG(v)) (2, 2) (2, 4) (4, 4)

Frequency 4t 36t2 − 20t 72t2 − 108t + 44
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Likewise, based on the information presented in Table 2, we obtain

And from Table 3, one has

The HM
N

 topological index for DDDN.  Let G be a graph in D1(t), D2(t) and D3(t) then according to the 
definition of HMN and Table 1, we have

HMN (G) = 64t + 100t − 100+ 1008t − 576+ 324t2 − 468t + 180

+ 1764t2 − 2744t + 1176+ 2304t2 − 3328t + 1280

HMN (G) = 4392t2 − 5362t + 3240

Similarly, from Table 2, we have

And from Table 3, we have

Concluding Remarks
In this study, we have considered the F∗

N
 , M∗

2 and HMN topological indices. Our simulated results help for the 
better comprehend topology and enhance physical properties of the honeycomb structure. The computed indices, 
and above, as previously mentioned, have the most closely relates to the acentric factor and entropy consequently, 
they are extremely accurate in QSPR and QSAR analysis.

In Table 4, the topological indices computed are represented mathematically. As we can see, increasing the 
values of t, increases the value of the indices as well. We have precise analytical formulations for the D1, D2 and 
D3 networks, considering various topological indices. In the rapidly expanding fields of nanotechnology and 
applications, such as networks, our current discoveries and techniques can be applied to other, more complex 
structures. The utilization of distance-based topological indices poses greater challenges and complexity, but 
they can be employed alongside existing methods. Exploring these types of studies will be the focus of future 
research endeavors. In Table 4 and Fig. 5, we computed the numerical comparison of the certain topological 
indices for D1, D2 and D3 networks, which shows that when we increase t as a result the values of the topological 
indices also increases. These numerical comaprisons also shows that the inceasing rate of HMN for D3 is greater 
than the other topological indices. Since, in graph theory, the HMN is a mathematical concept used to describe 
the connectivity. Therefore, a higher HMN reflects the more connectivity among the atoms of a molecule. This 
indicates that the D3 molecule has a greater potential for forming diverse interactions with other molecules and 
participating in a wider range of chemical reactions.

M
∗
2 (G) = E(2,2)| (2.2)+ |E(2,3)| (2.3)+ |E(2,4)| (2.4)+ |E(3,3)| (3.3)+ |E(3,4)| (3.4)+ |E(4,4)| (4.4)

= 16t + 24t − 24+ 224t − 128+ 81t2 − 117t + 45+ 432t2 − 672t + 288+ 576t2 − 832t + 320

= 1089t2 − 1357t + 501

M
∗
2 (G) = 16t + 108t2 − 132t + 36+ 224t − 128+ 432t2 − 672t + 288+ 576t2 − 832t + 320

= 1116t2 − 1396t + 516

M
∗
2 (G) =

∣

∣E(2,2)

∣

∣(2.2)+
∣

∣E(2,4)

∣

∣(2.4)+
∣

∣E(4,4)

∣

∣(4.4)

= 16t + 288t2 − 160t + 1152t2 − 1728t + 704

= 1440t2 − 1872+ 704

HMN (G) = 64t + 450t2 − 55t + 150+ 1008t − 576+ 1764t2 − 2744t + 1176+ 2304t2 − 3328t + 1280

HMN (G) = 4518t2 − 5055t + 2030

HMN (G) =
∣

∣E(2,2)

∣

∣(16)+
∣

∣E(2,4)

∣

∣(36)+
∣

∣E(4,4)

∣

∣(64)

= 64t + 1296t2 − 720t + 4608t2 − 6912t + 2816

= 5904t2 − 7568t + 2816

Table 4.   The comparison of F∗
N

 , M∗
2 and HMN for D1(t), D2(t) and D3(t) graphs.

t F
∗

N
(D1) F

∗

N
(D2) F

∗

N
(D3) M

∗

2(D1) M
∗

2(D2) M
∗

2(D3) HMN(D1) HMN(D2) HMN(D3)

1 1221 526 608 233 236 272 2270 1493 1152

2 5912 4626 5856 2143 2188 2720 10,084 9992 11,296

3 15,031 13,298 17,152 6231 6372 8048 26,682 27,527 33,248

4 28,578 26,542 34,496 12,497 12,788 16,256 52,064 54,098 67,008

5 46,553 44,358 57,888 20,941 21,436 27,344 86,230 89,705 112,576

6 68,956 66,746 87,328 31,563 32,316 30,512 129,180 134,348 169,952
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