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Emergent metallicity at the grain 
boundaries of higher‑order 
topological insulators
Daniel J. Salib 1, Vladimir Juričić 2,3* & Bitan Roy 1*

Topological lattice defects, such as dislocations and grain boundaries (GBs), are ubiquitously present 
in the bulk of quantum materials and externally tunable in metamaterials. In terms of robust modes, 
localized near the defect cores, they are instrumental in identifying topological crystals, featuring the 
hallmark band inversion at a finite momentum (translationally active type). Here we show that the GB 
superlattices in both two‑dimensional and three‑dimensional translationally active higher‑order 
topological insulators harbor a myriad of dispersive modes that are typically placed at finite energies, 
but always well‑separated from the bulk states. However, when the Burgers vector of the constituting 
edge dislocations points toward the gapless corners or hinges, both second‑order and third‑order 
topological insulators accommodate self‑organized emergent topological metals near the zero energy 
(half‑filling) in the GB mini Brillouin zone. We discuss possible material platforms where our proposed 
scenarios can be realized through the band‑structure and defect engineering.

Topological lattice defects are ubiquitous in crystalline materials and are of central importance for their structural 
properties. In the last decade, they have emerged as viable platforms for probing topological phases of matter 
through a subtle interplay of the topology of the electronic wavefunctions and lattice geometry. In particular, 
dislocations, the defects associated with lattice translations, can probe a wide range of topological crystals fea-
turing the band-inversion at a finite momentum directly in the bulk via the symmetry and topology protected 
localized defect modes either at  zero1–12 or  finite13 energy. As such, these modes are immune to interface con-
tamination and surface termination, and have been experimentally observed in both topological  crystals14,15 and 
their metamaterial  analogues16,17.

These developments boosted the exploration of extended lattice defects on topological platforms, among which 
grain boundaries (GBs) are the most prominent ones. A GB develops at the interface between two misoriented 
crystalline grains due to the accumulated elastic stress, and at low angles, it consists of an array of  dislocations18,19. 
See Fig. 1. In turn, by virtue of the hybridization between the localized zero-energy dislocation modes, the GBs 
can host a wide range of quantum phases in both  static20,21 and  dynamic22 settings, when a parent topological 
insulator (TI) is first-order in nature, featuring gapless modes on the edges or surfaces.

In higher-order topological insulators (HOTIs), accommodating localized states on lower-dimensional 
boundaries, such as hinges and  corners23–33, the dislocation modes on the other hand typically move to finite 
energies, controlled by the relative orientation between its Burgers vector ( b ) and the axis of inversion (domain 
wall) of the discrete symmetry breaking Wilson-Dirac (WD) mass, responsible for the higher-order  topology13. 
Such a nontrivial interplay between the real-space geometry of lattice defects and the momentum-space topol-
ogy of WD mass propels the current pursuit to unveil its signatures on the emergent electronic bands along the 
GBs in HOTIs.

Key results. We show that the GB superlattice in both two-dimensional (2D) and three-dimensional (3D) 
HOTIs harbors a variety of dispersive bands, which are typically placed at finite energies. However, as the Burg-
ers vector of the constituting edge dislocations and the domain wall directions of the WD mass approach each 
other these dispersive bands come closer, hybridize and finally touch when the b-vector points toward gapless 
corners or hinges. The GB then fosters an emergent self-organized metallicity near the zero energy, stemming 
from an interplay of lattice geometry and momentum space topology. These outcomes are anchored from the 
Fourier transformation of the defect modes in the GB mini Brillouin zone (BZ), their local density of states 
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(LDOS) in real space lattice with GB defects and the spectral flow of the defect modes with varying WD mass 
domain wall in 2D (Fig. 2) and 3D (Fig. 3) second-order TIs, and 3D third-order TI (Fig. 4). Our results are 
thus consequential for the quantum crystals ubiquitously hosting GB  defects34, and metamaterials, where such 
extended defects can be engineered  externally35–38.

Lattice model. The universal Bloch Hamiltonian for HOTIs in two ( D = 2 ) and three ( D = 3 ) dimensions 
can be split as ĥHOTI = ĥ1 + ĥ� . The Hamiltonian for the parent first-order TIs takes the form

where di(k) = t sin(kia) , t is the hopping amplitude set to be unity, and a is the lattice spacing. The first-order 
WD mass, preserving all non-spatial and crystal symmetries, and featuring band inversion (and thus TIs) within 
the parameter regime 0 < �1/B < 4D , reads

A tower of HOTIs can now be constructed by adding discrete symmetry breaking WD masses ( ̂h� ) to ĥ1 , which 
can be decomposed as ĥ� = ĥ2 + ĥ3 . The second-order WD mass in D = 2 and D = 3 takes the general  form13

where 0 ≤ θ ≤ π/2 (about which more in a moment), dlat
x2−y2

= cos(kxa)− cos(kya) , dlatxy = sin(kxa) sin(kya) . 
The third-order WD mass (only in D ≥ 3 ) reads  as39

Here Ŵ1, . . . ,ŴD+2,ŴD+3 are mutually anticommuting Hermitian matrices each of which squares to unity. Results 
are independent of their explicit representation, which are shown in the Supplementary Information.

The Bloch Hamiltonian ĥ1 + ĥ2 describes a second-order TI in both D = 2 and 3, since ĥ2 gaps out the 
topological edge (surface) states accommodated by the first-order phase, and leaves only four corners (four 
z-directional hinges and two xy surfaces) gapless in D=2 (D=3). As such, for each value of the parameter θ , 
ĥ2 features a domain wall, which lies along the principal axes kx = 0 and ky = 0 (the diagonals ky = ±kx ) for 
θ = π/2 ( θ = 0 ). Sharp corner or hinge modes then appear only when they lie on the axes of inversion (domain 
wall) for the WD mass. For additional details on the role of θ , see Ref.13.

Since ĥ1 + ĥ2 involves four (five) mutually anticommuting Ŵ matrices in D = 2 ( D = 3 ), their dimensional-
ity is four. Consequently, the corner modes are pinned at zero energy due to a unitary (generated by Ŵ5 ) and 
an antiunitary particle-hole (PH) symmetry in D = 2 , while in D = 3 only an antiunitary PH symmetry pins 
hinge modes to zero  energy40, as the maximal number of mutually anticommuting four-dimensional Hermitian 
Ŵ matrices is five. Notice that ĥ1 + ĥ2 also enjoys the antiunitary composite C4T  symmetry, a product of the 
four-fold rotation about the z-axis ( C4 ), generated by iŴ1Ŵ2 and under which (kx , ky) → (−ky , kx) , and the time-
reversal ( T  ) in both D = 2 and D = 3 . The explicit forms of the antiunitary PH and T  symmetry generators 
however depend on the Ŵ matrix representation. The model Hamiltonian ĥ1 + ĥ2 also breaks the unitary parity 

(1)ĥ1 =

D
∑

j=1

dj(k)Ŵj +M(k)ŴD+1,

(2)M(k) = �1 − 2B

[

D −

D
∑

j=1

cos(kja)

]

.

(3)ĥ2 = �2

{

cos θ dlatx2−y2 + sin θ dlatxy
}

ŴD+2,

(4)ĥ3 = �3

[

2 cos(kza)− cos(kxa)− cos(kya)
]

ŴD+3.

Figure 1.  Grain boundary of edge dislocations with Burgers vector b = aex in (a) two and (b) three 
dimensions, where a is the lattice spacing. The center of individual dislocation cores are shown in orange and 
the missing sites are shown by open blue circles in (a). The distance between successive dislocation core is 2d. 
See text for additional details.
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(inversion) symmetry ( P ) under which k → −k . But, its explicit form is dimension and Ŵ matrix representation 
dependent. Therefore, 2D and 3D second-order TIs additionally preserve composite C4P and PT  symmetries.

When we turn on the mass term ĥ3 , the Hamiltonian ĥ1 + ĥ2 + ĥ3 (with finite �2 and �3 ) describes a third-
order topological insulator in D = 3 . Since it requires six mutually anticommuting Ŵ matrices, they must therefore 
be at least eight-dimensional. The additional mass term ( ̂h3 ) gaps out otherwise gapless hinge and xy (top and 
bottom) surface states, yielding the eight zero-energy corner-localized modes in the cubic geometry. For the sharp 
corner localization, eight corners of the cubic lattice must coincide with the directions along which ĥ2 = 0 = ĥ3
41. The corner modes in a third-order TI are pinned at zero energy due to a unitary (generated by Ŵ7 ) as well as 
an antiunitary PH symmetry. The 3D third-order TI also breaks the individual T  , C4 , and P symmetries, and 
preserves the composite C4T  , C4P , and PT  symmetries.

Since HOTIs are obtained as descendants of the first-order TIs upon systematically switching on the dis-
crete symmetry breaking WD masses ( ̂h2 and ĥ3 ), in what follows, we consider the translationally active M and 
R phases of the 2D and 3D first-order TIs, respectively, featuring band inversion at finite momentum ( Kinv ) 
M = (1, 1)π/a and R = (1, 1, 1)π/a points in the corresponding BZ of the parent square and cubic lattices. For 
numerical calculations in D = 2 and D = 3 , we throughout set �1/B = 6 and �1/B = 11 , respectively [Eq. (2)].

GB: construction. When introduced in a TI, the elementary building block of a GB defect, a single dislo-
cation, sources an effective hopping phase across the defect �dis = Kinv · b (mod 2π)1,3. Therefore, electrons 
encircling the defect can pick up a nontrivial hopping phase �dis = π in the M ( R ) phase on the square (cubic) 
lattice, while �dis = 0 always in the Ŵ phase as Kinv = 0 therein. As a result, in a translationally-active first-order 
phase, a single dislocation hosts localized modes at zero energy. By contrast, in HOTIs the additional higher-
order WD masses typically gap out the dislocation modes and place them at finite energies, unless the Burgers 
vector pierces a gapless lower-dimensional boundary, while  throughout retaining their topological and sym-
metry  protection13.

When a GB is immersed in a parent translationally-active first-order TI, the localized zero modes at indi-
vidual dislocations hybridize, giving rise to an emergent topological metal near the half-filling, or zero energy, 
along the GB  superlattice20. The emergence of such a self-organized topological metal can be corroborated from 
the Fourier transform of the GB modes with respect to the superlattice periodicity d, yielding a band structure 
in the superlattice mini BZ. When the dislocation modes hybridize, they also develop a comparable weight at 
the middle of two successive defect cores. Thus, we denote the distance between them by 2d (Fig. 1). Next, we 
report the nature of emergent metallic states in the GB defect consisting of edge dislocations in both 2D (Fig. 2) 
and 3D (Fig. 3) second-order TIs, and 3D third-order TI (Fig. 4), showcasing an intriguing interplay between 
the defect geometry and the topology of discrete symmetry breaking WD masses ( ̂h2 and ĥ3 ). For concreteness, 
throughout the Burgers vector of constituting dislocation in the GB is taken to be b = aex . Here we consider 
only small angle GBs, characterized by ϕ = sin−1(a/(2d)) ≈ 14.47◦ ( < 15◦ ) for d = 2a.

GB in 2D second‑order TI. The evolution of the GB band structure as the orientation ( θ ) of the WD mass 
domain wall is varied with respect to b is shown in Fig. 2a. When θ = 0 , the axes of inversion for the second-order 

Figure 2.  Grain boundary (GB) in a 2D second-order topological insulator. (a) Evolution of the GB band 
structure for the defect (blue) and a few bulk (black) modes as a function of θ [Eq. (3)], measuring the relative 
orientation between the Wilson-Dirac mass domain wall and the dislocation Burgers vector for �2 = 0.5 . 
(b) Band gap (G) between the two closest to zero energy modes, showing that G → 0 as θ → π/2 , indicating 
emergent GB metallicity near the zero energy, or half-filling. (c) Energy spectra showing GB modes (blue) and 
a few bulk modes (black) at θ = π/2 . (d) Corresponding local density of states of all the GB modes (left) and 
two zero-energy modes (right), respectively showing their delocalization along the entire GB and near its ends. 
Results are obtained for a pair of GB (lower part) and anti-GB (upper part), separated by 10a, each containing 
30 (anti)dislocations, with periodic boundaries in all directions.
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WD mass ( ̂h2 ) is perpendicular to b , and a single dislocation features PH symmetric localized modes at finite 
 energies13. Hybridization among them then yields isolated dispersive bands centered at finite energies along the 
GB superlattice, separated by a gap G (Fig. 2b). It measures the energy difference between the bottom and top 
of such dispersive bands living within the conduction and valence bands, respectively. As θ → π/2 , these bands 
come close to each other and start to hybridize. For θ ≈ π/2 , when the domain wall of ĥ2 is parallel to b , this gap 
eventually closes, yielding an emergent metal around the zero energy. For any θ , the dispersive or metallic states 
are always separated from the bulk states, like their parent dislocation modes. For θ = π/2 , besides the disper-
sive metallic states a pair of zero-energy modes also appear in the spectra (Fig. 2a and c). All of them are delocal-
ized along the GB, but confined in its close vicinity, as shown from their LDOS in Fig. 2d. The near-zero energy 
modes, as well as the rest of the GB modes, do not show any spectral weight in the region between the GB and 
anti-GB, separated by a large distance of 10a, such that the modes bound to them do not overlap with each other.

GB in 3D second‑order TI. In D = 3 , a GB consists of an array of edge dislocations, which forms a plane 
spanned by the directions of the dislocation line and the dislocation array, respectively in the z-axis and y-axis 
for b = aex . Each dislocation line then hosts localized modes along the z direction, which are typically at finite 
energies for θ  = π/2 , unless b points toward gapless hinges ( θ = π/2 ), when the dislocation modes become 
 gapless13. These modes, when hybridize, yield a plethora of 2D dispersive bands along the GB defect, manifest-
ing a gap depending on the parameter θ , as shown in the upper panel of Fig. 3a, with the metallic band structure 
centered around the zero energy emerging for θ = π/2 . Furthermore, as shown in the lower panel of Fig. 3a, 
the closest to zero-energy modes feature almost the entire spectral weight at momenta (±π/(2d),π/a) , which is 
independent of the parameter θ . The emergent metallicity around the zero energy is further corroborated from 
the θ-dependence of the gap (G) between bottom and top of the dispersive bands respectively residing within the 
conduction and valence bands, showing that G goes to zero as θ → π/2 (Fig. 3b). The GB modes are always well 
separated from the bulk states for any θ (Fig. 3a), which we also explicitly show for θ = π/2 in Fig. 3c. Finally, 
these modes are highly localized in the yz-plane constituted by the GB (for any θ ), as explicitly shown from their 
LDOS for θ = π/2 in Fig. 3d. Appearance of two gapless Dirac points at (±π/(2d),π/a) when θ = π/2 in a 2D 
GB mini BZ conforms to the Nielsen-Ninomiya Fermion doubling  theorem42.

GB in 3D third‑order TI. An edge dislocation in a 3D third-order TI harbors modes localized near its ends 
on the top and bottom surfaces, for example, when b = aex , which are at finite energies, unless the Burgers vec-
tor points toward eight gapless corners, when they become  gapless13. Consequently, a GB in a 3D third-orderTI 
is expected to host gapped dispersive bands localized near the top and the bottom edges of the defect, which 
become gapless only when θ = π/2 . Indeed Fig. 4a confirms it, showing that the gap between the dispersive 
GB bands decreases as the WD mass domain wall approaches the principal crystallographic axes ( θ → π/2 ), 
when it should become gapless. A small residual gap between these dispersive modes at θ = π/2 is purely due 
to a finite thickness of the system in the z-direction ( Lz ), which approaches zero as Lz → ∞ . See Fig. 4b. The 
GB modes (gapped dispersive or gapless metallic about the half-filling) are always well-separated from the bulk 
states (Fig. 4a), as explicitly shown in Fig. 4c and localized near the top and bottom surfaces, as shown in Fig. 4d 
for θ = π/2 . The fact that these modes are maximally localized just below (above) the top (bottom) surfaces pos-
sibly stems from their parent corner modes, also localized slightly away from the terminal surfaces.

Figure 3.  Grain boundary (GB) in a 3D second-order topological insulator. (a) Evolution of the GB band 
structure for the defect (blue) and a few bulk (black) modes as a function of θ [Eq. (3)] for �2 = 0.5 , with the 
spectral weight of the two closest to zero energy modes localized at momenta (±π/(2d),π/a) for any θ . (b) 
Scaling of the gap (G) between two closest to zero energy modes with θ . It vanishes at θ = π/2 , indicating 
emergent GB metallicity near the zero energy, or half-filling. (c) Energy spectra showing gapless GB modes 
(blue) and gapped bulk modes (black). (d) Local density of states for the GB states displaying confinement to the 
GB plane, on which they are completely delocalized within the 3D bulk, thus yielding a 2D topological metal. 
Results are obtained for a pair of GB (lower part) and anti-GB (upper part), separated by 10a, each containing 
15 (anti)dislocations, with periodic boundaries in all directions.
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Discussion and outlook
Here we show that 2D and 3D HOTIs foster a variety of dispersive bands within the conduction and valence 
bands of the emergent BZ constituted by the GB superlattice, with the gap between them tunable by the relative 
orientation of the WD mass domain wall and the Burgers vector of individual dislocations. Especially, when the 
Burgers vector pierces gapless corners or hinges, these dispersive bands touch each other at zero energy, giving 
birth to self-organized topological metals around zero energy confined to the GB defect. See Figs. 2, 3, 4. The GB 
modes (dispersive and metallic) are robust against weak on-site disorder, the dominant source of elastic scattering 
in any real material. Explicit results are shown in the Supplementary Information.

Note that the bulk gap is determined by the first-order [Eq. (2)] and higher-order [Eqs. (3) and (4)] masses, 
while the energy scale of the GB modes is set by the latter ones and θ [Eq. (3)]. As all the Ŵ matrices appearing in 
the universal model Hamiltonian for HOTIs mutually anticommute with each other, there exists a finite energy 
separation between the bulk and GB modes ( �bulk−GB ). However, as �2 and/or �3 become sufficiently large, 
the higher-order mass overwhelms the first-order mass, and �bulk−GB → 0 , but it never vanishes. The explicit 
dependence of �bulk−GB on the amplitude of higher-order masses is shown in the Supplementary Information.

While here we focus on small angle GBs, described by an array of dislocations (Fig. 1), at large opening angles 
( ϕ > 15◦ ) a GB defect may be described as an array of elementary disclination  defects43 or in terms of a lattice 
of partial dislocations with stacking  faults44. As a single  disclination45,46 and a partial  dislocation47 defect can 
also harbor localized topological modes, the possibility of emergent metallicity on high-angle GBs stands as a 
fascinating avenue for future investigation.

The prerequisite for the realization of the proposed emergent metallicity along the GB in HOTIs is a band-
inversion at a finite momentum in the BZ (translationally  active3,5) such that Kinv · b = π (modulo 2π ), as GB 
defects are rather ubiquitous in quantum crystals. We emphasize that a metallic behavior has been recently 
observed at GBs in 1T’-MoTe234, while some of the realized HOTIs are of translationally-active  type48,49, which 
should motivate further investigation of the materials prospects for the realization of our proposal. On the other 
hand, in metamaterials the predicted GB band structures can be engineered by artificially tuning the tunneling 
processes and manipulating defects therein. Among them designer  metamaterials35, topolectric  circuits36,37, 
 photonic38 and  mechanical50 lattices are the most promising platforms. While the metallic nature of the GB modes 
can be probed via electronic transport measurements in quantum and designer crystals, classical metamaterials 
can only reveal their dispersive nature from the energy-conserved momentum relation of the associated classi-
cal modes, such as the vibrational ones in mechanical lattices. By contrast, the local density of states of the GB 
modes can be probed in quantum and designer crystals via scanning tunneling spectroscopy, as well as in classical 
metamaterials, through the measurements of local electric (in topolectric circuits) or mechanical (in mechanical 
lattice) impedance or two-point pump-probe spectroscopy (in photonic lattices). Our findings should therefore 
motivate experimental efforts for the realization of the defect-based emergent band structures in a wide range 
of both quantum and classical topological materials.

Figure 4.  Grain boundary (GB) in a 3D third-order topological insulator. (a) Evolution of the band-structure 
on the top and the bottom edges of the GB plane as the orientation of the second-order mass domain wall moves 
towards principal crystalline axes θ = π/2 [Eq. (3)] for �2 = �3 = 0.5 . (b) The gap (G) between the closest to 
zero energy states as a function of θ for two choices of the Wilson-Dirac mass amplitudes ( �2 and �3 ), showing 
that G → 0 as θ → π/2 (indicating emerging metallicity near the zero energy, or half-filling), but only when the 
system thickness in the z direction Lz → ∞ . For θ = π/2 , we show the (c) energy spectra supporting the GB 
modes (blue) and a few bulk modes (black) and (d) local density of states of the GB modes, showing its strong 
localization near the top and bottom edges of the GB. Results are obtained for a pair of GB (lower part) and 
anti-GB (upper part), separated by 10a, each containing 13 (anti)dislocations, with open (periodic) boundary 
condition(s) in the z (x and y) direction(s).
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Data availability
The datasets used and/or analysed during the current study available from the corresponding authors on reason-
able request. Main codes and the data for generating the figures presented in the main text and Supplementary 
Information are already available at https:// doi. org/ 10. 5281/ zenodo. 83413 12.
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