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A fast strapdown gyrocompassing 
algorithm based on INS differential 
errors
M. A. Amiri Atashgah 1, Hamed Mohammadkarimi 2* & Mehrdad Ebrahimi 1

This paper presents an enhanced algorithm for inertial gyrocompassing using strapdown sensors, 
which performs faster than the other available ones. The proposed algorithm is based on differential 
errors in an inertial navigation system and requires only the output of the inertial measurement unit 
while extracting and compensating for the inertial sensor errors. After eliminating the error of the 
inertial sensors, which is accomplished swiftly, the coarse alignment algorithm performs with error-
compensated sensors, and the true north is extracted accurately. The number of non-observable 
parameters of the algorithm is equal to that of the fine alignment algorithm; therefore, its accuracy 
is the same as that of a well-tuned fine alignment. Numerical simulations and lab experiments 
demonstrate that the proposed method performs heading estimation in the time required to perform 
the coarse alignment, which is faster than the existing fine alignment algorithms.

List of symbols
B  Body frame
N  Navigation frame
N̂  Estimated navigation frame
Re  Radius of earth
E  Identity tensor
fx, fy, fz  Accelerometers output in x, y, and z channels of the body frame
δfx, δfy, δfz  The error of accelerometers in the x, y, and z channels of the body frame
R
N̂N  Rotation tensor of the frame N̂ relative to frame N

vn, ve, vd  Velocities in north, east, and down channels
�, ℓ, h  Latitude, longitude, and height
ωn, ωd  Components of Earth’s angular velocity in the north and down channels
ε  ‘Component perturbation’ operator
δ  ‘Total perturbation’ operator
ωx, ωy, ωz  Gyros output in x, y, and z channels of the body frame
δωx, δωy, δωz  The error of gyros in the x, y, and z channels of the body frame
εr

N̂N  Perturbation of the rotation vector of the frame N̂ relative to frame N
εR

N̂N  Skew symmetric form of εrN̂N
φ, θ , ψ  Roll, pitch, and yaw angles
φ̂, θ̂ , ψ̂  Estimated roll, pitch, and yaw angles
⌢
ϕ,

⌢

θ ,
⌢

ψ  Actual roll, pitch, and yaw angles
εφ, εθ , εψ  Small rotation angles
�φ, �θ , �ψ  The error in roll, pitch, and yaw angles
[T]BN  Transformation matrix of the navigation frame to the body frame
[T̂]BN  Estimation of [T]BN

Flying vehicles usually use ‘initial alignment’ as the first step of  navigation1; this means that they correct their 
directions at the beginning of a flight. Alignment means the relationship between the Body (B) and the Naviga-
tion (N) coordinate  system2. The word ‘leveling’ refers to calculating the angles of roll and pitch, which are the 
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vehicle deviation from the horizon. The meaning of ‘gyrocompassing’ is finding the direction of the geographic 
north.

Inaccurate initial alignment causes imprecise navigation. Thus, achieving a high degree of alignment over a 
short time is necessary. If the initial alignment is accomplished in a stationary mode, the level angles (ϕ and θ) 
extraction is performed by the accelerometers; Thus, the trouble of the alignment procedure will be gyrocompass-
ing (north-finding). Usually, there is a limited time to calculate the heading angle, however most gyrocompassing 
algorithms are time-consuming. Therefore, it is necessary to access a gyrocompassing algorithm with a short 
time and high accuracy.

Various alignment techniques can be divided into inertial, non-inertial, and hybrid methods. The inertial 
methods use inertial sensors to generate the transformation matrix from the body to the navigation coordinate 
system and work based on gravity and Earth rate measurements. Non-inertial methods are based on other physi-
cal properties; For example, the magnetic compass utilizes the Earth’s magnetic field and finds the magnetic north 
instead of the true north. Hybrid methods integrate the information from the inertial and non-inertial methods 
and have the advantage of these two categories simultaneously.

In inertial alignment, the goal is to determine the level and heading angles by strapdown inertial sensors, 
including three gyros and three accelerometers, and use an algorithm implemented in the processor. The align-
ment algorithm estimates the navigation system errors (including inertial sensor, numerical computation, and 
initial condition errors) and corrects the navigation solution.

In general, it can be stated that inertial alignment is categorized as ‘stationary alignment’ and ‘in-motion 
alignment’. Stationary alignment (the subject of this study) is completed in two successive phases, and accuracy 
is improved at each phase. These steps are ‘Coarse alignment’3 and ‘Fine alignment’4. The first phase (coarse 
alignment) provides a rough estimate of initial attitudes. In the second phase (fine alignment), a filter (regularly 
Kaman filters/KF) is used to refine the alignment and estimate inertial sensor errors before  flight5. In this paper 
we have proposed a new algorithm which combines the advantages of the two conventional alignment algorithms 
(i.e., coarse and fine). The new algorithm is as fast as the coarse alignment and as accurate as the fine alignment. 
In other words, the new alignment algorithm is fast and accurate.

Reference6 proposes an algorithm for the stationary alignment of rocket navigation systems. A filter is utilized 
to decrease the noise in the inertial measurement.  Reference7 proposes an approach based on the expansion of 
the measurements, where the sensors’ biases are estimated more quickly and accurately. Despite the effectiveness 
of the proposed approach, it could not improve the convergence rate of the platform misalignments; since it 
depends directly on the unobservable uncompensated biases, which the Kalman filter cannot estimate.

In Ref.8, a new method is proposed for the initial alignment. A Kalman Filter is applied for the fine align-
ment, while the horizontal acceleration of gravity is also taken into the measurement equations. This approach 
enhances the tracking ability of the KF for the attitude angle’s change. In Ref.9, a multi-rate self-alignment 
algorithm enhances the KF capability in estimating biases. In Ref.10, the design principle of a dual-axis rotating 
SINS is proposed to improve the slow convergence rate and the low accuracy during the initial alignment and 
self-calibration.

Reference11 presents a SINS error analysis of coarse alignment formulations. The proposed formulation does 
not imply normality and orthogonality errors. In Ref.12 general expression for the SINS coarse alignment errors 
is derived, which is valid regardless of the inertial measurement unit (IMU) orientation.

The fine alignment problem has been studied in many references, such  as13–19.  Reference20 provides a quick 
method for accurate alignment; in this method, the roll and pitch rates are used to estimate the heading angle. 
In Ref.21, the navigation block is triggered with a particular mechanical motion, increasing precision and reduc-
ing fine alignment time. In Ref.22, the ‘multi-position’ technique is described in fine alignment; In the proposed 
method, the attitude of the IMU carrier is changed, and consequently, the observability of the inertial navigation 
system is improved. This technique reduces the alignment error.

A free IMU can perform fine alignment algorithms in a stationary mode without external aids. ‘Self-align-
ment’ is a process that is independent of external aiding navigation  systems23. The advantage of this method is 
the independence of the INS from any external data; the disadvantages are as follows: some parameters become 
non-observable, sensitivity to noise of the inertial sensors is high, and the time required for the convergence of 
the algorithm is about 5–10 min.

As mentioned, the coarse alignment algorithm is fast and imprecise, while the fine alignment algorithm is 
slow and accurate. The algorithm presented in this paper is fast as the coarse alignment and accurate as the fine 
alignment. In other words, the proposed algorithm has the advantages of both traditional algorithms.

The organization of this paper is as follows: in “Rotation of small angles”, the relation between the small 
rotation angles and the Euler angles is derived. In “The proposed algorithm formulation”, the mathematical 
formulation of the new algorithm is presented. In “Methods”, the proposed algorithm is simulated and verified 
numerically, and lastly, the conclusion is made in “Simulation and experiments”.

Rotation of small angles
The following relation holds between two frames when the rotation angles are  small24:

In the above equation, RN̂N is the rotation tensor of the estimated navigation frame ( N̂ ) relative to the true 
navigation frame (N); E is the identity tensor and εRN̂N is the skew-symmetric form of the perturbation tensor 
( εrN̂N ), which is modeled as follows:

(1)RN̂N = E + εRN̂N
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where εϕ , εθ and εψ represent three small rotation angles. According to Ref.24, [RN̂N]N = [T]N̂N where [T]N̂N 
is the transformation matrix of the N frame to the N̂ frame; Utilizing this property, Eq. (1) can be expressed in 
the navigation frame:

Transposing Eq. (3) results in:

Now suppose that [T]BN = f (
⌢

ψ ,
⌢

θ ,
⌢
ϕ) and [T]BN̂ = f (ψ̂ , θ̂ , ϕ̂) ; where 

⌢

ψ ,
⌢

θ ,
⌢
ϕ are true and ψ̂ , θ̂ , ϕ̂ are estimated 

Euler angles and ‘f’ is a matrix function that transforms navigation to body frame and is defined as  follows24:

Now consider the following definitions:

where � defines the difference between the true and estimated value of a parameter. Utilizing Eq. (6), Eq. (4) 
can be written as follows:

Expanding the above equation, [εRN̂N]N can be found as:

The above equation can be written as Eqs. (9) or (10):

According to Eq. (6), Eq. (10) is rewritten as follows:

The above equation demonstrates the relationship between the small rotation angles and the Euler angles. 
The expanded form of Eq. (11) is also as follows:

(2)[εrN̂N]N̂ = [εrN̂N]N = [ εϕ εθ εψ ]T → [εRN̂N]N =

[

0 −εψ εθ

εψ 0 −εϕ

−εθ εϕ 0

]

(3)[εR
̂NN]N = [R

̂NN]N − [E]N = [T]
̂NN − [E]N = [T]N

̂N − [E]N = [T]NB[T]
̂BN − [E]N

(4)−[εRN̂N]N = [T]BN̂[T]NB − [E]N → [εRN̂N]N = [E]N − [T]BN̂[T]BN

(5)f (ψ , θ ,ϕ) =

[

cosψ cos θ sinψ cos θ − sin θ

cosψ sin θ sin ϕ − sinψ cosφ sinψ sin θ sin ϕ + cosψ cosϕ cos θ sin ϕ

cosψ sin θ cosϕ + sinψ sin φ sinψ sin θ cosϕ − cosψ sin ϕ cos θ cosϕ

]

(6)�ψ = ψ̂ − ψ , �θ = θ̂ − θ , �ϕ = ϕ̂ − ϕ

(7)

[εRN̂N]N = [E]N − [T]BN̂[T]BN = [E]N − f −1(ψ̂ , θ̂ , ϕ̂)× f (
⌢

ψ ,
⌢

θ ,
⌢
ϕ)

= [E]N − f −1(ψ +�ψ , θ +�θ ,ϕ +�ϕ)× f (ψ , θ ,ϕ)

= [E]N − f −1(ψ̂ , θ̂ , ϕ̂)× f (ψ̂ −�ψ , θ̂ −�θ , ϕ̂ −�ϕ)

(8)

[εRN̂N]N =

[

0 −εψ εθ

εψ 0 −εφ

−εθ εφ 0

]

=

[

0 −�3 �2

�1 0 −�1

−�2 �1 0

]

�1 = �θ sinψ̂ −�φ cosψ̂ cosθ̂ −�ψ �θ cosψ̂ −�φ�ψ cosθ̂ sinψ̂

�2 = −�θ cosψ̂ −�φ cosθ̂ sinψ̂ −�φ�θ sinψ̂ sinθ̂

�3 = �φ sinθ̂ −�ψ −�φ�θ cos2ψ̂ cosθ̂ −�φ�ψ �θ cosψ̂ cosθ̂ sinψ̂

(9)

εφ = �θ sinψ̂ −�φ cosψ̂ cosθ̂ −�ψ �θ cosψ̂ −�φ�ψ cosθ̂ sinψ̂

εθ = −�θ cosψ̂ −�φ cosθ̂ sinψ̂ −�φ�θ sinψ̂ sinθ̂

εψ = �φ sinθ̂ −�ψ −�φ�θ cos2ψ̂ cosθ̂ −�φ�ψ �θ cosψ̂ cosθ̂ sinψ̂

(10)

εφ = �θ sin
⌢

ψ −�φ cos
⌢

ψ cos
⌢

θ −�ψ �θ cos
⌢

ψ −�φ�ψ cos
⌢

θ sin
⌢

ψ

εθ = −�θ cos
⌢

ψ −�φ cos
⌢

θ sin
⌢

ψ −�φ�θ sin
⌢

ψ sin
⌢

θ

εψ = �φ sin
⌢

θ −�ψ −�φ�θ cos2
⌢

ψ cos
⌢

θ −�φ�ψ �θ cos
⌢

ψ cos
⌢

θ sin
⌢

ψ

(11)

εφ = (θ̂ −
⌢

θ) sin
⌢

ψ − (φ̂ −
⌢

φ) cos
⌢

ψ cos
⌢

θ − (ψ̂ −
⌢

ψ) (θ̂ −
⌢

θ) cos
⌢

ψ − (φ̂ −
⌢

φ) (ψ̂ −
⌢

ψ) cos
⌢

θ sin
⌢

ψ

εθ = −(θ̂ −
⌢

θ) cos
⌢

ψ − (φ̂ −
⌢

φ) cos
⌢

θ sin
⌢

ψ − (φ̂ −
⌢

φ) (θ̂ −
⌢

θ) sin
⌢

ψ sin
⌢

θ

εψ = (φ̂ −
⌢

φ) sin
⌢

θ − (ψ̂ −
⌢

ψ)− (φ̂ −
⌢

φ) (θ̂ −
⌢

θ) cos2
⌢

ψ cos
⌢

θ − (φ̂ −
⌢

φ) (ψ̂ −
⌢

ψ) (θ̂ −
⌢

θ) cos
⌢

ψ cos
⌢

θ sin
⌢

ψ
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In the next section, the above equation is used to extract the error of IMU sensors in a stand-alone mode.

The proposed algorithm formulation
Consider the set of velocity and attitude navigation error equations. These equations are given in Ref.25 as follows:

where � , ℓ , vn , ve and vd denote latitude, longitude, and north, east, and down terrestrial velocities, respectively. 
Re is the radius of the Earth and ε is the perturbation operator. The attitude error between the true and computed 
navigation frames is defined by εφ , εθ and εψ . Also, ωEI is the Earth’s angular velocity and ωn , ωd , fn , fe and fd 
are defined as follows:

Applying stationary conditions ( [vEB]N = [ 0 0 0 ]T and [f ]N = [−g]N = [ 0 0 −g ]T ) to Eqs. (13)–(14), 
assuming spherical Earth, neglecting position parameters ( ε� and εh ), ignoring the gravity model error ( δg = 0 ), 
navigation error equations are simplified as follows:

(12)

εφ = θ̂ sin
⌢

ψ −
⌢

θ sin
⌢

ψ − φ̂ cos
⌢

ψ cos
⌢

θ +
⌢

φ cos
⌢

ψ cos
⌢

θ + ψ̂
⌢

θ cos
⌢

ψ − ψ̂ θ̂ cos
⌢

ψ

+
⌢

ψθ̂ cos
⌢

ψ −
⌢

ψ
⌢

θ cos
⌢

ψ + φ̂
⌢

ψ cos
⌢

θ sin
⌢

ψ − φ̂ψ̂ cos
⌢

θ sin
⌢

ψ +
⌢

φψ̂ cos
⌢

θ sin
⌢

ψ −
⌢

φ
⌢

ψ cos
⌢

θ sin
⌢

ψ

εθ = −θ̂ cos
⌢

ψ +
⌢

θ cos
⌢

ψ − φ̂ cos
⌢

θ sin
⌢

ψ +
⌢

φ cos
⌢

θ sin
⌢

ψ + φ̂
⌢

θ sin
⌢

ψ sin
⌢

θ

− φ̂θ̂ sin
⌢

ψ sin
⌢

θ +
⌢

φθ̂ sin
⌢

ψ sin
⌢

θ −
⌢

φ
⌢

θ sin
⌢

ψ sin
⌢

θ

εψ = φ̂ sin
⌢

θ −
⌢

φ sin
⌢

θ − ψ̂ +
⌢

ψ + φ̂
⌢

θ cos2
⌢

ψ cos
⌢

θ − φ̂θ̂ cos2
⌢

ψ cos
⌢

θ +
⌢

φθ̂ cos2
⌢

ψ cos
⌢

θ −
⌢

φ
⌢

θ cos2
⌢

ψ cos
⌢

θ

+ φ̂ψ̂
⌢

θ cos
⌢

ψ cos
⌢

θ sin
⌢

ψ − φ̂ψ̂ θ̂ cos
⌢

ψ cos
⌢

θ sin
⌢

ψ + φ̂
⌢

ψθ̂ cos
⌢

ψ cos
⌢

θ sin
⌢

ψ +
⌢

φψ̂θ̂ cos
⌢

ψ cos
⌢

θ sin
⌢

ψ

− φ̂
⌢

ψ
⌢

θ cos
⌢

ψ cos
⌢

θ sin
⌢

ψ −
⌢

φψ̂
⌢

θ cos
⌢

ψ cos
⌢

θ sin
⌢

ψ −
⌢

φ
⌢

ψθ̂ cos
⌢

ψ cos
⌢

θ sin
⌢

ψ +
⌢

φ
⌢

ψ
⌢

θ cos
⌢

ψ cos
⌢

θ sin
⌢

ψ

(13)

εv̇n = TNB
11 δfx + TNB

12 δfy + TNB
13 δfz + feεψ − fdεθ −

(

v2e sec
2
�

Re
+ 2ωnve

)

ε�

+
(v2e tan �− vnvd)

R2
e

εh+
vd

Re
εvn +

(

2ωd −
2ve tan �

Re

)

εve +
vn

Re
εvd

εv̇e = TNB
21 δfx + TNB

22 δfy + TNB
23 δfz − fnεψ + fdεφ +

(

vevn sec
2
�

Re
+ 2ωnvn + 2ωdvd

)

ε�

−
(vevn tan �+ vevd)

R2
e

εh+

(

ve

Re
+ 2ωn

)

εvd +

(

ve tan �

Re
− 2ωd

)

εvn +
(vn tan �+ vd)

Re
εve

εv̇d = TNB
31 δfx + TNB

32 δfy + TNB
33 δfz + fnεθ − feεφ − 2ωdveε�

+
(v2e + v2n)

R2
e

εh+ δg−
2vn

Re
εvn −

(

2ve

Re
+ 2ωn

)

εve

(14)

εφ̇ = ωdε�−
ve

R2
e

εh+
1

Re
εve +

(

ωd −
ve tan �

Re

)

εθ +
vn

Re
εψ

− TNB
11 δωx − TNB

12 δωy − TNB
13 δωz

εθ̇ =
vn

R2
e

εh−
1

Re
εvn +

(

ve tan �

Re
− ωd

)

εφ +

(

ωn +
ve

Re

)

εψ

− TNB
21 δωx − TNB

22 δωy − TNB
23 δωz

εψ̇ = −

(

ωn +
ve sec

2
�

Re

)

ε�+
ve tan �

R2
e

εh−
tan �

Re
εve −

vn

Re
εφ −

(

ωn +
ve

Re

)

εθ

− TNB
31 δωx − TNB

32 δωy − TNB
33 δωz

(15)[ωEI]N =





ω
EI cos �
0

−ω
EI sin �



 =

�

ωn

0
ωd

�

(16)[aIB]
N =

[

fn
fe
fd

]

= [T]NB

[

fx
fy
fz

]
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IMU calibration. Calibration of inertial sensors is an important procedure which affects the performance 
of navigation products. Due to stochastic nature of sensor’s noises, factory calibration is not a perfect process. 
Performing in-motion or in-run calibration may increase the IMU accuracy. In this section, a new method for 
IMU calibration is proposed and its application in initial alignment is discussed.

The problem of IMU calibration is investigated by many researchers.  Reference26 explores the present state 
and upcoming directions of MEMS inertial sensor calibration technology. It discusses the existing advancements 
in this field while shedding light on potential future trends. The authors analyze the significance of accurate cali-
bration for MEMS sensors and highlight the challenges involved.  Reference27 presents a systematic method for 
calibrating inertial sensors on gravity recovery satellites. The authors introduce a comprehensive approach for 
achieving accurate calibration, emphasizing its importance for gravity recovery missions. The study outlines the 
calibration process and its benefits. This work contributes to the enhancement of satellite-based gravity recovery 
systems through robust inertial sensor calibration techniques.

Reference28 introduces a novel self-calibration method for inertial measurement units (IMUs) utilizing dis-
tributed inertial sensors. The authors propose an innovative approach that leverages multiple sensors to calibrate 
IMUs autonomously. This method enhances the accuracy and reliability of IMU measurements by exploiting 
distributed information. The study outlines the self-calibration process and its benefits, highlighting its potential 
to improve IMU performance in various applications.

Reference29 focuses on the extrinsic calibration of visual and inertial sensors for autonomous vehicles. The 
authors present a method for accurately calibrating the relative positions and orientations of both types of sensors 
to facilitate robust perception and navigation. The study emphasizes the importance of precise extrinsic calibra-
tion in enhancing the perception capabilities of autonomous vehicles.  Reference30 presents a self-calibration 
method for arrays of inertial sensors. The authors propose an innovative approach that enables the automatic 
calibration of multiple inertial sensors within an array. This method aims to enhance the accuracy and reliability 
of sensor measurements by leveraging inter-sensor correlations and spatial relationships.

Accelerometers calibration. Consider the velocity error in Eq. (17) and assume that εθ = εφ = 0 , the 
following simplified equations are obtained:

Integrating the above equations in the time domain leads to:

The above equation is expanded as follows:

Assuming εvn(0) = εve(0) = εvd(0) = 0 , The above equation is simplified as follows:

(17)

εv̇n = δfn + 2ωdεve + gεθ

εv̇e = δfe − 2ωdεvn + 2ωnεvd − gεφ

εv̇d = δfd − 2ωnεve

εφ̇ = −δωn +
(

1
/

Re

)

εve + ωdεθ

εθ̇ = −δωe −
(

1
/

Re

)

εvn − ωdεφ + ωnεψ

εψ̇ = −δωd −
(

1
/

Re

)

tan �εve − ωnεθ

(18)
εv̇n = δfn + 2ωdεve

εv̇e = δfe − 2ωdεvn + 2ωnεvd

εv̇d = δfd − 2ωnεve

(19)

∫ t

0
εv̇ndt =

∫ t

0
δfndt +

∫ t

0
2ωdεvedt

∫ t

0
εv̇edt =

∫ t

0
δfedt −

∫ t

0
2ωdεvndt +

∫ t

0
2ωnεvddt

∫ t

0
εv̇ddt =

∫ t

0
δfddt −

∫ t

0
2ωnεvedt

(20)

εvn(t)− εvn(0) = δfn(t − 0)+ 2ωd

∫ t

0
εvedt

εve(t)− εve(0) = δfe(t − 0)− 2ωd

∫ t

0
εvndt + 2ωn

∫ t

0
εvddt

εvd(t)− εvd(0) = δfd(t − 0)− 2ωn

∫ t

0
εvedt
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Based on the definition of the ε operator (Appendix A) and that the true velocity is zero in stationary mode, 
εvi (i = n, e, d) will be simplified as:

Based on the above relation, Eq. (21) is rewritten as follows:

According to the above equation, the projection of accelerometers error in the navigation coordinate is 
obtained; these errors can be compensated, and thus the IMU accuracy is improved.

Gyros calibration. Consider the attitude error terms in Eq. (17) and integrating them over time leads to:

Equation (24) is rewritten as follows:

Now consider the following assumptions which come from the stationary condition:

Replacing Eqs. (12) and (28) into Eq. (25) leads to:

(21)

δfnt = εvn(t)− 2ωd

∫ t

0
εvedt

δfet = εve(t)+ 2ωd

∫ t

0
εvndt − 2ωn

∫ t

0
εvddt

δfdt = εvd(t)+ 2ωn

∫ t

0
εvedt

(22)
εvn(t) = vn(t)− 0 = vn(t)

εve(t) = ve(t)− 0 = ve(t)

εvd(t) = vd(t)− 0 = vd(t)

(23)

δfn =
vn(t)− 2ωd

∫ t
0 ve(t)dt

t

δfe =
ve(t)+ 2ωd

∫ t
0 vn(t)dt − 2ωn

∫ t
0 vd(t)dt

t

δfd =
vd(t)+ 2ωn

∫ t
0 ve(t)dt

t

(24)

∫ t

0
εφ̇dt = −

∫ t

0
δωndt +

∫ t

0

1

Re
εvedt +

∫ t

0
ωdεθ dt

∫ t

0
εθ̇dt = −

∫ t

0
δωedt −

∫ t

0

1

Re
εvndt −

∫ t

0
ωdεφdt +

∫ t

0
ωnεψ dt

∫ t

0
εψ̇dt = −

∫ t

0
δωddt −

∫ t

0

tan �

Re
εvedt −

∫ t

0
ωnεθ dt

(25)δωnt = +
1

Re

∫ t

0
vedt + ωd

∫ t

0
[εθ]dt − εφ(t)+ εφ(0)

(26)δωet = −
1

Re

∫ t

0
vndt − ωd

∫ t

0
[εφ]dt + ωn

∫ t

0
[εψ]dt − εθ(t)+ εθ(0)

(27)δωdt = −
tan �

Re

∫ t

0
vedt − ωn

∫ t

0
[εθ]dt − εψ(t)+ εψ(0)

(28)

⌢

φ(t) =
⌢

φ(0) = constant

⌢

θ(t) =
⌢

θ(0) = constant

⌢

ψ(t) =
⌢

ψ(0) = constant
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Replacing Eqs. (12) and (28) into Eq. (26) leads to:

Replacing Eqs. (12) and (28) into Eq. (27) leads to:

(29)

δωnt = +
1

Re

∫ t

0

ve(t)dt − ωdcos
⌢

ψ(0)

∫ t

0

θ̂(t)dt + ωdcos
⌢

ψ(0)
⌢

θ(0)

∫ t

0

dt

− ωdcos
⌢

θ(0)sin
⌢

ψ(0)

∫ t

0

ϕ̂(t)dt + ωd
⌢
ϕ(0)cos

⌢

θ(0)sin
⌢

ψ(0)

∫ t

0

dt

+ ωd

⌢

θ(0)sin
⌢

ψ(0)sin
⌢

θ(0)

∫ t

0

ϕ̂(t)dt − ωdsin
⌢

ψ(0)sin
⌢

θ(0)

∫ t

0

ϕ̂(t)θ̂(t)dt

+ ωd
⌢
ϕ(0)sin

⌢

ψ(0)sin
⌢

θ(0)

∫ t

0

θ̂(t)dt − ωd
⌢
ϕ(0)

⌢

θ(0)sin
⌢

ψ(0)sin
⌢

θ(0)

∫ t

0

dt

− θ̂ (t)sin
⌢

ψ(0)+
⌢

θ(0)sin
⌢

ψ(0)+ ϕ̂(t)cos
⌢

ψ(0)cos
⌢

θ(0)−
⌢
ϕ(0)cos

⌢

ψ(0)cos
⌢

θ(0)

− ψ̂(t)
⌢

θ(0)cos
⌢

ψ(0)+ ψ̂(t)θ̂ (t)cos
⌢

ψ(0)−
⌢

ψ(0)θ̂ (t)cos
⌢

ψ(0)+
⌢

ψ(0)
⌢

θ(0)cos
⌢

ψ(0)

− ϕ̂(t)
⌢

ψ(0)cos
⌢

θ(0)sin
⌢

ψ(0)+ ϕ̂(t)ψ̂(t)cos
⌢

θ(0)sin
⌢

ψ(0)−
⌢
ϕ(0)ψ̂(t)cos

⌢

θ(0)sin
⌢

ψ(0)

+
⌢
ϕ(0)

⌢

ψ(0)cos
⌢

θ(0)sin
⌢

ψ(0)−
⌢
ϕ(0)

⌢

ψ(0)cos
⌢

θ(0)sin
⌢

ψ(0)

+ θ̂ (0)sin
⌢

ψ(0)−
⌢

θ(0)sin
⌢

ψ(0)− ϕ̂(0)cos
⌢

ψ(0)cos
⌢

θ(0)+
⌢
ϕ(0)cos

⌢

ψ(0)cos
⌢

θ(0)

+ ψ̂(0)
⌢

θ(0)cos
⌢

ψ(0)− ψ̂(0)θ̂ (0)cos
⌢

ψ(0) +
⌢

ψ(0)θ̂ (0)cos
⌢

ψ(0)−
⌢

ψ(0)
⌢

θ(0)cos
⌢

ψ(0)

+ ϕ̂(0)
⌢

ψ(0)cos
⌢

θ(0)sin
⌢

ψ(0)− ϕ̂(0)ψ̂(0)cos
⌢

θ(0)sin
⌢

ψ(0)+
⌢
ϕ(0)ψ̂(0)cos

⌢

θ(0)sin
⌢

ψ(0)

(30)

δωet = −
1

Re

∫ t

0

vn(t)dt + ωd
⌢
ϕ(0)

⌢

ψ(0)cos
⌢

θ(0)sin
⌢

ψ(0)

∫ t

0

dt

− ωdsin
⌢

ψ(0)

∫ t

0

θ̂ (t)dt + ωd

⌢

θ(0)sin
⌢

ψ(0)

∫ t

0

dt + ωdcos
⌢

ψ(0)cos
⌢

θ(0)

∫ t

0

ϕ̂(t)dt

− ωd
⌢
ϕ(0)cos

⌢

ψ(0)cos
⌢

θ(0)

∫ t

0

dt − ωd

⌢

θ(0)cos
⌢

ψ(0)

∫ t

0

ψ̂(t)dt + ωdcos
⌢

ψ(0)

∫ t

0

ψ̂(t)θ̂ (t)dt

− ωd

⌢

ψ(0)cos
⌢

ψ(0)

∫ t

0

θ̂ (t)dt + ωd

⌢

ψ(0)
⌢

θ(0)cos
⌢

ψ(0)

∫ t

0

dt − ωd

⌢

ψ(0)cos
⌢

θ(0)sin
⌢

ψ(0)

∫ t

0

ϕ̂(t)dt

+ ωdcos
⌢

θ(0)sin
⌢

ψ(0)

∫ t

0

ϕ̂(t)ψ̂(t)dt − ωd
⌢
ϕ(0)cos

⌢

θ(0)sin
⌢

ψ(0)

∫ t

0

ψ̂(t)dt

+ ωnsin
⌢

θ(0)

∫ t

0

ϕ̂(t)dt − ωn
⌢
ϕ(0)sin

⌢

θ(0)

∫ t

0

dt − ωn

∫ t

0

ψ̂(t)dt + ωn

⌢

ψ(0)

∫ t

0

dt

+ ωn

⌢

θ(0)cos2
⌢

ψ(0)cos
⌢

θ(0)

∫ t

0

ϕ̂(t)dt − ωncos
2
⌢

ψ(0)cos
⌢

θ(0)

∫ t

0

ϕ̂(t)θ̂ (t)dt

+ ωn
⌢
ϕ(0)cos2

⌢

ψ(0)cos
⌢

θ(0)

∫ t

0

θ̂ (t)dt − ωn
⌢
ϕ(0)

⌢

θ(0)cos2
⌢

ψ(0)cos
⌢

θ(0)

∫ t

0

dt

+ ωn

⌢

θ(0)cos
⌢

ψ(0)cos
⌢

θ(0)sin
⌢

ψ(0)

∫ t

0

ϕ̂(t)ψ̂(t)dt − ωncos
⌢

ψ(0)cos
⌢

θ(0)sin
⌢

ψ(0)

∫ t

0

ϕ̂(t)ψ̂(t)θ̂ (t)dt

+ ωn

⌢

ψ(0)cos
⌢

ψ(0)cos
⌢

θ(0)sin
⌢

ψ(0)

∫ t

0

ϕ̂(t)θ̂ (t)dt + ωn
⌢
ϕ(0)cos

⌢

ψ(0)cos
⌢

θ(0)sin
⌢

ψ(0)

∫ t

0

ψ̂(t)θ̂ (t)dt

− ωn

⌢

ψ(0)
⌢

θ(0)cos
⌢

ψ(0)cos
⌢

θ(0)sin
⌢

ψ(0)

∫ t

0

ϕ̂(t)dt − ωn
⌢
ϕ(0)

⌢

θ(0)cos
⌢

ψ(0)cos
⌢

θ(0)sin
⌢

ψ(0)

∫ t

0

ψ̂(t)dt

− ωn
⌢
ϕ(0)

⌢

ψ(0)cos
⌢

ψ(0)cos
⌢

θ(0)sin
⌢

ψ(0)

∫ t

0

θ̂ (t)dt + ωn
⌢
ϕ(0)

⌢

ψ(0)
⌢

θ(0)cos
⌢

ψ(0)cos
⌢

θ(0)sin
⌢

ψ(0)

∫ t

0

dt

+ θ̂ (t)cos
⌢

ψ(0)−
⌢

θ(0)cos
⌢

ψ(0)+ ϕ̂(t)cos
⌢

θ(0)sin
⌢

ψ(0)−
⌢
ϕ(0)cos

⌢

θ(0)sin
⌢

ψ(0)

− ϕ̂(t)
⌢

θ(0)sin
⌢

ψ(0)sin
⌢

θ(0)+ ϕ̂(t)θ̂ (t)sin
⌢

ψ(0)sin
⌢

θ(0)−
⌢
ϕ(0)θ̂ (t)sin

⌢

ψ(0)sin
⌢

θ(0)

− θ̂ (0)cos
⌢

ψ(0)+
⌢

θ(0)cos
⌢

ψ(0)− ϕ̂(0)cos
⌢

θ(0)sin
⌢

ψ(0)

+
⌢
ϕ(0)cos

⌢

θ(0)sin
⌢

ψ(0)+ ϕ̂(0)
⌢

θ(0)sin
⌢

ψ(0)sin
⌢

θ(0)− ϕ̂(0)θ̂ (0)sin
⌢

ψ(0)sin
⌢

θ(0)

+
⌢
ϕ(0)θ̂ (0)sin

⌢

ψ(0)sin
⌢

θ(0)−
⌢
ϕ(0)

⌢

θ(0)sin
⌢

ψ(0)sin
⌢

θ(0)

+
⌢
ϕ(0)

⌢

θ(0)sin
⌢

ψ(0)sin
⌢

θ(0)
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According to Eqs. (29)–(31), the projection of gyros error in the navigation coordinate are obtained; these 
errors can be compensated, and thus the IMU accuracy is improved. In the next section, the extracted equations 
are simulated and verified.

Methods
The objective of this section is to provide a detailed explanation of a novel algorithm that aligns SINS systems fast 
and precisely. The main innovation of this algorithm lies in its use of analytical relations to identify bias errors 
of gyroscopes and then eliminate them from IMU outputs. Unlike traditional initial alignment algorithms that 
involve a laborious fine alignment phase, the proposed approach can estimate initial Euler angles by substituting 
the fine alignment phase with a conventional coarse alignment process. This results in a substantial reduction 
in the time required to achieve a high level of accuracy. In other words, the proposed algorithm gains the fast 
computation time of inaccurate conventional coarse alignment phase and accuracy of traditional time-consuming 
fine alignment techniques at the same time. Figure 1 illustrates a general view of the suggested alignment algo-
rithm. It should be mentioned that the proposed algorithm is operational in the stationary alignment condition.

This algorithm consists of three stages, with the first and third stages being single-shot processes, while the 
second stage is an iterative process that has a maximum iteration time of  Tf. The first stage involves a conven-
tional coarse alignment algorithm while the second stage is the primary contribution of this paper and calculates 
bias errors in accelerometers and gyroscopes using analytical relations derived in the previous section. Once 
the second stage reaches its maximum running time condition, the third stage begins by subtracting calculated 
biases from gyros and accelerometers output and then running a conventional coarse alignment, similar to the 
first stage. The proposed alignment requires a time period which equals the time required by the coarse align-
ment and achieves an accuracy which is given by the fine alignment. The algorithm utilizes analytical explicit 
formulas and there is no tuning procedure as in the fine alignment.

In the proposed algorithm, at first, the average value of the IMU’s outputs are computed. This averaging is 
done to remove the noise effects and causes six numbers (three for accelerometers and three for gyros). The 
following procedure is then performed:

1. Coarse alignment is executed (by the six numbers from the averaged IMU’s outputs).
2. Differential calibration is done (by the six numbers from the averaged IMU’s outputs and three numbers 

from the coarse alignment output as the initial condition for roll, pitch and yaw).

(31)

δωdt = −
tan �

Re

∫ t

0

ve(t)dt + ωn
⌢
ϕ(0)

⌢

θ(0)sin
⌢

ψ(0)sin
⌢

θ(0)

∫ t

0

dt

+ ωncos
⌢

ψ(0)

∫ t

0

θ̂(t)dt − ωn

⌢

θ(0)cos
⌢

ψ(0)

∫ t

0

dt + ωncos
⌢

θ(0)sin
⌢

ψ(0)

∫ t

0

ϕ̂(t)dt

− ωn
⌢
ϕ(0)cos

⌢

θ(0)sin
⌢

ψ(0)

∫ t

0

dt − ωn

⌢

θ(0)sin
⌢

ψ(0)sin
⌢

θ(0)

∫ t

0

ϕ̂(t)dt

+ ωnsin
⌢

ψ(0)sin
⌢

θ(0)

∫ t

0

ϕ̂(t)θ̂(t)dt − ωn
⌢
ϕ(0)sin

⌢

ψ(0)sin
⌢

θ(0)

∫ t

0

θ̂(t)dt

− ϕ̂(t)sin
⌢

θ(0)+
⌢
ϕ(0)sin

⌢

θ(0)+ ψ̂(t)−
⌢

ψ(0)

− ϕ̂(t)
⌢

θ(0)cos2
⌢

ψ(0)cos
⌢

θ(0)+ ϕ̂(t)θ̂ (t)cos2
⌢

ψ(0)cos
⌢

θ(0)

−
⌢
ϕ(0)θ̂ (t)cos2

⌢

ψ(0)cos
⌢

θ(0)+
⌢
ϕ(0)

⌢

θ(0)cos2
⌢

ψ(0)cos
⌢

θ(0)

− ϕ̂(t)ψ̂(t)
⌢

θ(0)cos
⌢

ψ(0)cos
⌢

θ(0)sin
⌢

ψ(0)+ ϕ̂(t)ψ̂(t)θ̂ (t)cos
⌢

ψ(0)cos
⌢

θ(0)sin
⌢

ψ(0)

− ϕ̂(t)
⌢

ψ(0)θ̂ (t)cos
⌢

ψ(0)cos
⌢

θ(0)sin
⌢

ψ(0)+
⌢
ϕ(0)ψ̂(t)

⌢

θ(0)cos
⌢

ψ(0)cos
⌢

θ(0)sin
⌢

ψ(0)

−
⌢
ϕ(0)ψ̂(t)θ̂ (t)cos

⌢

ψ(0)cos
⌢

θ(0)sin
⌢

ψ(0)+ ϕ̂(t)
⌢

ψ(0)
⌢

θ(0)cos
⌢

ψ(0)cos
⌢

θ(0)sin
⌢

ψ(0)

+
⌢
ϕ(0)

⌢

ψ(0)θ̂ (t)cos
⌢

ψ(0)cos
⌢

θ(0)sin
⌢

ψ(0)−
⌢
ϕ(0)

⌢

ψ(0)
⌢

θ(0)cos
⌢

ψ(0)cos
⌢

θ(0)sin
⌢

ψ(0)

+ ϕ̂(0)sin
⌢

θ(0)−
⌢
ϕ(0)sin

⌢

θ(0)− ψ̂(0)+
⌢

ψ(0)+ ϕ̂(0)
⌢

ψ(0)θ̂ (0)cos
⌢

ψ(0)cos
⌢

θ(0)sin
⌢

ψ(0)

+ ϕ̂(0)
⌢

θ(0)cos2
⌢

ψ(0)cos
⌢

θ(0)− ϕ̂(0)θ̂ (0)cos2
⌢

ψ(0)cos
⌢

θ(0)

+
⌢
ϕ(0)θ̂ (0)cos2

⌢

ψ(0)cos
⌢

θ(0)−
⌢
ϕ(0)

⌢

θ(0)cos2
⌢

ψ(0)cos
⌢

θ(0)

+ ϕ̂(0)ψ̂(0)
⌢

θ(0)cos
⌢

ψ(0)cos
⌢

θ(0)sin
⌢

ψ(0)− ϕ̂(0)ψ̂(0)θ̂ (0)cos
⌢

ψ(0)cos
⌢

θ(0)sin
⌢

ψ(0)

+
⌢
ϕ(0)ψ̂(0)θ̂ (0)cos

⌢

ψ(0)cos
⌢

θ(0)sin
⌢

ψ(0)− ϕ̂(0)
⌢

ψ(0)
⌢

θ(0)cos
⌢

ψ(0)cos
⌢

θ(0)sin
⌢

ψ(0)

−
⌢
ϕ(0)

⌢

ψ(0)θ̂ (0)cos
⌢

ψ(0)cos
⌢

θ(0)sin
⌢

ψ(0)+
⌢
ϕ(0)

⌢

ψ(0)
⌢

θ(0)cos
⌢

ψ(0)cos
⌢

θ(0)sin
⌢

ψ(0)

−
⌢
ϕ(0)ψ̂(0)

⌢

θ(0)cos
⌢

ψ(0)cos
⌢

θ(0)sin
⌢

ψ(0)
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3. Another coarse alignment is performed (using the six numbers from the averaged IMU’s outputs and six 
numbers from the differential calibration output as the biases of accelerometers and gyros).

In above procedure, calibration of inertial sensors (step 2) is performed to remove biases from the six aver-
aged numbers; The averaged numbers are used in steps 1, 2 and 3. In steps 1 and 2, the averaged numbers are 
contaminated to biases. In step 3, biases are removed from the averaged numbers.

Simulation and experiments
In this section, the relations extracted in the previous section are simulated and verified. The error model of 
accelerometers and gyroscopes, including misalignment error, scale factor, bias, and noise are assumed as the 
following:

To verify Eqs. (23), (29)–(31), various scenarios have been created according to Tables 1, 2 and 3. In Table 1, 
50 different conditions for the inertial block are generated randomly (including latitude, longitude, altitude, 
and Euler angles). The calibration error coefficient for accelerometers and gyros are generated in Tables 2 and 3, 
respectively. Based on Tables 1, 2 and 3, 50 different scenarios are produced.

In Fig. 2, the results of the proposed algorithm are compared with the ‘coarse’ and ‘fine’ alignment methods. 
For this purpose, a coarse alignment is run at first. Then, the proposed algorithm is run, and the IMU error is 
compensated. Lastly, another coarse alignment is run by the error-compensated IMU. Results show that the 
proposed algorithm has achieved fine alignment accuracy in a limited time. In Fig. 3, the values of the acceler-
ometer errors calculated by the proposed algorithm are shown. It is observed that the accelerometer errors are 
calculated accurately. In Fig. 4, the error values of gyros are shown. It is observed that the proposed algorithm 
cannot estimate the gyroscope error of the east channel, but in the north and down channels, the errors of the 
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Figure 1.  Flowchart of the proposed alignment algorithm.
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Table 1.  Definition of position and attitude in different scenarios.

Sc no. λ (deg) ℓ (deg) h (m) φ (deg) θ (deg) ψ (deg)

1 52.063 29.042 1965 46.613 73.551 143.531

2 52.703 303.545 4451 − 62.945 − 71.000 − 39.908

3 7.125 308.086 3704 − 55.853 77.477 6.554

4 − 77.400 288.496 2940 119.151 − 74.700 − 32.002

5 40.374 313.443 62 − 27.888 − 34.659 39.528

6 31.124 267.927 4982 − 54.630 − 30.206 44.526

7 52.991 253.733 3046 172.458 − 73.953 162.428

8 31.898 233.046 92 − 120.062 61.330 − 137.091

9 34.875 227.766 3193 169.242 83.826 − 89.233

10 24.498 202.075 4250 − 11.065 − 64.584 79.098

11 − 32.001 103.863 3017 60.075 − 24.025 − 21.306

12 − 65.192 107.609 1364 − 133.940 − 6.788 110.531

13 − 62.814 350.914 3815 − 177.923 11.451 112.853

14 − 30.661 293.175 2503 85.684 56.627 79.929

15 − 25.950 300.372 4870 10.787 − 38.505 18.294

16 27.598 165.953 2164 75.236 − 79.447 − 143.084

17 32.153 41.740 2898 26.452 − 33.117 − 160.984

18 − 20.918 263.982 3393 109.971 8.385 − 32.586

19 − 39.757 202.430 3966 120.247 72.776 − 72.402

20 − 8.421 163.970 1029 − 138.234 18.998 − 165.802

21 − 12.792 345.385 1775 − 7.166 − 38.086 62.434

22 − 51.257 21.917 3929 − 50.191 76.107 − 67.129

23 − 66.248 288.103 930 − 82.876 − 82.749 83.469

24 25.062 316.380 2370 − 125.611 66.468 − 95.655

25 − 77.872 115.560 4338 − 138.943 67.078 64.595

26 48.196 265.293 2489 18.614 74.229 23.576

27 19.453 69.024 3860 − 177.341 − 72.813 − 93.902

28 4.776 304.305 2128 1.206 − 39.348 − 75.370

29 − 8.743 62.418 4259 28.027 65.844 − 136.211

30 59.229 30.576 4280 61.957 58.603 − 173.401

31 − 23.558 61.844 4762 70.082 − 46.028 115.519

32 − 12.654 38.284 82 − 108.154 78.009 − 3.288

33 32.204 125.333 3072 − 159.569 − 85.415 94.240

34 35.560 35.200 2417 143.509 − 71.756 53.949

35 − 44.924 75.912 524 − 37.448 − 70.225 100.154

36 81.921 80.399 1864 103.743 − 9.152 − 126.512

37 − 25.089 319.960 2407 33.837 68.994 − 113.941

38 76.504 187.387 495 33.956 73.464 150.176

39 18.113 328.424 3865 8.183 − 49.128 70.935

40 − 44.545 294.023 4809 − 20.745 83.960 − 120.771

41 − 57.278 163.223 4066 − 3.620 9.313 − 173.292

42 − 8.749 233.549 4672 125.186 − 79.628 129.391

43 79.156 47.619 83 − 106.696 − 74.997 151.264

44 5.280 291.591 3031 78.776 3.58 − 10.292

45 82.904 289.473 401 − 142.101 18.234 148.797

46 34.143 59.349 2270 109.561 46.448 120.330

47 − 42.880 271.319 619 − 35.522 − 37.395 − 113.109

48 50.011 251.843 3230 8.939 − 63.217 54.644

49 74.671 120.871 547 − 80.063 72.806 47.665

50 − 75.426 166.792 3366 31.516 − 61.217 − 139.371
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Table 2.  Definition of accelerometers coefficients in different scenarios.

Sc No.

S
a
x M

a
xy M

a
xz M

a
yx S

a
y M

a
yz M

a
zx M

a
zy S

a
z b

a
x b

a
y b

a
z

ppm s s s ppm s s s ppm μg μg μg

1 − 49 6 12 6 − 37 14 12 9 − 50 55 123 147

2 − 27 14 7 6 − 58 15 9 13 − 58 133 148 85

3 − 67 13 8 14 − 73 11 15 14 − 45 119 83 130

4 − 49 10 7 10 − 34 14 7 6 − 52 72 106 100

5 − 41 9 13 13 − 39 13 8 5 − 57 73 99 140

6 − 67 9 8 7 − 43 9 7 6 − 43 99 134 108

7 − 34 11 13 10 − 26 12 5 6 − 55 67 141 57

8 − 49 12 6 12 − 43 7 8 7 − 56 82 100 120

9 − 33 9 13 10 − 32 6 11 11 − 48 141 139 125

10 − 55 5 8 9 − 72 6 8 6 − 30 114 140 63

11 − 51 5 8 9 − 42 12 7 14 − 37 142 144 90

12 − 41 12 10 7 − 49 13 11 15 − 63 71 85 136

13 − 35 11 6 5 − 61 13 7 13 − 27 112 55 129

14 − 69 7 12 7 − 69 10 12 14 − 52 90 69 109

15 − 69 6 13 11 − 35 11 10 10 − 71 112 74 125

16 − 48 6 10 11 − 57 8 7 12 − 56 75 82 86

17 − 28 7 13 7 − 73 11 7 10 − 72 52 115 112

18 − 73 8 13 8 − 31 6 7 9 − 54 119 94 130

19 − 36 7 11 13 − 33 13 14 8 − 45 136 106 130

20 − 54 5 12 6 − 26 8 9 10 − 74 82 96 115

21 − 41 12 10 14 − 51 8 12 12 − 48 68 89 81

22 − 67 12 12 7 − 49 5 14 9 − 70 93 72 120

23 − 56 14 9 14 − 28 8 11 8 − 34 138 70 94

24 − 44 15 13 15 − 41 13 8 9 − 34 95 73 108

25 − 71 12 11 13 − 32 13 14 6 − 59 149 124 92

26 − 61 7 10 8 − 51 6 11 13 − 29 86 110 70

27 − 36 11 10 8 − 66 10 10 14 − 38 76 103 66

28 − 74 14 7 6 − 65 15 7 12 − 64 138 146 58

29 − 38 8 13 12 − 70 6 9 6 − 33 54 109 72

30 − 55 11 10 10 − 74 8 6 14 − 39 109 121 72

31 − 36 9 11 9 − 44 12 5 15 − 47 72 137 107

32 − 41 14 8 13 − 51 9 15 11 − 50 85 124 133

33 − 50 10 8 13 − 50 11 5 8 − 56 128 140 71

34 − 40 13 15 6 − 67 9 6 7 − 30 125 106 140

35 − 53 9 10 12 − 37 5 13 7 − 73 140 110 99

36 − 46 14 9 6 − 75 5 11 6 − 48 82 112 83

37 − 41 8 10 14 − 54 15 13 8 − 32 123 86 58

38 − 53 12 15 11 − 35 10 11 13 − 62 89 79 99

39 − 44 5 8 7 − 66 11 6 6 − 60 106 93 70

40 − 31 15 13 6 − 51 14 10 14 − 71 79 54 83

41 − 58 11 8 7 − 40 14 13 7 − 51 134 61 118

42 − 37 6 7 13 − 40 11 12 8 − 59 95 68 92

43 − 64 10 11 10 − 33 10 11 6 − 57 122 118 91

44 − 70 15 11 10 − 25 6 10 10 − 46 143 111 102

45 − 26 11 14 12 − 71 9 15 7 − 62 120 83 58

46 − 64 10 13 6 − 60 14 13 9 − 70 146 117 108

47 − 58 13 8 14 − 36 13 7 11 − 34 143 86 134

48 − 46 13 10 5 − 61 14 11 11 − 32 71 82 55

49 − 36 6 10 14 − 63 11 9 11 − 71 144 75 106

50 − 50 15 5 11 − 69 6 7 8 − 65 104 116 93
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Table 3.  Definition of gyros coefficients in different scenarios.

Sc No.

S
g

x M
g

xy M
g

xz M
g

yx S
g

y M
g

yz M
g

zx M
g

zy S
g

z b
g

x b
g

y b
g

z

ppm s s s ppm s s s ppm °/h °/h °/h

1 − 22 6 5 6 − 22 6 4 3 − 16 0.012 0.009 0.005

2 − 25 7 3 6 − 13 5 4 7 − 30 0.014 0.008 0.005

3 − 13 4 3 3 − 10 3 5 7 − 25 0.005 0.006 0.008

4 − 22 3 6 6 − 15 3 7 7 − 11 0.015 0.010 0.006

5 − 29 6 5 7 − 18 3 5 7 − 27 0.014 0.005 0.008

6 − 10 4 7 5 − 12 3 3 6 − 11 0.011 0.009 0.014

7 − 13 5 3 3 − 20 6 3 4 − 11 0.006 0.005 0.012

8 − 29 3 5 5 − 27 6 6 7 − 25 0.014 0.009 0.011

9 − 15 3 6 6 − 19 3 5 6 − 15 0.015 0.011 0.008

10 − 19 6 3 3 − 13 6 6 4 − 13 0.007 0.006 0.014

11 − 11 3 7 4 − 24 4 5 7 − 28 0.010 0.010 0.010

12 − 25 4 5 6 − 16 6 3 4 − 25 0.009 0.006 0.010

13 − 29 7 5 7 − 14 6 7 3 − 29 0.007 0.015 0.008

14 − 14 5 7 6 − 22 3 7 5 − 29 0.012 0.009 0.007

15 − 22 6 6 6 − 19 6 4 7 − 11 0.014 0.015 0.014

16 − 25 7 4 7 − 10 5 7 3 − 13 0.012 0.014 0.009

17 − 19 7 3 3 − 28 6 5 7 − 23 0.014 0.013 0.006

18 − 23 5 6 3 − 13 6 4 3 − 25 0.015 0.009 0.014

19 − 15 7 3 6 − 30 5 7 3 − 12 0.012 0.013 0.008

20 − 26 6 6 5 − 11 6 7 7 − 14 0.010 0.014 0.014

21 − 28 6 4 3 − 24 4 7 6 − 19 0.010 0.006 0.009

22 − 24 5 3 5 − 27 3 5 7 − 26 0.015 0.013 0.012

23 − 26 7 5 4 − 28 7 6 4 − 16 0.009 0.009 0.010

24 − 27 5 3 3 − 26 6 7 5 − 23 0.008 0.011 0.010

25 − 20 3 7 7 − 22 6 6 7 − 30 0.013 0.008 0.007

26 − 26 7 6 5 − 26 3 6 4 − 28 0.011 0.014 0.010

27 − 20 5 6 6 − 15 4 5 7 − 17 0.008 0.010 0.012

28 − 13 5 4 7 − 17 5 4 4 − 29 0.011 0.015 0.008

29 − 13 3 5 6 − 23 6 7 5 − 16 0.008 0.007 0.009

30 − 20 4 6 3 − 22 7 4 5 − 17 0.010 0.006 0.008

31 − 29 5 3 4 − 20 4 6 7 − 25 0.005 0.008 0.009

32 − 19 5 3 3 − 22 5 7 5 − 29 0.009 0.012 0.011

33 − 20 4 4 7 − 29 3 6 6 − 12 0.006 0.008 0.007

34 − 19 6 7 5 − 18 3 7 7 − 14 0.009 0.006 0.013

35 − 20 3 4 3 − 28 4 3 5 − 23 0.014 0.012 0.008

36 − 11 5 3 6 − 23 4 6 4 − 16 0.009 0.006 0.006

37 − 11 4 7 6 − 12 7 4 6 − 18 0.012 0.005 0.013

38 − 16 3 7 6 − 12 3 7 7 − 25 0.009 0.015 0.014

39 − 29 4 3 6 − 26 6 7 4 − 12 0.010 0.011 0.006

40 − 18 7 5 5 − 25 4 3 6 − 16 0.013 0.006 0.008

41 − 29 6 3 7 − 26 5 6 5 − 23 0.015 0.013 0.005

42 − 11 5 7 3 − 10 3 3 7 − 15 0.011 0.006 0.010

43 − 24 7 6 6 − 21 7 3 5 − 27 0.006 0.011 0.009

44 − 14 5 3 4 − 21 4 5 3 − 29 0.015 0.013 0.007

45 − 16 3 7 6 − 16 4 7 4 − 26 0.009 0.012 0.012

46 − 16 4 4 4 − 24 3 6 6 − 13 0.010 0.005 0.015

47 − 28 3 5 4 − 14 7 5 6 − 20 0.005 0.014 0.013

48 − 22 4 4 3 − 10 3 6 4 − 24 0.013 0.013 0.005

49 − 13 3 5 6 − 20 7 4 4 − 12 0.012 0.010 0.015

50 − 24 3 6 3 − 26 5 5 5 − 13 0.008 0.007 0.006
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gyros are estimated accurately. It should be mentioned that according to Ref.31, east gyro error is not observable 
and thus not estimable.

In the subsequent tests, the FOG100 gyrocompass data produced by GEM Elettronica, Italy, was utilized to 
validate the performance of the proposed alignment technique in real conditions. This system consists of three 
optical fiber gyroscopes with an accuracy of 0.02 deg/h and three quartz accelerometers with an accuracy of 50 µg. 
The data sampling frequency was 100 Hz. maximum iteration time,  Tf, was set by try and error to  Tf = 0.05 s. The 
device was placed on a rate table, and stationary outputs were recorded. This procedure was repeated ten times, 
and in each trial, five points were selected randomly (fifty points in total). The table was also used to calculate 
the bias of the sensors by subtracting the measured values from the nominal values.

Figure 5 indicates that the proposed alignment error in gyrocompassing is very similar to the fine alignment 
approach. According to Appendix B, the accuracy of the proposed algorithm is the same as the fine alignment 
algorithm. In this figure, the errors represent the difference between the table orientation and the alignment 
techniques’ output. Figure 6 depicts the bias of the accelerometers in the navigation frame, as well as their esti-
mates by the proposed alignment method. According to Ref.31, the bias of the vertical accelerometer is observable; 
therefore, this bias is precisely calculated. The bias of the gyroscopes in the navigation frame is seen in Fig. 7. The 
north and vertical gyros biases are observable and thus they are accurately determined.

Conclusion
This paper proposes a novel algorithm for inertial gyrocompassing in the stationary stand-alone mode. The pro-
posed algorithm only uses an IMU to solve the initial alignment problem quickly, accurately, and reasonably. The 
new algorithm is fast as the ‘coarse alignment’ and accurate as the ‘fine alignment’ algorithms. For this purpose, 
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the mathematical relation between the ‘small rotation angles’ and the ‘navigation error equations’ was extracted 
and used to calculate the error of IMU sensors. These errors can be compensated, and consequently, the accuracy 
of the IMU is improved; This, in turn, causes the initial alignment procedure to be performed more accurately. 
Simulations and experiments show that the proposed algorithm can achieve the accuracy of fine alignment in a 
short time (the same time as needed by the coarse alignment). Therefore, the proposed algorithm is superior to 
the two standard initial alignment algorithms (coarse and fine alignment).

Data availability
The datasets used and/or analyzed during the current study available from the corresponding author on reason-
able request.
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