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Material to system‑level 
benchmarking of CMOS‑integrated 
RRAM with ultra‑fast switching 
for low power on‑chip learning
Minhaz Abedin 1,4, Nanbo Gong 2, Karsten Beckmann 1,3, Maximilian Liehr 1, Iqbal Saraf 4, 
Oscar Van der Straten 4, Takashi Ando 2 & Nathaniel Cady 1*

Analog hardware‑based training provides a promising solution to developing state‑of‑the‑art power‑
hungry artificial intelligence models. Non‑volatile memory hardware such as resistive random access 
memory (RRAM) has the potential to provide a low power alternative. The training accuracy of analog 
hardware depends on RRAM switching properties including the number of discrete conductance states 
and conductance variability. Furthermore, the overall power consumption of the system inversely 
correlates with the RRAM devices conductance. To study material dependence of these properties, 
TaOx and HfOx RRAM devices in one‑transistor one‑RRAM configuration (1T1R) were fabricated 
using a custom 65 nm CMOS fabrication process. Analog switching performance was studied with a 
range of initial forming compliance current (200–500 µA) and analog switching tests with ultra‑short 
pulse width (300 ps) was carried out. We report that by utilizing low current during electroforming and 
high compliance current during analog switching, a large number of RRAM conductance states can 
be achieved while maintaining low conductance state. While both TaOx and HfOx could be switched 
to more than 20 distinct states, TaOx devices exhibited 10× lower conductance, which reduces total 
power consumption for array‑level operations. Furthermore, we adopted an analog, fully in‑memory 
training algorithm for system‑level training accuracy benchmarking and showed that implementing 
TaOx 1T1R cells could yield an accuracy of up to 96.4% compared to 97% for the floating‑point 
arithmetic baseline, while implementing HfOx devices would yield a maximum accuracy of 90.5%. Our 
experimental work and benchmarking approach paves the path for future materials engineering in 
analog‑AI hardware for a low‑power environment training.

In recent years, neural networks have been applied to challenging problems such as image recognition and natu-
ral language processing, with the ability to surpass human-level  accuracy1,2; however, a tremendous amount of 
power is required to train these models. For example, ChatGPT (which is a version of the GPT-3 model) required 
1,287 MWh of power for  training3. The equivalent  CO2 emissions for training this model are 552 metric tons, 
which is around 110 years of an average person’s  CO2  emission4. The computational power requirements to train 
a neural network (NN) is the result of large amounts of data transfer and weight updates, as well as repeated 
matrix multiplication operations.

The conventional von Neumann computing architecture physically separates memory and logic units and has 
limited parallelism. Leveraging parallelism and repeated multiplication operations, GPUs increase the training 
throughput  significantly5. As data transfer between memory and logic units introduce significant power consump-
tion and latency, in-memory computation holds further opportunities for power and efficiency  improvements6 
(Fig. 1a,b). Additional power and latency reduction can be achieved by analog computation of multiplication 
operations. Studies have predicted that approximately 100 to 1000 times more efficient neural network training 
is possible on an analog, in-memory processing unit, as compared to state-of-the-art GPU  computing7.

Resistive Random Access Memory (RRAM) based analog accelerators have shown promising results for low-
power and high-speed neural network  training5,8–12. RRAM-based memory is non-volatile in nature with analog 
data storage capabilities (Fig. 1e). RRAM are typically configured as a metal-insulator-metal (MIM) structure 
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consisting of a top and bottom electrode with a switching layer in between. These devices store data as measurable 
conductance states, controlled by the position and relocation of ions within a conductive filament (Fig. 2). In 
oxygen vacancy based switching devices, a conductive filament is formed within the switching layer, connecting 
the bottom and top electrode. The filament consists of an accumulated column of oxygen  vacancies13. An increase 
of the vacancy concentration (typically near the bottom electrode) will increase the conductance of the filament 
and thus change the conductance state of the RRAM. Likewise, under reverse bias, the concentration of oxygen 
vacancies can be reduced, yielding lower conductance. The conductive filament can be modified gradually by 
consecutive short pulses, making RRAM devices a viable option for synapse-like weight  storage14 (Fig. 2). In 
addition, RRAM arrays can be used to perform analog vector matrix multiplications or multiply–accumulate 
(MAC) operations by coding the input vector into a range of voltages and the matrix weights into conductance 
states within the array. The resulting output current vector  (yn) contains the encoded result of the operation 
(Figure 1 (c,d)). Analog matrix multiplication results can be achieved within a single cycle and therefore have a 
computational complexity of O(n) compared to O(n3) with conventional logic.

The most important performance metrics of the RRAM-based hardware accelerators are training accuracy and 
system power consumption. Training accuracy depends on the device switching behavior, such as the linearity, 
asymmetry during the process of potentiation or depression (increasing or decreasing the synaptic weight)15,16. 
Overall training accuracy also depends on the number of conductance states (defined as the conductance range 
divided by mean conductance change at the symmetry point) and programming noise (standard deviation of the 
change of conductance divided by mean change of conductance at the symmetry point) (Fig. 2b)17,18. Generic 
neural network algorithms (e.g Stochastic Gradient Decent (SGD)) depend on ideal device weight updates 
(linear, symmetric and large number of states), and deviation from linear weight update results in a decreased 
training  accuracy19,20. Most reported analog device behaviors with RRAM devices, however, are non-ideal with 
a non-linear asymmetric weight update, low number of states, and a relatively large noise  level8,21. Hence, there 

Figure 1.  Analog computation of AI workloads is a promising solution to this power-intensive task. RRAM 
based AI harware accelerators leverage in-memory computation compared to state-of-the-art von Neumann 
architectures. (a) The von Neumann computing architecture consists of physically separated memory and logic 
units, which are bottlenecked by data transfer (shown by the blue arrow). (b) In-memory computation reduces 
power and latency by computing directly within the memory unit and also utilizes the inherent parallelism of 
the memory architecture. (c) A simple neural network is shown with input layer (blue), hidden layer (green), 
and output layer (red). (d) An example of implementing a RRAM-based memory array for hardware realization 
of a neural network where each RRAM stores synaptic weight values. Simultaneous input at each row as voltage 
can result in column current for multiply and accumulate (MAC) operations. It should be noted that MAC 
operations are a significant contributor towards overall neural network training workload. (e) A 1-transistor 
1-RRAM (1T1R) unit cell is shown, highlighting a cross-section of the RRAM structure with oxygen vacancies 
in the switching layer depicted as grey dots.
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is a need for a training algorithm that can handle the imperfect behavior of the RRAM devices and still provide 
high training accuracy.

In this work we adopted a analog fully in-memory training algorithm named Tiki-Taka v2 (TTv2) that 
embraces practical non-ideal device switching behavior without compromising  performance17,22. TTv2 results 
in higher accuracy compared to the generic SGD algorithm with a comparatively lower number of states, high 
non-linearity, and  variations17. This algorithm relies on three RRAM unit cells, one RRAM for analog conduct-
ance/weight update and the second RRAM to store the “symmetry point” as a reference point between positive 
and negative weights, one RRAM for gradient accumulation around symmetry  point23. This RRAM conduct-
ance “symmetry point” can be achieved by juxtaposing positive and negative  pulses23,24 (Fig. 2). Other device 
properties like conductance values significantly influence overall system power consumption while reducing IR 
 drop10. The device switching linearity/non-linearity and conductance of the device are significantly influenced 
by the material stack of the RRAM  device15,16. As a result, a RRAM-based accelerator’s overall efficacy depends 
largely on its material selection. For high volume manufacturability, conventional complementary metal oxide 
semiconductor (CMOS) fabrication compatibility of the RRAM material stack is one of the most important 
 factors13. Due to proven CMOS compatibility, available material deposition/process tools in the foundry,  HfOx 
and  TaOx-based RRAM devices have had the highest research interest compared to other  stacks25. In this work, 
we focus on benchmarking analog performance such as the number of states, dynamic range, and programming 
noise of  HfOx and  TaOx RRAM devices, both fabricated on 65nm CMOS technology process node. Furthermore, 
we benchmarked system-level training accuracy from both  HfOx and  TaOx device switching behaviors leverag-
ing the TTv2 algorithm.

In this work, RRAM devices with different switching layers  (HfOx and  TaOx) were fabricated using a standard 
CMOS process technology (65 nm) for benchmark comparison of their potential for analog performance and 
utility in neural network training and accelerator approaches. Analog switching experiments with pulse length 
as short as 300 ps demonstrated the ability to achieve 35 analog states with  TaOx versus 29 states with  HfOx, with 
 TaOx having lower off-state conductance, which is amenable to low power operation. We report the impact of 
pulse amplitudes on symmetry point convergence was systematically studied for the first time. Finally, we adopted 

Figure 2.  (a, b) Electrical pulses and polarities required for analog switching. Short-duration positive pulses 
increase the conductance (or weight) of the device whereas negative pulses reduce RRAM device conductance. 
The repeated alternation between positive and negative pulses results in the device achieving the so-called 
symmetry point, where successive positive and negative pulses do not significantly alter device conductance. 
Number of states and programming noise definitions are shown on the right. (c) Schematic of the physical 
changes occurring to the conductive filament of a RRAM device during positive and negative pulses for analog 
switching using hour-glass  model13,14. Positive pulses across the device grow the filament towards the bottom 
electrode, hence reducing the oxide gap in between. This increases the overall device conductance, whereas the 
opposite behavior occurs during negative pulses across the device, decreasing the device conductance.
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an analog fully in-memory training algorithm (TTv2) for system-level benchmarking of neural network training 
and accuracy, and report on the baseline RRAM device switching data, fitting, and hyperparameter optimization 
to yield up to 96.4% accuracy versus a floating point peak accuracy of 97%.

Results
Fabricated RRAM device stack. We developed a monolithic integration scheme for embedded RRAM in 
a 65 nm CMOS process technology based on a 300mm wafer-scale fabrication  platform26. The RRAM devices 
were integrated above high voltage I/O FETs  (VDD = 3.3 V) enabling excellent current control with significantly 
reduced parasitic capacitance and excellent current compliance control compared to off-chip  solutions27. RRAM 
devices were integrated between metal 1 (M1) and metal 2 (M2) interconnect layers in the back end of the line 
on top of a custom TiN bottom electrode layer (V0). A custom dual-damascene approach (within back end of 
the line (BEOL) compatible thermal budget of 430 °C) was developed for the via 1 (V1) and M2 enabling the 
simultaneous connection of V1 to the top of the RRAM and M1. Both  HfOx and  TaOx devices have the same 
electrode size and are fabricated using the same mask set. The lateral dimension of the devices is defined by the 
bottom electrode (with target dimensions of 120 nm x 120 nm). RRAM devices consist of four layers, start-
ing with the separately structured TiN V0 bottom electrode (Fig. 1e). The metal oxide switching layer,  HfOx 
(6.3 nm) or  TaOx (7 nm), was followed by either Ti (6 nm) or Ta (12 nm) oxygen scavenger layer, respectively, 
and with a TiN (40 nm) top and TiN bottom (20 nm) electrode. The oxygen scavenging layer creates an oxy-
gen vacancy gradient and increases the ion mobility within the switching  layer28. Both HfOx and TaOx device 
stacks were optimized to achieve forming voltage compatible with the high voltage IO transistor (3.3 V) offered 
by 65 nm technology node (Supplementary Material). Figure 3 shows a high-resolution STEM image from an 
aberration-corrected Titan S/TEM including energy-dispersive X-ray (EDX) spectroscopy imaging of the  HfOx 
and  TaOx-based RRAM devices.

Analog switching for fully in‑memory training. The RRAM devices in this work store data in resistive states 
via anion movement within a conductive filament (Fig. 2). The filament is formed via a controlled dielectric 
breakdown creating an accumulation of oxygen vacancies within the metal oxide switching layer that is bounded 
between the top and bottom electrode. A change in oxygen vacancy concentration allows for the modulation of 
the conductance and enables an analog control. An initial electroforming event is executed via a positive volt-
age pulse to the top electrode and subsequent negative and positive voltage pulses will reset and set the device. 
The reset and set process refers to the decrease and increase in conductance and corresponds to the decrease 
and increase in the oxygen vacancy concentration of the filament, respectively. Two methods are deployed to 
modulate the electrical stimulus are a pulse width and amplitude change of the applied voltage (Fig. 2). For 
example, typically application of large pulse width signals (1–100 µs) causes an abrupt change in conductance 
within a single pulse, resulting in only two states or binary/digital data storage; however, consecutive pulses 
(e.g. 200 pulses) with shorter pulse widths (typically less than 100 ns) result in a gradual change in the con-
ductance. These conductance/weight updates can then be leveraged to emulate a synaptic behavior for on-chip 
learning. Gradual increase of the device conductance, called potentiation, can be consecutive positive voltage 
pulses across the devices. Alternatively, consecutive negative voltage pulses decrease the device’s conductance, 
also known as depression. By applying many alternating positive and negative pulses in sequence, the resulting 
RRAM conductance can converge to a symmetry point (as defined above). Analog switching behavior, inclusive 
of potentiation, depression and symmetry point, is dependent on applied pulse width. Figure 4a shows that with 
longer pulse width (1.1 ns) the symmetry point fails to converge. Both pulse width conditions were performed 

Figure 3.  (a) Brightfield TEM image of CMOS-integrated RRAM cell in 1-transistor 1-RRAM (1T1R) 
configuration. Zoomed-in brightfield images of the  TaOx (b) and  HfOx (d) based RRAM devices shown on the 
left. Energy-dispersive X-ray spectroscopy (EDS) images showing the elements Ti, Ta, Hf, O, and N for the  TaOx 
(c) and  HfOx (e) devices shown on the right.
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on a device formed with 200 µA peak compliance current and pulse amplitudes of +1.0 V, − 1.2 V applied while 
allowing maximum 500 µA during switching.

Dependence on RRAM forming conditions. Low-power analog computation requires the RRAM conductance 
to be low, as this results in reduced current and overall power consumption during switching and read opera-
tions. Our goal with analog switching experiments was to achieve a low off-state conductance of the devices 
while maintaining analog performance, including the number of states and programming noise. For these 
experiments, RRAM devices were formed with pulse amplitude of 4.0 V and pulse width of 10 ms for two differ-
ent compliance currents 200 µA and 500 µA (controlled by the integrated control transistor). Each set of devices 
was then subjected to analog switching conditions with + 1.2 V, − 1.2 V and + 1.3 V, − 1.3 V for  HfOx and  TaOx 
devices, respectively. In both cases, the current compliance was set to 350 µA. The results show a significant 
increase in the number of achievable conductance states for both  HfOx and  TaOx devices if a lower compliance 
current is used during the forming event (Fig. 4b).

For  TaOx devices, the average number of states increased from ∼8 to ∼18. In the case of  HfOx devices, the 
number of states increased from ∼5 to ∼13. For  HfOx devices, the conductance slightly decreased from 108 to 
98 µS for 500 to 200 µA compliance current during forming. In the case of  TaOx, however, a greater reduction 
in conductance of 31–17 µS was observed for the off state.

RRAM analog switching. Due to the resulting high number of states and low conductance in the HRS, a com-
pliance current of 200 µA was used during the RRAM electroforming event, prior to pulse amplitude experi-
ments.  HfOx devices yielded the best analog switching performance for set voltages of 1, 1.1 and 1.2 V and reset 
voltages of − 1, − 1.1 and − 1.2 V. Results were similar for  TaOx, where the range was 1.2–1.4 V and − 1.2 to 
− 1.4 V for the set and reset operation, respectively. Preliminary experiments showed that the voltage range for 
analog switching of  HfOx and  TaOx devices required different voltage ranges. For the same pulse width,  TaOx 
devices required a 0.2–0.3 V higher voltage, agreeing with previously published  results29. To enable a fair com-
parison of the analog switching performance, we performed analog switching experiments with the electrical 
switching conditions that yield the largest number of states as well as the lowest conductance (off state). It should 

Figure 4.  (a) Pulse width experiments show the device can switch with ultra-fast 300 ps pulse width while 
achieving symmetry point convergence. (b) Different forming compliance currents for both  HfOx and  TaOx 
RRAM devices and the resultant number of states. When formed at lower compliance current for both  HfOx 
and  TaOx devices the number of states increases. (c) The approach for adjusting the compliance current during 
initial electroforming and subsequent set and reset voltage ranges explored for both  HfOx and  TaOx devices. 
(d) Symmetry point shift with pulse condition. For both  HfOx and  TaOx devices it shows lower negative pulse 
amplitude can lead to symmetry point shift up whereas high negative voltage can result in symmetry point shift 
down. (e) Analog switching conditions with a high number of states and low off-conductance. Inset shows using 
a semi-log plot that  TaOx device conductance is ∼10× lower. (f) No. of states VS off conductance showing, both 
HfOX and  TaOx devices show 15 states but only  TaOx devices can achieve over 10 µS conductance.
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be noted that analog switching is only possible within a well-defined voltage range. Outside of this range, low 
voltage pulsing will not change the conductance, while large voltage pulses outside of the range will transition 
the device into binary switching mode, with a small memory window. During all switching conditions described 
above the pulse width was kept constant at 300 ps with a 70 ps rise and fall time.

To study the effect of peak current during analog switching, a pulse amplitude experiment was performed at 
three different compliance currents, as controlled by the integrated transistor: 200, 350 and 500 µA (Fig. 4c) for 
both  HfOx and  TaOx. For each current level, nine pulse amplitude switching conditions were applied. Table 1 
shows the converged symmetry points and the comparatively large number of states for each case. Additionally, 
the larger compliance currents (350 and 500 µA) enable the optimal combination of the lowest conductance and 
highest number of states. It should be noted that even with the same forming process and switching compliance 
current, the number of conductance states and the off-state conductance depends on different switching pulse 
amplitudes (Table 1). These conditions also maintain programming noise of less than 1. For  TaOx devices, the 
analog switching compliance current of 500 µA and pulse amplitudes of +1.4 and − 1.3 V yielded the greatest 
number of states (35) with off state conductance of 9.8 µS. The highest off state conductance of 3.8 µS from  TaOx 
devices results from 500 µA and pulse amplitude of +1.3 V and -1.3 V for set and reset, respectively, with a lower 
number of states (20). The highest number of states (29) and off conductance of 37 µS for  HfOx is a result of a 350 
µA compliance current and a set / reset voltage of +1.2 V and -1.1 V, respectively. Based on these measurements, 
 TaOx devices exhibit around one tenth of the off-state conductance compared to  HfOx devices.  TaOx devices also 
have a marginally higher number of states (35) compared to  HfOx devices (29).

Benchmarking of hafnium oxide and tantalum oxide RRAM performance. To compare  HfOx to  TaOx devices, we 
followed two main steps: (1) determination of symmetry point convergence, and (2) elucidation of ideal switch-
ing conditions based upon the number of states, programming noise, and off state conductance. To implement 
the TTv2 algorithm with RRAM based hardware, analog switching must achieve a stable symmetry point. If an 
electrical switching condition does not yield symmetry point convergence, this electrical switching condition 
cannot be used for hardware implementation into the TTv2 algorithm, regardless of its number of states and 
off conductance. A converged symmetry point can be defined as a device conductance state that shows a stable 
minimum conductance change around a mean conductance value, upon the application of consecutive positive 
and negative voltage pulses. An non-convergent (divergent) symmetry point can be defined as a state where the 
mean conductance change of the device is increasing, or decreasing. It can also include a symmetry point sepa-
ration. As an example, Fig. 4 shows that for same positive pulse voltage conditions, the symmetry point tends 
to shift up if the negative pulse amplitudes are comparatively lower. Further, the symmetry point tends to shift 
downwards for comparatively larger negative pulses. For each forming and switching compliance current condi-
tion, different optimal switching conditions are required to achieve a stable symmetry point.

As previously discussed, the number of analog states in the RRAM device can be calculated by dividing the 
total con- ductance range by the mean absolute value of the conductance change from the symmetry region as 
Number of states = Grange/mean(dG). The conductance range, Grange calculated from Gmin from the depression cycle 
and Gmax from the potentiation cycle. To avoid misleading results due to the inherent conductance variation 
for RRAM devices, an average of the last ten conductance values during potentiation and depression was taken 
as Gmax and Gmin, respectively (Fig. 2b). dG is the mean conductance change which can be calculated from the 
conductance change from one pulse to the next. Another key metric, programming noise, can be defined as the 
deviation of each conductance state from its predicted conductance value. Lower programming noise results in 
more accurate AI training, and for TTv2 programming noise is that its required to be lower than 1.

Analog fully in‑memory training accuracy. Training simulations were performed with a single learning 
rate, and fast learning rate (AIHWKit parameter), and batch size. In this approach, if the hyperparameters are 
not optimized, the training accuracy can be misleading. Thus, each analog switching behavior requires its own 
optimized hyperparameters for training (Fig. 5a). Simulations yielded a baseline floating point accuracy of 97%. 

Table 1.  Experimental results for  HfOx and  TaOx devices. Significant values are in bold.

Material CC (µA)

Pulse 
Amp. (V) Number of states

P. noise

Conductance (µS)

Accuracy (%)V+ V− Avg SD Max Off On D.R

HfOx

200
1.2 1.0 12 0.87 14 0.75 76.9 143 1.86 29.4

1.2 1.1 12 1 14 0.73 32.3 143 4.43 82.3

350
1.1 1.1 23 3 28 0.72 45.5 200 4.2 87.4

1.2 1.1 29 4 36 0.73 37.0 200 5.4 89.7

500 1.1 1.1 20 2.8 23 0.68 100 213 2.1 90.5

TaOx

200 1.4 1.3 11 1.2 14 0.68 10.9 100 9.2 92.9

350
1.3 1.3 18 2.98 23 0.73 17.0 128 7.8 89.1

1.4 1.3 27 1.1 29 0.81 8.5 57.5 6.8 84.1

500
1.3 1.3 20 0.6 21 0.74 3.82 167 43.7 90.7

1.4 1.3 35 1.2 37 0.75 9.8 179 18.2 96.4
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Training based on  TaOx device metrics yielded close to the floating point-baseline accuracy of 96.4%, whereas 
training based on  HfOx device metrics did not exceed an accuracy of 91% (Figure 5c). The highest training accu-
racy resulted from  TaOx device metrics based on switching with a compliance current of 500 µA and with set and 
reset voltage of +1.4 V and − 1.3 V, respectively (which enabled 35 conductance states).  HfOx devices exhibited 
20 and 29 states for 500 µA and 350 µA, respectively with set/reset voltages of + 1.1/− 1.1 V and + 1.2/− 1.1 V, 
respectively. From the results, it is clear that training accuracy improves with a higher number of conductance 
states but decreases with higher programming noise. As a result, cases with a reduced number of conductance 
states with lower programming noise, result in considerable training accuracy (Fig.  5d). For example,  HfOx 
RRAM with switching compliance current = 500 µA where the number of states is 20 and programming noise 
0.68 has slightly higher accuracy (90.5%) than 350 µA +1.2 V − 1.1 V condition with number of states 29 and 
programming noise of 0.73 (accuracy 89.7%) (Table 1). Similarly for  TaOx the 350 µA +1.4 V − 1.3 V switching 
condition (27 states and a programming noise of 0.81) results in lower accuracy than the alternative switching 
conditions of 350 µA + 1.3 V − 1.3 V (17 states and 0.73 programming noise) (Table 1).

Discussion
In this work we report on an approach to achieve a high number of states in RRAM-based synaptic devices 
with corresponding low off state conductance, by first using a reduced compliance current during the forming 
process and then higher compliance current during subsequent switching events. Previous reports suggest that 
a minimum compliance current is required to enable RRAM device  switching27. The authors hypothesized that 
RRAM devices require a minimum current to assist with oxygen vacancy rearrangement, as a key driver for 
adjusting device conductance. We extend this hypothesis to explain the low off-state conductance. After form-
ing at a low compliance current, a higher current is required during switching to assist with oxygen vacancy 

Figure 5.  (a) Diagram showing the complete workflow from device fabrication, to analog switching 
experiments, to optimal switching condition selection, to device model fitting, hyperparameter optimization, 
and finally to analog fully in-memory training. (b) Example of hardware data and fitted model for device aware-
training. (c) Example of hyperparameter optimization. Here the goal is to extract parameter values that yield 
the highest accuracy without over or under-fitting. (d) Accuracy plots for both  TaOx and  HfOx based analog 
switching conditions.  TaOx based device switching (500 µA + 1.4 V −1.3 V) showing close to floating point 
baseline accuracy.
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movement. Higher vacancy movement can result in a reduced concentration of vacancies at the end of the fila-
ment during the negative pulse cycle. In turn, this can result in lower conductance. Similarly low compliance 
current would result in lower vacancy movement as a result, higher off-conductance. The change in conductance 
during negative pulse cycling is affected by the prior forming or set condition that was used, which determines 
filament size and composition.

Previous reports using analytical  simulations23,30 assumed that symmetry points can be achieved at any loca-
tion and with any number of states. Our experiments using fully CMOS-integrated devices show that a stable 
symmetry point convergence can not be achieved at any indiscriminate location. We observed that symmetry 
point stability is largely dependent on the amplitude of the positive and negative voltage pulses during the switch-
ing (Fig. 4). The symmetry point can shift upward or downward, due to an imbalance of positive and negative 
voltage pulses. A large positive pulse with a smaller corresponding negative pulse tends to shift the symmetry 
point upward towards higher conductance. On the other hand, when the negative voltage pulse amplitude is 
larger, as compared to the positive pulse, the symmetry point tends to shift downwards. For our RRAM devices, 
symmetry point separation tends to occur when positive and negative voltage pulses are larger e.g. at + 1.5 V 
− 1.5 V.

As fabricated in this study, CMOS-integrated  TaOx RRAM devices exhibited a significantly lower conductance 
compared to  HfOx RRAM devices that were integrated with an identical configuration (1T1R). Conductance 
of RRAM devices can be attributed to the effect of the different metal-insulator interface, the effect of oxygen 
scavenging layer, vacancy concentration of the switching layer and bulk oxide conductance. It has been suggested 
in previous publications that  TaOx and  HfOx have different defect migration energy for same oxygen scavenging 
layer metal which can also lead to different conductance  values13,29. Experimental results reported previously 
showed strong dependence on the choice of oxygen exchange layer (OEL) for the RRAM stack and on and off 
conductance of the RRAM  device28. This suggests further hardware and modeling experiments are required for 
further understanding and optimization of each material RRAM device stack.

Conclusion
HfOx and  TaOx RRAM devices have great potential as analog switching devices for the implementation of 
customized AI hardware. We demonstrated that ultrafast (300 ps) switching can not only speed-up the con-
ductance update duration but also benefit analog switching performance. We report on an approach to obtain 
a large number of conductance states while maintaining low off state conductance by using low compliance 
current during initial device electroforming, followed by high compliance current switching. We report that 
 TaOx devices have a 10x lower conductance compared to  HfOx devices when integrated into 1T1R cells using an 
identical processing approach. As a result, this makes  TaOx devices more suitable for large resistive array-based 
accelerators. Additionally, we adopted a device-aware training approach with hyperparameter optimization for 
each switching condition for system-level benchmarking. From this benchmarking approach, we demonstrated 
that  TaOx device performance metrics can yield a higher system-level accuracy of 96.4% as compared to 90.5% 
for  HfOx devices, with accuracy approaching the floating point baseline of 97% accuracy.

Methods
Testing. The high-frequency characterization system consists of the pulse generator, power-splitter, oscil-
loscope, high-frequency compatible probes, and 50  Ω terminator for impedance matching network. A BNC 
(Berkeley Nucleonics Corporation) Model 765 pulse generator with programmable pulse width down to 300 ps, 
70 ps rise/fall times. It was used to generate the forming, switching, and read pulses for RRAM both forming and 
analog switching experiments. The output of the RF pulse generator fed to the power splitter in two channels (i) 
1 channel to the oscilloscope (LeCroy Wavepro 740Zi) to observe the input signal (ii) the second channel to the 
top electrode of the RRAM device. 50 Ω terminator resistor at the probe ends to minimize the reflected signal 
and power loss. Another channel of the oscilloscope used to monitor the current through the 1T1R cell. The gate 
voltages of the integrated transistor were applied using Keysight B1500 parametric semiconductor analyzer as 
constant DC voltage for a pulse cycle.

Analog fully in‑memory training method. To benchmark the different RRAM devices, we took the 
analog switching behavior from the devices and feed to an analog fully in-memory training framework. IBM 
Analog Hardware Acceleration Kit (IBM AIHWkit) is an open-source Python toolkit that allows exploring prac-
tical device-aware  training31. The experimental data first normalized to Wmax and Wmin. To support the Wmin 
and Wmax range, the conductance values first clipped to Gmin and Gmax. Specially during depression cycle, it can 
have large variability. To avoid the random low/high conductivity to be considered as the Gmin and Gmax, aver-
age of last ten cycles were taken as Gmin and Gmax. Then the experimental conductance values were clipped to 
Gmin and Gmax. Then the conductance values were converted to weight values by normalizing to − 1 to + 1 range. 
First, a generic set of values with the translated number of  states32 is used to generate a switching behavior. Then 
following an iterative method of changing the values of piece-wise linear model, to match the potentiation and 
depression shape while keeping the same symmetry point location and variation (Fig. 5b). The best switching 
behaviors that show high number of states as well as Roff from both  HfOx and  TaOx devices, are modeled one 
at a time.

The modeled AIHWkit device behavior is then fed into the framework for analog fully in-memory training. 
For analog fully in-memory training, we have used the TTv2 training algorithm which is less susceptible to 
non-linear weight behavior compared to generic training SGD-only algorithms. TTv2 training algorithm takes 
advantages of the symmetry point as a reference for up and down weight updates. By zero point shifting of the 
weights, the algorithm reaches higher accuracy compared to SGD-only algorithms. We used a 3-layer network 
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to train hardware aware training for MNIST handwritten digit classification. For simplicity and repeated bench-
marking purposes we used 3 layers fully connected (input, hidden, output) network. We trained floating point 
training as a baseline to compare analog device-aware training. Hyperparameter optimization of training each 
device switching was done using Weights &  Biases33. Each analog switching behavior requires specific set of learn-
ing rate, batch size, fast learning rate (a framework-specific parameter for TTv2 unit cell compound). Without 
these hyperparameters optimized the, it risks over/underfitting. As a result, for each analog device switching 
behavior requires needed to be run through optimization for specific batch size, learning rate, fast learning. 
Bayesian optimization experiments were run for each switching behavior with learning rate, fast learning rate 
ranging from 10 to 0.00001, batch size from 8 to 216. Bayesian search learned from the resultant loss function 
from previously run parameters (learning rates, batch size) and next set of generated parameters were generated 
following the trend. These experiments were run by integrating AIHWkit analog training with W&B (weights 
and biases) optimization add-on.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author upon reasonable request.

Received: 8 June 2023; Accepted: 6 September 2023

References
 1. Lecun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature https:// doi. org/ 10. 1038/ natur e14539 (2015).
 2. Bengio, Y., Lecun, Y. & Hinton, G. Deep learning for AI. Commun. ACM 64, 58–65. https:// doi. org/ 10. 1145/ 34482 50 (2021).
 3. Patterson, D. et al. The carbon footprint of machine learning training will plateau, then shrink. Computer 55, 18–28. https:// doi. 

org/ 10. 1109/ MC. 2022. 31487 14 (2022).
 4. Strubell, E., Ganesh, A. & McCallum, A. Energy and policy considerations for modern deep learning research. Proc. AAAI Conf. 

Artif. Intell. 34, 13693–13696. https:// doi. org/ 10. 1609/ aaai. v34i09. 7123 (2020).
 5. Haensch, W., Gokmen, T. & Puri, R. The next generation of deep learning hardware: Analog computing. Proc. IEEE 107, 108–122. 

https:// doi. org/ 10. 1109/ JPROC. 2018. 28710 57 (2019).
 6. Mutlu, O., Ghose, S., Gómez-Luna, J. & Ausavarungnirun, R. Processing data where it makes sense: Enabling in-memory computa-

tion. Microprocess. Microsyst. 67, 28–41. https:// doi. org/ 10. 1016/j. micpro. 2019. 01. 009 (2019).
 7. Mehonic, A. & Kenyon, A. J. Brain-inspired computing needs a master plan. Nature 604, 255–260. https:// doi. org/ 10. 1038/ s41586- 

021- 04362-w (2022).
 8. Li, H. et al. Sapiens: A 64-kb rram-based non-volatile associative memory for one-shot learning and inference at the edge. IEEE 

Trans. Electron Dev. 68, 6637–6643. https:// doi. org/ 10. 1109/ TED. 2021. 31104 64 (2021).
 9. Chang, H.-Y. et al. Ai hardware acceleration with analog memory: Microarchitectures for low energy at high speed. IBM J. Res. 

Dev. 63, 8:1-8:14. https:// doi. org/ 10. 1147/ JRD. 2019. 29340 50 (2019).
 10. Gokmen, T. & Vlasov, Y. Acceleration of deep neural network training with resistive cross-point devices: Design considerations. 

Front. Neurosci. https:// doi. org/ 10. 3389/ fnins. 2016. 00333 (2016).
 11. Strukov, D. B., Snider, G. S., Stewart, D. R. & Williams, R. S. The missing memristor found. Nature 453, 80–83. https:// doi. org/ 10. 

1038/ natur e06932 (2008).
 12. Chua, L. Memristor-the missing circuit element. IEEE Trans. Circuit Theory 18, 507–519. https:// doi. org/ 10. 1109/ TCT. 1971. 10833 

37 (1971).
 13. Guo, Y. & Robertson, J. Materials selection for oxide-based resistive random access memories. Appl. Phys. Lett. 105, 223516. https:// 

doi. org/ 10. 1063/1. 49034 70 (2014).
 14. Gong, N. et al. Signal and noise extraction from analog memory elements for neuromorphic computing. Nat. Commun. https:// 

doi. org/ 10. 1038/ s41467- 018- 04485-1 (2018).
 15. Chen, P. Y. et al. Mitigating Effects of Non‑ideal Synaptic Device Characteristics for On‑Chip Learning 194–199 (Institute of Electrical 

and Electronics Engineers Inc., Piscataway, 2016). https:// doi. org/ 10. 1109/ ICCAD. 2015. 73725 70.
 16. Woo, J. & Yu, S. Resistive memory-based analog synapse: The pursuit for linear and symmetric weight update. IEEE Nanotechnol. 

Mag. 12, 36–44. https:// doi. org/ 10. 1109/ MNANO. 2018. 28449 02 (2018).
 17. Gokmen, T. Enabling training of neural networks on noisy hardware. Front. Artif. Intell. https:// doi. org/ 10. 3389/ frai. 2021. 699148 

(2021).
 18. Gong, N. et al. Deep Learning Acceleration in 14 nm CMOS Compatible ReRAM Array: Device, Material and Algorithm Co‑

optimization 3371–3374 (Piscataway, IEEE, 2022). https:// doi. org/ 10. 1109/ IEDM4 5625. 2022. 10019 569.
 19. Luo, Y., Peng, X. & Yu, S. Mlp+neurosimv3.0: Improving On‑chip Learning Performance with Device to Algorithm Optimizations 

(Association for Computing Machinery, New York, 2019). https:// doi. org/ 10. 1145/ 33542 65. 33542 66.
 20. Peng, X., Huang, S., Jiang, H., Lu, A. & Yu, S. Dnn+neurosim v2.0: An End-to-end Benchmarking Framework for Compute-in-

Memory Accelerators for On-chip Training. IEEE Trans. Comput. Des. Integr. Circuits Syst. 40, 2306–2319. https:// doi. org/ 10. 1109/ 
TCAD. 2020. 30437 31 (2021).

 21. Ielmini, D. & Ambrogio, S. Emerging neuromorphic devices. Nanotechnology 31, 092001. https:// doi. org/ 10. 1088/ 1361- 6528/ 
ab554b (2020).

 22. Gokmen, T. & Haensch, W. Algorithm for training neural networks on resistive device arrays. Front. Neurosci. https:// doi. org/ 10. 
3389/ fnins. 2020. 00103 (2020).

 23. Kim, H. et al. Zero-shifting technique for deep neural network training on resistive cross-point arrays (2019). arXiv: 1907. 10228.
 24. Agarwal, S. et al. Resistive Memory Device Requirements for a Neural Algorithm Accelerator 929–938 (IEEE, Piscataway, 2016). 

https:// doi. org/ 10. 1109/ IJCNN. 2016. 77272 98.
 25. Zhu, J., Zhang, T., Yang, Y. & Huang, R. A comprehensive review on emerging artificial neuromorphic devices. Appl. Phys. Rev. 7, 

011312. https:// doi. org/ 10. 1063/1. 51182 17 (2020).
 26. Beckmann, K. et al. Towards synaptic behavior of nanoscale reram devices for neuromorphic computing applications. ACM J. 

Emerg. Technol. Comput. Syst. 16, 1–18. https:// doi. org/ 10. 1145/ 33818 59 (2020).
 27. Lee, S. H. et al. Quantitative, dynamic taox memristor/resistive random access memory model. ACS Appl. Electron. Mater. 2, 

701–709. https:// doi. org/ 10. 1021/ acsae lm. 9b007 92 (2020).
 28. Kim, W. et al. Impact of oxygen exchange reaction at the ohmic interface in ta2o5-based reram devices. Nanoscale 8, 17774–17781. 

https:// doi. org/ 10. 1039/ c6nr0 3810g (2016).
 29. Azzaz, M. et al. Endurance/Retention Trade Off in HfOx and TaOx based RRAM 1–4 (IEEE, Piscataway, 2016).

https://doi.org/10.1038/nature14539
https://doi.org/10.1145/3448250
https://doi.org/10.1109/MC.2022.3148714
https://doi.org/10.1109/MC.2022.3148714
https://doi.org/10.1609/aaai.v34i09.7123
https://doi.org/10.1109/JPROC.2018.2871057
https://doi.org/10.1016/j.micpro.2019.01.009
https://doi.org/10.1038/s41586-021-04362-w
https://doi.org/10.1038/s41586-021-04362-w
https://doi.org/10.1109/TED.2021.3110464
https://doi.org/10.1147/JRD.2019.2934050
https://doi.org/10.3389/fnins.2016.00333
https://doi.org/10.1038/nature06932
https://doi.org/10.1038/nature06932
https://doi.org/10.1109/TCT.1971.1083337
https://doi.org/10.1109/TCT.1971.1083337
https://doi.org/10.1063/1.4903470
https://doi.org/10.1063/1.4903470
https://doi.org/10.1038/s41467-018-04485-1
https://doi.org/10.1038/s41467-018-04485-1
https://doi.org/10.1109/ICCAD.2015.7372570
https://doi.org/10.1109/MNANO.2018.2844902
https://doi.org/10.3389/frai.2021.699148
https://doi.org/10.1109/IEDM45625.2022.10019569
https://doi.org/10.1145/3354265.3354266
https://doi.org/10.1109/TCAD.2020.3043731
https://doi.org/10.1109/TCAD.2020.3043731
https://doi.org/10.1088/1361-6528/ab554b
https://doi.org/10.1088/1361-6528/ab554b
https://doi.org/10.3389/fnins.2020.00103
https://doi.org/10.3389/fnins.2020.00103
http://arxiv.org/abs/1907.10228
https://doi.org/10.1109/IJCNN.2016.7727298
https://doi.org/10.1063/1.5118217
https://doi.org/10.1145/3381859
https://doi.org/10.1021/acsaelm.9b00792
https://doi.org/10.1039/c6nr03810g


10

Vol:.(1234567890)

Scientific Reports |        (2023) 13:14963  | https://doi.org/10.1038/s41598-023-42214-x

www.nature.com/scientificreports/

 30. Lee, C., Noh, K., Ji, W., Gokmen, T. & Kim, S. Impact of asymmetric weight update on neural network training with tiki-taka 
algorithm. Front. Neurosci. https:// doi. org/ 10. 3389/ fnins. 2021. 767953 (2022).

 31. Rasch, M. J. et al. A Flexible and Fast Pytorch Toolkit for Simulating Training and Inference on Analog Crossbar Arrays 1–4 (IEEE, 
Piscataway, 2021). https:// doi. org/ 10. 1109/ AICAS 51828. 2021. 94584 94.

 32. Rasch, M. J., Gokmen, T. & Haensch, W. Training large-scale artificial neural networks on simulated resistive crossbar arrays. IEEE 
Des. Test 37, 19–29. https:// doi. org/ 10. 1109/ MDAT. 2019. 29523 41 (2020).

 33. Biewald, L. Experiment tracking with weights and biases (2020). Software available from https:// www. wandb. com.

Acknowledgements
The authors acknowledge the IBM-SUNY AI Alliance for financial support for this work, T. Murray (SUNY 
Polytechnic Institute) for metrology support, and M. Rasch (IBM) for assistance with the AIHWKit.

Author contributions
M.A., N.G, T.A, N.C. conceived the experiment(s), M.A. conducted the experiment(s), M.L. helped with the 
experimental setup, K.B. fabricated the devices, I.S. and O.S. provided inputs for the device fabrication process, 
N.C., N.G. and T.A. guided the overall effort. All authors reviewed the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 023- 42214-x.

Correspondence and requests for materials should be addressed to N.C.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2023

https://doi.org/10.3389/fnins.2021.767953
https://doi.org/10.1109/AICAS51828.2021.9458494
https://doi.org/10.1109/MDAT.2019.2952341
https://www.wandb.com
https://doi.org/10.1038/s41598-023-42214-x
https://doi.org/10.1038/s41598-023-42214-x
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Material to system-level benchmarking of CMOS-integrated RRAM with ultra-fast switching for low power on-chip learning
	Results
	Fabricated RRAM device stack. 
	Analog switching for fully in-memory training. 
	Dependence on RRAM forming conditions. 
	RRAM analog switching. 
	Benchmarking of hafnium oxide and tantalum oxide RRAM performance. 

	Analog fully in-memory training accuracy. 

	Discussion
	Conclusion
	Methods
	Testing. 
	Analog fully in-memory training method. 

	References
	Acknowledgements


