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Exploring shared pathways 
and the shared biomarker 
ERRFI1 in Obstructive sleep 
apnoea and atherosclerosis using 
integrated bioinformatics analysis
Bowen Chen 1, Liping Dong 1, Jihua Zhang 2, Ying Hao 1, Weiwei Chi 1 & Dongmei Song 1,2*

Obstructive sleep apnea (OSA) is an upper airway disorder occurring during sleep and is associated 
with atherosclerosis (AS). AS is a cardiovascular disease caused by environmental and genetic factors, 
with a high global mortality rate. This study investigated common pathways and potential biomarkers 
of OSA and AS. Microarray data were downloaded from the Gene Expression Omnibus (GEO) database 
and used to screen for differentially expressed genes (DEGs) in the OSA and AS datasets. A weighted 
gene co-expression network analysis (WGCNA) was used to identify the co-expression modules of OSA 
and AS. The least absolute shrinkage and selection operators (LASSO) were used to determine critical 
biomarkers. Immune cell infiltration analysis was used to investigate the correlation between immune 
cell infiltration and common biomarkers of OSA and AS. Results revealed that differentially expressed 
genes may be involved in inflammatory processes, chemokine signaling pathways, and molecular 
changes in cell adhesion. ERBB receptor feedback inhibitor 1 (ERRFI1) was the best-shared biomarker 
for OSA and AS. Immune infiltration analysis showed that ERRFI1 expression was correlated with 
immune cell changes. Changes in immune pathways, inflammatory processes, and cell adhesion 
molecules may underlie the pathogenesis of both diseases, and ERRFI1 may be a potential diagnostic 
marker for patients with OSA and AS.

OSA is a major public health problem affecting 5–20% of the general population, with a worldwide prevalence 
of approximately 100 million individuals aged 30–69  years1. OSA is a condition of apnea and hypoventilation 
caused by the collapse of the upper airway during sleep, accompanied by snoring, disturbed sleep architecture, 
decreased oxygen saturation, and daytime  sleepiness2. Long-term OSA can lead to cardiovascular diseases, dia-
betes, depression, motor vehicle accidents, and workplace accidents, resulting in a considerable burden on the 
global healthcare system and economic  burden3.

Atherosclerosis is a chronic inflammation of blood vessels triggered by a complex interaction of risk factors 
and arterial wall cells. Previous studies have shown that OSA can lead to atherosclerosis (AS). In a series of pro-
spective studies, the incidence of coronary artery disease was found to be higher in patients with OSA (16.2%) 
than in those without OSA (5.4%)4. And the prevalence of atherosclerosis increases significantly with the severity 
of OSA, up to 42% in patients with moderate to severe  OSA5. Recent evidence also suggests that individuals at 
high risk for OSA are more likely to develop coronary  plaque6. OSA can cause atherosclerosis and can induce 
AS through the activation of inflammatory pathways including hypoxia-inducible factor, nuclear factor kappa-
light-chain-enhancer of activated B cells pathway, Toll-like receptor 4 (TLR4), adhesion molecules, and tumor 
necrosis  factor7. It also contributes to the development of AS by causing abnormal platelet  aggregation8. Oxidative 
 stress9 and abnormal glucolipid metabolism mediate the development of  AS10. Previous studies have shown that 
a high-cholesterol diet (HCD) is the traditional induction modality for inducing AS in  mice11. Notably, OSA 
and a high-cholesterol diet (HCD) may cause AS by distinct  mechanisms12. The main pathological process of 
OSA is chronic intermittent hypoxia (CIH)13. Previous studies have reported that CIH is a weaker inducer of 
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AS8 and there are important differences between CIH- and HCD-induced activation of inflammatory pathways. 
Histologically, CIH-induced atherosclerotic plaques did not have a necrotic core, whereas HCD-induced plaques 
have a typical necrotic core and a fibrous cap. Furthermore, HCD leads to the formation of macrophage foam 
cells, but CIH does not. These findings reflect the inherent differences in pathology and underlying mechanisms 
between the two types of atherosclerosis in terms of the nature of the pathology and underlying mechanisms. 
OSA and AS are closely related and mechanistically different, so it is important to study the mechanisms of the 
two diseases for early intervention and treatment. However, there is a paucity of research into the similarities 
and differences between the two diseases and further exploration is needed.

In this study, we collected data from the GEO database, then screened for differential genes, performed 
enrichment analysis, WGCNA analysis, Gene Set Enrichment Analysis (GSEA)  analysis14, and  LASSO15 regres-
sion models to screen for shared pathways and key biomarkers for OSA and AS, and analyzed the expression 
levels and diagnostic value of the genes, validated the dataset for validation, and examined monocytes from 
blood samples collected from patients. By these similar methods, Zhang et al.16 found that the MAPK signal-
ing pathway may be associated with both pathogenesis of ankylosing spondylitis and ulcerative colitis and that 
poly(A) specific ribonuclease subunit PAN3 Gene (PAN3) may be a potential diagnostic marker for patients with 
ulcerative colitis complicated by ankylosing spondylitis. Similarly,  Gao17 used these similar approaches to find 
that immune responses may be associated with both epilepsy and subarachnoid hemorrhage pathogenesis and 
that Matrix metalloproteinase-9 (MMP9) and Complement C3a Receptor 1 (C3aR1) may be potential diagnostic 
markers for subarachnoid hemorrhage complicated by epilepsy. Using these methods, we aim to explore possible 
shared pathways of action between OSA and AS and identify new possible diagnostic and therapeutic strategies 
for patients with AS secondary to OSA (Fig. 1).

Results
Differential genetic screening. A total of 566 DEGs were identified in patients with OSA and normal 
controls, including 369 upregulated and 197 downregulated genes, as shown in the volcano plot (Fig. 2A). A total 
of 2189 DEGs (see Supplementary Table S1 online) of patients with AS and normal controls were screened, iden-
tifying 1256 up-regulated and 933 downregulated genes, as shown in the volcano plot (Fig. 2B). The DEGs were 
analyzed using the Kyoto Encyclopedia of Gene and Genome (KEGG, https:// www. genome. jp/ kegg/) pathway 
enrichment analysis. KEGG analysis showed that both OSA and AS were enriched in the cell adhesion molecule 
pathways (Fig. 2C,D, Supplementary Table S2 online). The two GEGs were taken to intersect to obtain differen-
tially expressed genes common to AS and OSA, with a total of 93 genes (Fig. 2E, Supplementary Table S3 online). 
The co-expressed differentially expressed genes were subjected to KEGG and Gene Ontology (GO) analysis (see 
Supplementary Table S4 online), and GO analysis (Fig. 3A) showed that a series of important processes were 
involved, myeloid leukocyte migration, leukocyte chemotaxis, and response to chemokine, etc., and in terms 
of KEGG (Fig. 3B), several important pathways are involved, such as Cytokine-cytokine receptor interaction, 
Chemokine signaling pathway, and these results strongly suggest that inflammatory processes are associated 
with both OSA and AS are related.

Construction and module analysis of weighted gene co-expression network analysis 
(WGCNA). WGCNA was used to identify differentially expressed co-expressed clusters of genes between 
OSA and AS, and to calculate the correlation between the combined modules and disease characterization. 
Two datasets, GSE135917 and GSE100927, were used for the WGCNA analysis (see Supplementary Table S5 
online). Outliers were checked using sample clustering, and no samples were removed from either GSE135917 or 
GSE100927 (see Supplementary Figs. S1, S2 online). According to the approximate scale-free topology criterion, 
β = 6 was chosen to determine the soft threshold in the OSA model, and β = 5 was chosen to determine the soft 
threshold in the AS model (see Supplementary Figs. S3, S4 online). Cluster dendrogram of the co-expression of 
AS and OSA (Fig. 4A,C). After merging similar gene modules, four modules (Fig. 4B) were identified in the OSA 
model and five modules (Fig. 4D) were identified in the AS model. Among the OSA modules, the gray module 
had the strongest positive correlation with OSA (R = 0.39), and the turquoise module had the strongest negative 
correlation with the occurrence of OSA (R =  − 0.61). The turquoise module positively correlated with the occur-
rence of AS (R = 0.72) (see Supplementary Table S6 online).

Identifying shared genes and shared pathways. In total, 109 genes (Fig.  5A, see Supplementary 
Table S7 online) overlapped between the strongest positive and negative modules of OSA and AS, which may be 
associated with the pathogenesis of OSA and AS. Enrichment analysis was performed for these 109 genes. KEGG 
analysis indicated that these genes may be involved in chemokine signaling pathways and cell adhesion molecule 
pathways (Fig. 5B, see Supplementary Table S8 online). GO analysis showed that these genes were present in the 
extracellular matrix (Fig. 5C, see Supplementary Table S9 online). GSEA was then performed on OSA and AS 
samples and immune responses were found to be involved in common pathogenic processes (Fig. 5D,E). There-
fore, we propose that the onset of OSA and AS is driven by a combination of immune responses and changes in 
cell adhesion molecules.

Potential shared diagnostic genes selection by least absolute shrinkage and selection opera-
tor. After taking the intersection of the Venn diagrams for DEGs and modular hub genes (Fig. 6A), 34 shared 
genes were identified (see Supplementary Table S10 online). To narrow the range of potentially shared diagnostic 
gene biomarkers among the 34 DEGs, we used the LASSO model (Fig. 6B,C,E,F, see Supplementary Table S11 
online). Five shared key genes (Fig. 6D, see Supplementary Table S12 online) were mined using LASSO regres-
sion: ERRFI1, FNDC1, HLA-DRB1, HSD11B1, and PERP.

https://www.genome.jp/kegg/
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Candidate biomarker expression levels and diagnostic value. Expression of the five key genes 
identified in the GSE135917 and GSE100927 datasets. Interestingly, differential expression analysis showed that 
ERRFI1 and FNDC1 were significantly under-expressed in OSA, and HLA-DRB1, HSD11B1, and PERP were 
significantly overexpressed in OSA (Fig. 7A–E). However, the FNDC1 and HLA-DRB1 expression was signifi-
cantly elevated, and the ERRFI1, HSD11B1, and PERP expression were significantly decreased in AS (Fig. 7F–J). 
We also determined the diagnostic capabilities of these five shared markers based on receiver operating char-
acteristic (ROC) analysis. In GSE135917, we obtained an area under the curve (AUC) > 0.6 for all five genes 
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Figure 1.  Schematic presentation of the analysis process.
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(Fig. 7K–O). In GSE100927, the AUC of the five genes obtained was > 0.6 (Fig. 7P–T), indicating relatively sat-
isfactory diagnostic efficiency.

Validation of external datasets and qRT-PCR results. We validated the expression of ERRFI1, 
FNDC1, HLA-DRB1, HSD11B1, and PERP in OSA using the external validation dataset, GSE38792. Differ-
ential expression analysis showed significant differences (p < 0.05) in ERRFI1 and HLA-DRB1, similar to the 
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above results (Fig. 8A–E); however, the remaining three genes were not statistically significant (p > 0.05) in the 
validation set. In another independent AS validation set, GSE43292, the expression levels of ERRFI1 and PERP 
differed significantly across samples, similar to the above results (Fig. 8F–J); however, the remaining three genes 
were not statistically significant (p > 0.05) in the validation set. Interestingly, there were significant differences 
(p < 0.05) in ERRFI1 expression in the OSA and AS groups compared to controls. For this differential gene, 
fresh whole blood samples were collected from ten patients, PBMC was extracted, and qRT-PCR analysis was 
performed to further validate the differential expression of ERRFI1 in the patient samples. The results showed 
reduced ERRFI1 expression in patients with OSA compared to normal subjects, and similarly reduced ERRFI1 
expression in patients with AS (p < 0.05) (Fig. 8K,L), suggesting that ERRFI1 has the potential to be a shared 
diagnostic marker for both diseases.

Immune cell infiltration and its correlation with candidate biomarkers. This study investigated 
the differences in immune cell infiltration in different samples, taking into account the important role of the 
immune response in the development of OSA and AS. In GSE135917, 28 immune cells were identified and 
shown in the heat and violin plots (Fig. 9A,B), and in GSE100927 28 immune cells were identified and shown in 
the heat and violin plots (Fig. 9D,E). Additionally, the screened candidate biomarkers were found to be closely 
related to immune cells (Fig. 9C,F). ERRFI1 expression was significantly associated (p < 0.05) with T follicular 
helper cells, natural killer T cells, Memory B cells, macrophages, immature B cells, eosinophils, CD56dim natu-
ral killer cell, CD56brght natural killer cells, activated dendritic cells, and Activated CD8 T cells in OSA samples. 
In the AS samples, ERRFI1 expression was significantly associated (p < 0.05) with type 17 T helper cells, type 
1 T helper cells, T follicular helper cells, regulatory T cells, natural killer T cells, natural killer cells, monocytes, 
MDSC, macrophages, immature dendritic cells, immature B cells, gamma delta T cells, effector memory CD4 
T cells, central memory CD4 T cells, CD56dim natural killer cell, CD56brght natural killer cells, activated den-
dritic cells, activated CD8 T cells, activated CD4 T cells, and activated B cells.

Discussion
OSA has a high prevalence globally and is one of the main causes of  atherosclerosis18. Previous studies have 
shown a close association between OSA and  AS19 and have also identified mechanistic  differences12. We consider 
that OSA and AS share a common mechanism of response to systemic injury; however, there is little research on 
this mechanism. We, therefore, conducted a systematic biological approach in order to explore possible shared 
pathways of action in OSA and AS, as well as new possible potential diagnostic and therapeutic targets in OSA 
and AS, and found that OSA and AS may be driven by a combination of immune responses and molecular 
changes in cell adhesion, with ERRFI1 as a key shared gene steadily declining in OSA and AS patients with a 
well diagnostic role.

We obtained common differential genes by taking the intersection of differential genes from the OSA and 
AS datasets. Enrichment analysis of these common differential genes revealed the involvement of immune, 
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inflammatory processes, and cell adhesion molecular pathways. Previous studies have shown the involvement of 
immune responses in the pathogenesis of both OSA and AS, with the presence of proinflammatory  factors20 and 
immune cell aggregation in atherosclerotic  plaques21. Immune cells such as B lymphocytes, NK cells, and CD8 + /
CD56 + cells are involved in the inflammatory process, leading to the development of cardiovascular complica-
tions in  OSA22,23. Cell adhesion molecules are molecules that cause adhesion between cells, between cells and the 
matrix, or between cell–matrix cells. They are involved in cell recognition, activation, signaling, cell proliferation, 
and differentiation and are the molecular basis of a series of important physiological and pathological processes, 
such as immune response, inflammatory response, and tumor metastasis. Intermittent hypoxia increases cell 
permeability by generating reactive oxygen species that cause VE-cadherin to be  excluded24. Potential role of 
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monocyte adhesion, chemotaxis, and macrophage polarization in the development of OSA-induced cardiovas-
cular  disease25. OSA also acts on tumors through integrin-based  adhesion26. Similarly, cell adhesion factors play 
an important role in the disease progression. Cell adhesion molecules have been found to potentially contribute 
to atherosclerotic plaque rupture during AS progression of  AS27. Therefore, we consider that OSA and AS share 
a common pathogenesis, involving immune responses, inflammatory processes, and cell adhesion factors.

A total of 109 genes overlapped in the strongest positive and negative modules of the WGCNA for OSA 
and AS. Thus, these genes may be involved in the pathogenesis of OSA and AS. We identified 34 shared genes 
based on the intersection of DEGs and modular hub genes using Venn diagrams. To narrow down the range of 
potentially shared diagnostic genes among the 34 DEGs, we used the LASSO model. Using LASSO regression, 
five shared key genes were mined: ERRFI1, FNDC1, HLA-DRB1, HSD11B1, and PERP. We then validated these 
five genes with a validation dataset, collected blood samples from patients with OSA and AS, and found that 
only the ERRFI1 gene was stably decreased in OSA and AS. This is the first time that ERRFI1 has been identi-
fied and reported as a potential diagnostic marker for these two diseases, which has never been addressed in 
previous studies. ERRFI1 (also known as Mig6, RALT, or gene 33) is an adapter protein with complex functions 
in cell biology and human diseases. Interestingly, ERRFI1 was found to play different roles in different cells and 
 tissues28. In human umbilical vein endothelial cells, ERRFI1 exerts antiapoptotic and antiangiogenic effects by 
inhibiting EGFR  signaling29. Knockdown of ERRFI1 in human lung microvascular endothelial cells promotes 
 apoptosis30, which induces endothelial proliferation of vascular smooth muscle cells and increased cell migration 
and proliferation of vascular smooth muscle  cells31. ERRFI1 can also act on EGFR expressed in intimal smooth 
muscle cells of human atherosclerotic plaques and plays a key role in the development of atherosclerosis. It 
has also been shown that smooth muscle cells in atherosclerosis show increased EGFR downstream signaling 
and EGFR  phosphorylation31. Furthermore, ERRFI1 reduces the production of inflammatory  mediators32 and 

Figure 5.  Identifying shared genes and shared pathways. (A) Venn diagram showing the overlap of 109 genes 
in the OSA and AS modules. (B) Bubble map of KEGG analysis of 109 shared genes between OSA and AS from 
the WGCNA screen. (C) Bubble map of GO analysis of 109 shared genes between OSA and AS screened by 
WGCNA. (D) Results of the Single-gene GSEA analyses of DEGs in OSA. (E) Results of the Single-gene GSEA 
analyses of DEGs in AS.
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regulates excessive inflammatory responses by regulating the activation of EGFR in endotoxemia. This inflam-
matory factor expression is significantly increased (p < 0.05) when ERRFI1 is knocked  down33. Therefore, we 
postulated that decreased ERRFI1 in OSA and AS could cause apoptosis of vascular endothelial cells, induce 
vascular smooth muscle cell proliferation, and increase inflammatory. These findings suggest a reduced protec-
tive factor against the pathogenesis of both diseases. This study provides new ideas for future research on the 
protective mechanisms of both OSA and AS.

Considering the important role of the immune response in the development of OSA and AS, we investigated 
the differences in immune cell infiltration in different samples. Our results showed that both OSA and AS were 
closely associated with immune cell infiltration, consistent with the findings of previous  studies23. OSA has a 
significantly effect on the number of circulating inflammatory cells, lymphocytes, natural killer (NK and NKT-
like  cells34. Furthermore, aggregation of pro-inflammatory factors and immune cells was also present in athero-
sclerotic  plaques20,21. Interestingly, Activated CD8 T cells and CD56 bright natural killer cells showed the same 
trends in OSA and AS. Previous studies have shown that T lymphocyte abnormalities play an important role in 
endothelial cell  dysfunction35. The study Zhang et al. showed elevated levels of CD8 + T lymphocytes in patients 
with OSA compared to  controls16 and that activated CD8 + T lymphocytes can have a killing effect on vascular 
endothelial cells, thus aiding the progression of secondary atherosclerosis. Atherosclerosis is a chronic inflam-
matory disease with immune  infiltration36, and Patients with atherosclerosis have significantly elevated CD8 T 
 cells37, mainly in the fibrous cap area. Second, NKs cells play an important role in  atherosclerosis38,39. A study of 
48 patients with OSA found that both NK and NKT cells were increased in patients with OSA compared with 
 controls34. CD56bright natural killer cells cause cell lysis, vascular endothelial cell damage, and atherosclerosis 
by releasing proinflammatory factors, antibody-dependent cytotoxicity, perforins, and  granzymes40,41. In the 
correlations between ERRFI1 and 28 immune cells, we found a significant negative correlation between ERRFI1 
and cellular immunity, suggesting a decrease in ERRFI1 and an increase in cellular immunity, which may be 
associated with inflammation and impaired vascular endothelial function in both diseases.

Our study has certain limitations. First, we only studied peripheral blood lymphocytes from patients; there-
fore, we could not explore the systemic changes in ERRFI1 in OSA and AS. Second, the small patient sample 
raises the possibility of bias. We plan to expand the collection of blood and tissue samples in future research in 
order to validate these results.
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Conclusion
Despite these limitations, this is the first study to use bioinformatics to explore the common mechanisms of 
action of OSA and AS, and our results suggest that immune pathways, inflammatory processes, and cell adhe-
sion molecules are implicated in the pathogenesis of OSA and AS. Furthermore, we identified for the first time 
that ERRFI1 may be a potential diagnostic marker for OSA and AS, declining in both diseases. This suggests 
that a common underlying mechanism involving ERRFI1 may exist. Immune cell infiltration results showed 
that both OSA and AS were closely associated with immune cell infiltration, and ERRFI1 was closely associated 
with cellular immunity. This study offers a new perspective for exploring the common pathogenesis of OSA and 
AS and the intrinsic link between the two diseases and screening for a stable and reliable shared disease marker 
that can provide potential diagnostic and therapeutic targets for both diseases. We plan to further investigate 
the mechanisms of cell adhesion molecular pathways and ERRFI1 expression in OSA and AS based on both 
in vivo and in vitro experiments.

Methods
Datasets and data pre-processing. Figure 1 illustrates the workflow chart of data preparation, process-
ing, analysis, and validation. Gene expression data for OSA and atherosclerosis were downloaded from the GEO 
 database42. Further information is available online (https:// www. ncbi. nlm. nih. gov/ geo/ datasets). The dataset 
screening criterion was that each dataset should have no fewer than 12 samples (Control sample + sample size 
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Figure 7.  Candidate gene expression levels and diagnostic value. (A–E) Expression of ERRFI1, FNDC1, 
HLA-DRB1, HSD11B1, and PERP in GSE135917. (F–J) Expression of ERRFI1, FNDC1, HLA-DRB1, HSD11B1, 
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of disease patients) to ensure the accuracy of the WGCNA. The GSE135917 dataset, based on the GPL6244 
platform, was then downloaded and contained samples from eight control groups and 34 patients with OSA. To 
validate the diagnostic effect of the gene, the GSE38792 dataset based on GPL6244 was downloaded. The data 
set contained samples from 8 control subjects and 10 patients with OSA. Adipose tissue samples were collected 
from patients in both datasets.

To investigate atherosclerosis, the GSE100927 dataset based on the GPL17077 platform, which included 
35 controls and 69 atherosclerotic samples, was downloaded. To validate the diagnostic value of the gene, the 
GSE43292 dataset based on GPL6244, which contained samples from 32 controls and 32 atherosclerotic patients, 
was downloaded. Samples from both datasets were collected from arterial blood vessels. All data annotation and 
extraction were performed using the R software ((R.4.2.1, https:// www.r- proje ct. org/).

Differential genetic screening. Screening of the DEGs datasets for GSE135917 and GSE10092 was con-
ducted. Limma R packag to screen DEGs. An adjusted p-value < 0.05 and |LogFC|> 0.5 were selected as the cut-
off standard. R software was used to plot the differential gene clustering of the volcanoes.

Construction and module analysis of weighted gene co-expression network analysis 
(WGCNA). (Weighted Gene Co-expression Network Analysis)  WGCNA43 is a bioinformatics analysis 
method used to describe gene association patterns among different samples, The WGCNA software package is 
used to perform WGCNA analysis. Co-expression networks corresponding to the clinical features of DEGs in 
OSA and AS were constructed using the WGCNA R package. First, hierarchical cluster analysis was performed 
using the cluster function in R to exclude outlier samples. Then, according to the criteria for scale-free networks, 
the "pickSoftThreshold" function in the WGCNA package was used to select a suitable soft-power threshold β 
(with values ranging from 1 to 20) for automatic network construction. The results were clustered using a topo-
logical overlap matrix analysis, which contained module assignments labeled by color and module eigengenes. 
Pearson’s correlation analysis was used to calculate the correlation between module feature (ME) and clinical 
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Figure 8.  Validation of external datasets and qRT-PCR results. (A–E) Expression of ERRFI1, FNDC1, HLA-
DRB1, HSD11B1, and PERP in GSE38792. (F–J) Expression of ERRFI1, FNDC1, HLA-DRB1, HSD11B1, and 
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characteristics. |correlation coefficient (R)|> 0.3 and p-values < 0.05 were considered significant for interactions 
with clinical features.

Enrichment analysis. GO enrichment analysis is a bioinformatics method commonly used for compre-
hensive information retrieval from large-scale genetic data. The KEGG pathway enrichment analysis has been 
widely used to understand biological mechanisms and  functions44. The GO plot program package was used to 
visualize the GO and KEGG pathways. Finally, important signaling pathways were explored using the cluster 
profile and GSVA packages. The gene sets and expression matrices of OSA and AS were analyzed using GSEA to 
explore their possible regulatory pathways.

Identification of shared genes and Feature selection by the least absolute shrinkage and selec-
tion operator. Combinatorial analysis of genes from the WGCNA and DEG screens was performed by 

CD56bright.natural.killer.cell

Central.memory.CD8.T.cell

Type.2.T.helper.cell

Memory.B.cell

Immature.B.cell

Activated.CD4.T.cell

Activated.CD8.T.cell

Eosinophil

Effector.memory.CD8.T.cell

Activated.B.cell

Monocyte

Type.17.T.helper.cell

CD56dim.natural.killer.cell

Type.1.T.helper.cell

Neutrophil

Immature.dendritic.cell

Plasmacytoid.dendritic.cell

Natural.killer.T.cell

Gamma.delta.T.cell

Regulatory.T.cell

Activated.dendritic.cell

T.follicular.helper.cell

MDSC

Macrophage

Mast.cell

Natural.killer.cell

Effector.memory.CD4.T.cell

Central.memory.CD4.T.cell

Type Type
Con
OSA

−4

−2

0

2

4

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n

p=0.008p=0.122

p=0.011

p=0.937

p<0.001

p=0.648

p=0.006

p=0.248

p=0.051

p=0.107

p=0.863

p=0.863
p=0.937

p=0.001

p=0.352

p=0.060

p=0.147

p=0.114

p=0.604
p=0.188

p=0.519

p=0.539

p=0.718

p=0.352
p=0.421

p=0.289

p=0.060p=0.167

Con
OSA

Ac
tiv

ate
d.B

.ce
ll

Ac
tiv

ate
d.C

D4.T
.ce

ll

Ac
tiv

ate
d.C

D8.T
.ce

ll

Ac
tiv

ate
d.d

en
dr

itic
.ce

ll

CD56
br

igh
t.n

atu
ra
l.k

ille
r.c

ell

CD56
dim

.na
tur

al.
kil

ler
.ce

ll

Eo
sin

op
hil

Gam
ma.d

elt
a.T

.ce
ll

Im
matu

re
.B

.ce
ll

Im
matu

re
.de

nd
riti

c.c
ell

MDSC

Mac
ro
ph

ag
e

Mas
t.c

ell

Mon
oc

yte

Natu
ra
l.k

ille
r.T

.ce
ll

Natu
ra
l.k

ille
r.c

ell

Neu
tro

ph
il

Pl
as

mac
yto

id.
de

nd
riti

c.c
ell

Reg
ula

tor
y.T

.ce
ll

T.f
oll

icu
lar

.he
lpe

r.c
ell

Ty
pe

.1.
T.h

elp
er.

ce
ll

Ty
pe

.17
.T.

he
lpe

r.c
ell

Ty
pe

.2.
T.h

elp
er.

ce
ll

Ef
fec

tor
.m

em
or

y.C
D4.T

.ce
ll

Mem
or

y.B
.ce

ll

Cen
tra

l.m
em

or
y.C

D4.T
.ce

ll

Cen
tra

l.m
em

or
y.C

D8.T
.ce

ll

Ef
fec

tor
.m

em
or

y.C
D8.T

.ce
ll

* **
* ***

* **
* ** *
** *** *
** *

* * * **
** **

* * *
*

** *

*

*

** *
***

** ***
*

*
*

** **

**

**
**

Activated.B.cell
Activated.CD4.T.cell
Activated.CD8.T.cell

Activated.dendritic.cell
CD56bright.natural.killer.cell

CD56dim.natural.killer.cell
Central.memory.CD4.T.cell
Central.memory.CD8.T.cell
Effector.memory.CD4.T.cell
Effector.memory.CD8.T.cell

Eosinophil
Gamma.delta.T.cell

Immature.B.cell
Immature.dendritic.cell

Macrophage
Mast.cell

MDSC
Memory.B.cell

Monocyte
Natural.killer.cell

Natural.killer.T.cell
Neutrophil

Plasmacytoid.dendritic.cell
Regulatory.T.cell

T.follicular.helper.cell
Type.1.T.helper.cell

Type.17.T.helper.cell
Type.2.T.helper.cell

ER
RFI

1

FN
DC1

HLA
−D

RB1

HSD
11

B1
PE

RP

−0.50

−0.25

0.00

0.25

0.50

***  p<0.001
**  p<0.01
 *  p<0.05

Correlation

G
SM

2696611

G
SM

2696612

G
SM

2696613

G
SM

2696615

G
SM

2696616

G
SM

2696617

G
SM

2696618

G
SM

2696621

G
SM

2696624

G
SM

2696625

G
SM

2696627

G
SM

2696635

G
SM

2696636

G
SM

2696642

G
SM

2696647

G
SM

2696648

G
SM

2696650

G
SM

2696651

G
SM

2696660

G
SM

2696662

G
SM

2696669

G
SM

2696671

G
SM

2696678

G
SM

2696682

G
SM

2696688

G
SM

2696691

G
SM

2696693

G
SM

2696694

G
SM

2696695

G
SM

2696697

G
SM

2696699

G
SM

2696700

G
SM

2696709

G
SM

2696710

G
SM

2696711

G
SM

2696609

G
SM

2696610

G
SM

2696614

G
SM

2696619

G
SM

2696620

G
SM

2696622

G
SM

2696623

G
SM

2696626

G
SM

2696628

G
SM

2696629

G
SM

2696630

G
SM

2696631

G
SM

2696632

G
SM

2696633

G
SM

2696634

G
SM

2696637

G
SM

2696638

G
SM

2696639

G
SM

2696640

G
SM

2696641

G
SM

2696643

G
SM

2696644

G
SM

2696645

G
SM

2696646

G
SM

2696649

G
SM

2696652

G
SM

2696653

G
SM

2696654

G
SM

2696655

G
SM

2696656

G
SM

2696657

G
SM

2696658

G
SM

2696659

G
SM

2696661

G
SM

2696663

G
SM

2696664

G
SM

2696665

G
SM

2696666

G
SM

2696667

G
SM

2696668

G
SM

2696670

G
SM

2696672

G
SM

2696673

G
SM

2696674

G
SM

2696675

G
SM

2696676

G
SM

2696677

G
SM

2696679

G
SM

2696680

G
SM

2696681

G
SM

2696683

G
SM

2696684

G
SM

2696685

G
SM

2696686

G
SM

2696687

G
SM

2696689

G
SM

2696690

G
SM

2696692

G
SM

2696696

G
SM

2696698

G
SM

2696701

G
SM

2696702

G
SM

2696703

G
SM

2696704

G
SM

2696705

G
SM

2696706

G
SM

2696707

G
SM

2696708

G
SM

2696712

Mast.cell

Eosinophil

Plasmacytoid.dendritic.cell

Neutrophil

Effector.memory.CD8.T.cell

CD56dim.natural.killer.cell

Type.17.T.helper.cell

Immature.dendritic.cell

Natural.killer.cell

Type.1.T.helper.cell

Natural.killer.T.cell

Activated.CD4.T.cell

CD56bright.natural.killer.cell

Macrophage

Activated.dendritic.cell

MDSC

T.follicular.helper.cell

Monocyte

Gamma.delta.T.cell

Regulatory.T.cell

Central.memory.CD8.T.cell

Central.memory.CD4.T.cell

Activated.CD8.T.cell

Effector.memory.CD4.T.cell

Type.2.T.helper.cell

Memory.B.cell

Immature.B.cell

Activated.B.cell

Category1 Type
Con
AS

-2

-1

0

1

2

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

p<0.001

p<0.001

p<0.001

p<0.001

p<0.001

p<0.001

p<0.001

p<0.001

p<0.001

p<0.001

p<0.001

p<0.001p<0.001
p<0.001

p<0.001

p<0.001

p<0.001

p<0.001

p<0.001

p<0.001
p<0.001

p<0.001

p<0.001

p<0.001

p<0.001

p<0.001
p<0.001

p=0.008

Con
AS

Ac
tiv
ate
d.B

.ce
ll

Ac
tiv
ate
d.C

D4
.T.
ce
ll

Ac
tiv
ate
d.C

D8
.T.
ce
ll

Ac
tiv
ate
d.d
en
dri
tic
.ce
ll

CD
56
bri
gh
t.n
atu
ral
.ki
lle
r.c
ell

CD
56
dim

.na
tur
al.
kill
er.
ce
ll

Eo
sin
op
hil

Ga
mm

a.d
elt
a.T
.ce
ll

Im
ma
tur
e.B

.ce
ll

Im
ma
tur
e.d
en
dri
tic
.ce
ll

MD
SC

Ma
cro
ph
ag
e

Ma
st.
ce
ll

Mo
no
cy
te

Na
tur
al.
kill
er.
T.c
ell

Na
tur
al.
kill
er.
ce
ll

Ne
utr
op
hil

Pla
sm
ac
yto
id.
de
nd
riti
c.c
ell

Re
gu
lat
ory
.T.
ce
ll

T.f
oll
icu
lar
.he
lpe
r.c
ell

Ty
pe
.1.
T.h
elp
er.
ce
ll

Ty
pe
.17
.T.
he
lpe
r.c
ell

Ty
pe
.2.
T.h
elp
er.
ce
ll

Eff
ec
tor
.m
em
ory
.C
D4
.T.
ce
ll

Me
mo
ry.
B.c

ell

Ce
ntr
al.
me
mo
ry.
CD

4.T
.ce
ll

Ce
ntr
al.
me
mo
ry.
CD

8.T
.ce
ll

Eff
ec
tor
.m
em
ory
.C
D8
.T.
ce
ll

** * *** ***
*** *** * ***
*** *** ***
*** * *** * ***
*** * *** ***
*** * *** ***

** *
*** ** *** ***
*** *** ***
*** *** * ***

*** ** *** * ***

*** ** *** * ***
**

*** * *** ** ***

*** * *** ***
** *** ***

** ** **
*** * *** ***
*** * *** ***
** ** *** *** ***
** *** ***

* ** *** ***

*** *** ***

* * **

* *** ***
** **

**

Activated.B.cell
Activated.CD4.T.cell
Activated.CD8.T.cell

Activated.dendritic.cell
CD56bright.natural.killer.cell

CD56dim.natural.killer.cell
Central.memory.CD4.T.cell
Central.memory.CD8.T.cell
Effector.memory.CD4.T.cell
Effector.memory.CD8.T.cell

Eosinophil
Gamma.delta.T.cell

Immature.B.cell
Immature.dendritic.cell

Macrophage
Mast.cell

MDSC
Memory.B.cell

Monocyte
Natural.killer.cell

Natural.killer.T.cell
Neutrophil

Plasmacytoid.dendritic.cell
Regulatory.T.cell

T.follicular.helper.cell
Type.1.T.helper.cell

Type.17.T.helper.cell
Type.2.T.helper.cell

ERRFI1

FN
DC1

HLA
−D

RB1

HSD11
B1

PERP

−0.4

0.0

0.4

0.8

***  p<0.001
**  p<0.01
 *  p<0.05

Correlation

(A) (B) (C)

(D)

(E) (F)

Figure 9.  Analysis of immune infiltration associated with OSA and AS. Heatmap (A) and violin plot (B) show 
the distribution of 28 immune cells in the GSE135917 sample. (C) Association of key shared genes with immune 
cell infiltration in GSE135917 samples. Heatmap (D) and violin plot (E) show the distribution of 28 immune 
cells in the GSE100927 sample. (F) Association of key shared genes with immune cell infiltration in GSE100927 
samples.
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plotting Venn diagrams. Overlapping genes were considered core-shared genes. Lasso is an important method 
for regression that uses an ℓ1 penalty to achieve a sparse solution. We used the "glmnet" package in R to per-
form LASSO regression to filter the best predictors of OSA and AS in the intersection of the above DEGs and 
WCGNA.

Candidate biomarker expression levels and diagnostic value. The expression levels of key 
shared genes (p < 0.05) were detected using the R software ggplot2 package box plots (GSE135917, GSE38792, 
GSE100927, and GSE43292). The AUC of ROC was used to determine the diagnostic value of potential biomark-
ers in the dataset (GSE135917, and GSE100927) using the pROC R package.

Extraction of peripheral blood mononuclear cells (PBMC). Purple anticoagulation tubes were used 
to collect 10 ml of whole blood samples from three patients with OSA, four patients with AS, and three normal 
controls. Human peripheral blood and phosphate buffer were mixed in a homogeneous ratio of 1:1 (10 ml:10 ml). 
Ten milliliters of lymphocyte separation liquid (SIGMA, 10,771) was applied in each 50 ml centrifuge tube, and 
20 ml of blood was gently added to the phosphate buffer on the upper surface of the lymphocyte separation 
liquid. The tubes were centrifuged in a centrifuge for 30 min (2000 rpm, 20 °C). The middle and upper inter-
face cloud layers were carefully collected and transferred to new 50 mL tubes. Finally, the PBMC was washed 
with phosphate buffer, centrifuged, and the supernatant was discarded. This study was approved by the Ethics 
Committee of First Hospital of Hebei Medical University and all participants provided their written informed 
consent to participate in the study. And the study was conducted in accordance with the relevant guidelines and 
the regulations.

Quantitative Real-Time PCR (qRT-PCR). Total RNA was extracted from the PBMC using the Eastep® 
Super Total RNA Extraction Kit (Promega Shanghai Ltd.). Pipette 1.5 μL of total RNA through the Nanodrop 
1000 for measurement. RNA-to-cDNA transcription was performed using GoScriptTM Reverse Transcription 
Mix, Random Primer Protocol, and Oligo (dT) Protocol from Promega. qRT-PCR was performed using a Roche 
LightCycler 480 qRT-PCR amplifier following the manufacturer’s instructions. Relative mRNA levels were nor-
malized to the level of glyceraldehyde-3-phosphate dehydrogenase, using the 2-ΔΔCt method. (ERRFI1-Fwd: 
5’-GAA GAC CTA CTG GAG CAG TCG-3’; ERRFI1-Rev: 5’-GAC TTT TGA GAT GGA CCA TTT CTG -3’).

ssGSEA. ssGSEA analysis using the "GSVA" R package was used to analyze the infiltration of 28 immune cells 
in lesions and normal samples. The correlation between core genes and the abundance of infiltrating immune 
cells was analyzed using Spearman’s correlation coefficients and a p-value < 0.05 was considered statistically 
significant.

Data availability
The datasets GSE135917, GSE38792, GSE100927 and GSE43292 for this study can be found in the GEO datasets 
(https:// www. ncbi. nlm. nih. gov/ geo/).
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