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Multiple neuron clusters 
on Micro‑Electrode Arrays 
as an in vitro model of brain 
network
Martina Brofiga 1,2,7, Serena Losacco 3,7, Fabio Poggio 1, Roberta Arianna Zerbo 4, 
Marco Milanese 4,5, Paolo Massobrio 1,6* & Bruno Burlando 3

Understanding the brain functioning is essential for governing brain processes with the aim of 
managing pathological network dysfunctions. Due to the morphological and biochemical complexity 
of the central nervous system, the development of general models with predictive power must start 
from in vitro brain network engineering. In the present work, we realized a micro‑electrode array 
(MEA)‑based in vitro brain network and studied its emerging dynamical properties. We obtained 
four‑neuron‑clusters (4N) assemblies by plating rat embryo cortical neurons on 60‑electrode MEA 
with cross‑shaped polymeric masks and compared the emerging dynamics with those of sister single 
networks (1N). Both 1N and 4N assemblies exhibited spontaneous electrical activity characterized 
by spiking and bursting signals up to global activation by means of network bursts. Data revealed 
distinct patterns of network activity with differences between 1 and 4N. Rhythmic network bursts 
and dominant initiator clusters suggested pacemaker activities in both assembly types, but the 
propagation of activation sequences was statistically influenced by the assembly topology. We proved 
that this rhythmic activity was ivabradine sensitive, suggesting the involvement of hyperpolarization‑
activated cyclic nucleotide‑gated (HCN) channels, and propagated across the real clusters of 4N, 
or corresponding virtual clusters of 1N, with dominant initiator clusters, and nonrandom cluster 
activation sequences. The occurrence of nonrandom series of identical activation sequences in 4N 
revealed processes possibly ascribable to neuroplasticity. Hence, our multi‑network dissociated 
cortical assemblies suggest the relevance of pacemaker neurons as essential elements for generating 
brain network electrophysiological patterns; indeed, such evidence should be considered in the 
development of computational models for envisaging network behavior both in physiological and 
pathological conditions.

The human brain is arranged as an assembly of different interconnected regions, known as brain networks, each 
hosting a dense network of synaptically-connected neurons, named neural network1. Many cell types are present 
within neural and brain networks (e.g., astrocytes, microglia, oligodendrocytes, pericytes, and epithelial cells), but 
neurons are that class of excitable cells whose electrophysiological signals can be accurately measured on different 
space and time scales (spikes, local field potentials, bold signals, etc.). In addition, neurons are responsible for 
the information transmission, as well as for the coding process thanks to the expression of complex  networks2,3.

Neural networks in the brain should comply with two competing demands, which might also be considered 
as fundamental organizational principles: functional segregation and integration, enabling both the rapid extrac-
tion of information and the generation of coherent brain  states4. As confirmed by studies reporting structural 
analyses of brain networks carried out on datasets describing the cerebral cortex of mammalian animal models 
(e.g., rat, cat, monkey), brain areas were found to be neither completely connected with each other nor randomly 
 linked5; their interconnections show a specific and intricate organization. The coexistence of high degrees of 
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local clustering and short path length is a peculiarity of modular  networks6, nowadays considered one of the 
best models to support the emergence of functional segregation (associated to local assemblies) and functional 
integration (provided by long-range connections).

Investigating the interplay between brain functioning and the underlying connectivity is fundamental not only 
for basic science but also it is a prerequisite for interacting and intervening in brain networks with the ability to 
govern their processes, especially critical for the understanding of pathological network dysfunctions and their 
prevention or  reversion7,8. This aim is still deemed extremely ambitious because current knowledge is largely 
insufficient. A general theory about neural and brain networks providing operationally useful results is lacking 
mainly because the available paradigms are burdened by the enormous morphological and biochemical complex-
ity of the central nervous  system9. Hence, it appears obvious that the possibility of developing general models 
with predictive power can only be achieved through overcoming complexity, i.e., by a reconceptualization of the 
system in manageable terms on the biological and mathematical sides. Theoretical studies have provided answers 
to important questions about brain  circuitry10, dynamical  states11, and their  interactions12, nevertheless, they 
cannot be used to effectively interact and to appreciate possible effects of treatments for neurological pathologies.

In vitro models are a recognized compromise between the huge complexity of the entire brain and the 
abstracted theoretical models. In particular, the possibility to engineer brain networks paved the way to explore 
and find possible interplay between connectivity and expressed patterns of both  spontaneous13 and stimu-
lus-evoked  activity14. The recent advancements in Micro-Electrode Array (MEA) technology have promoted 
the investigation of the interaction of brain networks thanks to devices with thousands of recording micro-
transducers which allow mapping the propagation of the electrophysiological activity at high resolution among 
the different sub-populations of in vitro neuronal assemblies allowing a good tradeoff between controllability/
observability and similarity to the in vivo nervous  system15. Therefore, in vitro models have become a suitable 
tool to investigate brain physiological and pathological  conditions16.

In this work, we aimed to develop a simple in vitro experimental MEA-based model to investigate a brain 
network consisting of four interconnected neural (cortical) assemblies. To this purpose, we designed a cross-
shaped polymeric mask to separate the active area of MEA into four independent compartments. After 5 days 
in vitro (DIV), such a barrier was removed in order to allow a free and unconditioned neuritic growth among 
the clusters to realize four-neural-network systems characterized by a high degree of modularity. The emerging 
patterns of spontaneous electrophysiological activity were then compared with sister not-clusterized networks 
free to connect without physical constraint (controls). The final goal was to reveal activity patterns emerging 
from the interconnection of different neural networks, as compared to single networks, thus providing insight 
into brain information processing and posing the basis for its computational modeling.

Materials and methods
Polymeric devices set up on Micro‑Electrode Arrays (MEAs). Polydimethylsiloxane (PDMS) con-
straints were used to shape the network connectivity. In particular, we realized two types of PDMS constraints: 
cross-shaped and circular-shaped masks. The first one consists of an equal-armed cross-shaped mask (Fig. 1a) 
that was used to separate the active area of MEA into four sections, realizing four-neural-network systems (4N). 
The cross arms were about 2 mm long, their width was about 0.6 mm, and their thickness was about 0.3 mm. In 
this way, until the masks were not removed, the four neuronal assemblies remained physically separate (except 
for the culture medium). The circular-shaped mask was used to realize one-neural-network systems (1N). It 
consisted of a 5 mm-diameter circle with an area of about 20  mm2. Both types of masks were realized by mixing 
PDMS prepolymer and curing agent (Sylgard 184, Sigma Aldrich) at a 10:1 (w/w) ratio, polymerized in an oven 
at 80 °C for 20 min. PDMS masks were sterilized in 70% ethanol for 20 min and then aligned and reversibly 
bounded onto planar Micro-Electrode Arrays (MEAs).

Animals. Sprague–Dawley embryonic rats at day 18–19 (E18–19) were used. Adult animals to generate the 
embryos were housed and bred at the animal facility, housed at 22 ± 1 °C and 50% relative humidity, with 12 h 
light cycle. Pregnant female rats were anesthetized and sacrificed to obtain the E18-19 embryos. Experiments 
involving animals were carried out in accordance with the ARRIVE  guidelines17 established by the European 
Council (EU Directive 114 2010/63/EU) and the Italian D.L. n. 26/2014 and approved by the University of 
Genova Ethical Committee and by the Italian Ministry of Health (Project authorization No. 2018-75f11.N.POG, 
512/2015-PR and 140/2014-B-DGSAF24898). All efforts were made to minimize animal suffering and reduce 
the number of animals used. All methods and experiments presented in this work were performed in accordance 
with the relevant guidelines and regulations.

Rat cortical neuron primary cell cultures preparation. Primary cultures of cortical rat neurons were 
prepared from the cerebral cortices of E18-19 embryos. Briefly, cerebral cortex was isolated from embryos under 
stereotaxic binocular (Nikon SMZ-2T, Japan) in cold Hank’s Balanced Salt Solution (HBSS, Sigma Aldrich, 
W/O calcium and magnesium) medium bath at 4 °C, then meninges were removed, and the dissected tissues 
were transferred to freshly prepared sterile HBSS (W/O calcium and magnesium). Aliquots of cortex from 3 
embryos were separated and exposed to an enzymatic digestion by trypsin solution 0.125% (Gibco Invitrogen) 
and DNAse 0.05% (Sigma-Aldrich), and diluted in HBSS (Sigma-Aldrich) for 18 min in water bath, at 37 °C. 
The enzymatic dissociation was followed by gentle mechanical trituration. Cells were re-suspended in Neu-
robasal medium (Gibco Invitrogen) supplemented with 2% B-27 Supplement (Gibco Invitrogen), 1% stable 
L-Glutamine (GlutaMAX 100x, Gibco Invitrogen) and 1% PenStrep (Penicillin–Streptomycin Solution, Gibco 
Invitrogen). Cells were plated on 4Q-MEAs (Multi Channel Systems, Reutlingen, Germany, MCS) pre-sterilized 
and pre-coated with poly-L-ornithine (100 µg/ml, Sigma Aldrich), by depositing 50 µl of cell suspension within 
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circle masks, or 10 µl of cell suspension in each of the four sectors defined by the cross-shaped masks, obtaining 
a final density of 1500 cells/mm2. After an interval of 2.5 h, to allow for cell adhesion to substrate, aliquots of the 
above Neurobasal medium were added to MEA, to reach a final volume of about 1500 µl. No antimitotic drug 
preventing glia proliferation was added, since glia cells are known to be fundamental for the healthy develop-
ment of neuronal  populations18. Cultures were maintained at 37 °C with 5%  CO2 and 95% humidity. Five days 
after plating, the cross-shaped masks were removed in order to allow the development of neural fiber extension 
among the 4N different neural networks (clusters). In addition, half volume of the Neurobasal medium was 
replaced with BrainPhys medium (StemCell Technologies) supplemented with 2% NeuroCult SM1 (StemCell 
Technologies), 1% GlutaMAX, and 1% PenStrep solution. Thereafter, half of the medium was changed twice a 
week allowing the neurons to organize into morphologically and functionally mature neural networks (Fig. 1b).

Immunofluorescence staining. Cell cultures were fixed with 4% paraformaldehyde (Sigma-Aldrich), pH 
7.4, for 15 min at room temperature. Permeabilization was achieved with phosphate buffer solution (PBS, Sigma-
Aldrich) containing 0.1% Triton-X100 (Sigma-Aldrich) for 15 min at room temperature. Non-specific binding 
of antibodies was blocked with an incubation of 45 min in a blocking buffer solution (BBS) consisting of 3% of 
fetal bovine serum (FBS) in PBS. Cells were incubated with primary antibody diluted in BBS at 4 °C overnight in 

Figure 1.  (a) Positioning of the cross-shaped PDMS mask on the MEA. The black dots indicate the electrode 
position; the black trapezoidal shape on the left individuates the reference electrode. The active area of the MEA 
consists of 4 electrode clusters in the corners of 1.8 mm × 1.4 mm rectangle, where each cluster consists of 13 
electrodes (Ø = 30 µm), and an additional 7 electrodes are located in between clusters. (b) Immunofluorescence 
image of a representative four-neural-network (4N) at day in vitro (DIV) 18, where dendritic microtubule-
associated proteins (MAP2, green) and nuclei (DAPI, blue) were labeled. Immunofluorescence images of a 
representative 4N culture (c) at DIV 5, (d) DIV 8, and (e) DIV 18. Axonal connections established between two 
different neural networks (clusters), where dendritic microtubule-associated protein (MAP2, green) and axon 
microtubule-associated protein (Tau, red) were labeled. The cross-shaped mask was removed at DIV 5. The 
white superimposed lines delimited the area previously occupied by the cross-shaped mask. Scale bar: 100 µm.
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a humified atmosphere. The following antibodies were used: Tau (axon microtubule-associated protein, mouse 
monoclonal 1:500, Synaptic System), MAP2 (dendritic microtubule-associated protein, rabbit polyclonal 1:500, 
Synaptic System), and DAPI (nuclei, 1:1000, Synaptic System). Eventually, cultures were rinsed three times with 
PBS and exposed for 40 min at room temperature to the secondary antibodies: Alexa Fluor 488 (1:700, Invitro-
gen) and Alexa Fluor 549 (1:1000, Invitrogen), Goat anti-mouse or Goat anti-rabbit. Images were acquired with 
a fluorescence equipped microscope (Olympus BX-51), by using a CCD camera (Orca ER II, Hamamatsu) and 
Image ProPlus software (Media Cybernetic).

Dataset and experimental protocols. The dataset used in this work consists of n = 16 four-network 
systems (4N), and n = 11 one-network systems (1N) as controls. To allow a comparison among the activations of 
the temporal sequences between 4N and 1N assemblies (cf., section "Clusters activation sequences"), we grouped 
the microelectrodes of the control networks into “virtual clusters”, each of them made up of 13 units in order to 
maintain the same spatial organization of the 4N ones.

In addition, to investigate the role of Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels 
(cf. section “HCN channels are involved in the modulation of rhythmic activity”), we recorded the activity of 
n = 3 single-network systems (1N) to derive dose–response curves for setting the suitable concentration of the 
HCN inhibitor ivabradine (IVB), by the computation of the  IC50 for mean firing rate (MFR) inhibition (cf., sec-
tion "Dose–response curve  (IC50)"). Once such a value (15 µM) was derived, we performed n = 5 recordings on 
1N to evaluate the IVB effect (cf., section "HCN channels are involved in the modulation of rhythmic activity"). 
The total of n = 35 used MEAs came from 6 biological preparations, each exploited to plate both 4N and 1N 
assemblies. Table 1 summarizes the entire dataset used, pointing out the kind of experiment and the number of 
recordings. Recordings were performed at DIV 18.

Electrophysiology protocol. The spontaneous electrophysiological activity of the neural networks (both 1N and 
4N) was recorded at the sampling frequency of 10 kHz using MEA2100 system (MCS). Recordings were per-
formed outside the incubator and started about 5 min after positioning MEAs upon the heated (37 °C) ampli-
fier location to allow cultures to recover from the thermal and mechanical stress caused by the transfer from 
the incubator. Each experimental session lasted 20 min. To prevent evaporation and changes in the pH of the 
medium, a constant slow flow of humidified gas (5%  CO2, 20%  O2, 75%  N2) was maintained over the MEA. 
Data were acquired using MC_Rack software (MCS), while offline data analysis was performed in Matlab (The 
MathWorks, Natick, MS, USA).

Drug delivery protocol. To evaluate the effects of ivabradine (IVB, Sigma-Aldrich) on the spontaneous net-
work activity, we increased its concentration by direct injection into the culture medium. A wide administration 
scale (300 nM–30 µM) with significant points in the logarithmic scale was chosen to quantify the effects on the 
neuronal activity. For each concentration, the electrophysiological activity was measured for 10 min. Since the 
increasing concentrations of IVB were sequentially applied to the culture by directly pipetting the drug solution 
into the medium, we discarded the first two minutes of each phase to avoid observing mechanical effects due 
to the administration of the compound or seeing the transient effect due to diffusion processes. Therefore, the 
analyses were performed on 8-min recordings for each phase (i.e., IVB concentration).

Data analysis. Spike detection. In order to detect the spike occurrence, we employed the Precision Time 
Spike Detection (PTSD)  algorithm19. The detection requires the definition of three parameters: I) a differential 
threshold for each electrode, calculated as eight times the standard deviation of the signal’s biological and ther-
mal noise; II) the lifetime period of a spike set at 2 ms; III) the refractory period set at 1 ms. Data were not spike 
sorted, since, during a bursting event, a global increase of activity produces a fast sequence of spikes with differ-
ent and overlapping shapes, which makes the sorting difficult and  unreliable20.

Burst detection. Once the spike train was identified, the burst identification was performed by applying the 
string  method21, and by setting: (I) the minimum number of spikes inside each burst (set at 5); (II) the maximum 
time interval that occurs between two consecutive spikes into a burst (set at 100 ms).

Network burst detection. The choral activity of the network, named network burst (NB), was detected by 
employing a self-adaptive  algorithm22. It requires the setting of two parameters: (I) the maximum inter burst 

Table 1.  Summary of the dataset used in the present work.

Experiment DIV # MEAs Duration of each session

Characterization of spontaneous electrophysiological activity of four-network 
systems (4N) 18 16 20 min

Characterization of spontaneous electrophysiological activity of one-network 
systems (1N) 18 11 20 min

Dose–response curve for IVB effect on MFR and  IC50 evaluation in 1N 18 3 1 h

Evaluation of the effects induced by 15 µM IVB in 1N 18 5 10 min baseline + 10 min IVB + 10 min washout
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event interval for burst events within a network burst; (II) the minimum percentage of recording electrodes 
involved in a network burst (set at 20%).

Spiking and bursting statistics. In order to characterize the level of activity of the network, we computed well-
known firing and bursting macroscopic metrics, starting from the Mean Firing Rate (MFR), defined as the 
number of spikes per second. This parameter was also used to identify the active electrodes in a MEA: if the MFR 
value was lower than 0.1 spikes/s, the channel was discarded from the analyses. The bursting activity was evalu-
ated in terms of: Mean Bursting Rate (MBR) (i.e., the mean number of bursts per minute), and Burst Duration 
(BD) (i.e., the temporal length of bursts).

In order to define the sequences of activation of each cluster during a NB, we evaluated the instantaneous 
firing rate (IFR). IFR was computed by dividing the number of recorded spikes in a time-window of Δt = 100 ms 
by the bin width. Such a window was realized by means of a Gaussian kernel of width equal Δt. We computed 
the IFR of the whole network averaging the IFR of all single electrodes, and identified the time of activation of 
each cluster (i) for each NB (k) as the time in which the IFR reaches the maximum value during the NB:

where tstart(k) and tend(k) are the starting and ending times of the k-th NB, respectively.

Dose–response curve  (IC50). During the delivery protocol, the MFR value of each culture was averaged on the 
number of active electrodes during the basal recording (initial conditions). Then, the MFR values of each experi-
ment were normalized with respect to the corresponding values of the reference (basal) activity: such a proce-
dure allowed to compare the MFR values of the different experiments. The variation of the normalized MFR as 
a function of the concentration of IVB delivered was fitted by the Hill equation (Eq. 2), a widely used model to 
analyze non-linear drug concentration–response  relationships23.

In Eq. (2), MFRmin
norm and MFRmax

norm are the highest and the lowest normalized MFR values, and [IVB] is the deliv-
ered concentration of ivabradine, respectively. HC is the Hill coefficient, which provides the largest absolute value 
of the slope of the curve. Finally, the IC50 is the half maximal inhibitory concentration observed.

Statistical analysis. Descriptive and inference statistics. Descriptive and inference statistics were conducted 
in Matlab. Data comparisons were done by using: (I) the Mann–Whitney U test for pairwise comparison of 
quantitative data; (II) the Kruskal–Wallis test for multiple comparisons of quantitative data, followed by Mann–
Whitney U as post-hoc test with Bonferroni’s correction for pairwise comparisons; (III) the Chi-squared test for 
frequency distributions among qualitative classes; (IV) the Kolmogorov Smirnov test for cumulative frequency 
distributions; and (V) the Wilcoxon Signed-Rank test for paired samples.

Quantitative data with extreme asymmetrical distributions were log transformed for better graphical read-
ability in box plot diagrams. In most cases, log-transformed data did not exhibit a normal distribution according 
to the Anderson–Darling test. Therefore, all statistical comparisons of quantitative data were carried out with 
the non-parametric Mann–Whitney U and Kruskal–Wallis tests.

A significance level α = 0.05 was applied for all statistical tests. All the box plots reported in the present work 
indicate the percentile interval 25–75 (box), the standard deviation (whiskers), the mean (square), and the median 
(line) values.

Clusters activation sequences. To analyze the pattern of clusters activation during network bursts, we sche-
matically represented the topology of cluster arrangement in the 4N assemblies as a square divided into 4 sub-
squares. A similar topology was assigned to the 1N assemblies by dividing them into 4 “virtual clusters” (cf., 
section "Dataset and experimental protocols"). For each network burst, the sequence of the activation times 
of the different clusters, inferred from their IFR (cf., section "Spiking and bursting statistics"), is referred to as 
“activation sequence”. This latter starts from an “initiator cluster” and, for each starting cluster and sequences 
involving at least 3 clusters, can in theory develop along 6 different possible paths, 2 of which have no diagonal 
steps and are referred to as “circular paths” or “circular activation sequences”. Hence, under random propagation 
of the activation sequences, the probability of having a circular path is 1/3. Such a probability value was consid-
ered in the analysis of departure from randomness of activation sequence paths.

Monte Carlo samplings. The Monte Carlo method consists of the computational generation of a data sample 
under some hypothesis of randomness linked to a specific experiment. In this work, we used this method to 
evaluate departures from randomness in the patterns of neural network activities. We compared recorded data-
sets, defined as Observed data, with datasets generated by the Monte Carlo method, defined as Expected data. By 
using ad hoc Matlab codes, we generated random samples of cluster activation sequences and random series of 
consecutive activation ones for the analysis of activation sequence diversity and for the occurrence of identical 
consecutive activation sequences, respectively.

Cluster activation sequence diversity. In order to analyze the diversity of the cluster activation sequence types, 
we first used the Shannon diversity  index24, defined as:

(1)tstart(i,k) = tmax (IFRi(tstart(k)−tend(k)))

(2)MFRnorm([IVB]) = MFRmax
norm +

MFRmin
norm −MFRmax

norm

1+ 10HC(log(IC50)−log([IVB]))
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where pi is the relative frequency of the ith type of activation sequence. The index H spans between a minimum 
of 0 (if there is only one type of activation sequence with a relative frequency equal to 1), to a maximum of ln(N), 
where N is the number of different activation sequence types (if all types have the same frequency). The H values 
were then normalized by applying the Shannon equitability  index24:

which converts the Shannon diversity index to a value ranging between 0 and 1.

Results
We explored and characterized the spontaneous activity originated by the interactions of in vitro interconnected 
sub-populations (4N) pointing out their role as pacemaker/dominant populations. Results are compared with 
cortical networks that do not display a modular connectivity (1N).

Until the neuronal sub-populations were kept isolated thanks to the presence of the PDMS cross-shaped 
mask (Fig. 1a), they only established a dense connectivity inside each compartment (Fig. 1b); immediately 
after the constraint removal (DIV 5), the space among the populations was completely empty of any kind of 
neuritic arborizations (Fig. 1c). Afterwards, cell bodies started to extend their arborizations in the clefts, and 
three days after the PDMS removal (DIV 8) bundles of neurites began to extend searching for possible targets 
towards the other sub-populations (Fig. 1d). At DIV 18 (the day of the recordings), the long-range connections 
among the clusters resulted well-structured and rich enough to guarantee an effective connectivity among the 
sub-populations (Fig. 1e), supporting the evidence of a physical modular connectivity.

Spiking and bursting features are modulated by the degree of modularity. Independently 
from the kind of network topology (i.e., 4N or 1N), in vitro cortical networks exhibited spontaneous electro-
physiological activity, characterized by a rich repertoire of dynamics ranging from spiking and bursting signals 
up to the global activation of the network by means of network bursts. This behavior is consistent with both 
 homogeneous25 and  clustered13 networks coupled to MEAs. By comparing the electrophysiological activity of 
1N with the one originated by 4N, significant differences were found both in spiking and bursting activity: 1N 
networks showed higher values of MFR than 4N (Fig. 2a), as well as MBR (Fig. 2b), and BD (Fig. 2c). Indeed, the 
IBI values showed an opposite trend (Fig. 2d).

Table 2 summarizes the values of the first (Q1) and third (Q3) quartiles, as well as the median, mean, and 
standard error of the mean, evaluated on the entire dataset of 1N and 4N assemblies. Mann–Whitney U test (since 
data do not follow a normal distribution, cf., Supplementary Information S1) was applied to evaluate the statisti-
cal significance between the two assemblies and the achieved p-values are reported in the last column of Table 2.

The macroscopic metrics of the spiking and bursting statistics were modulated by the network organization 
of the cortical assemblies, whereas the collective activity, characterized in terms of number of network bursts 
(NB, Fig. 2e) and of network burst duration (NDB, Fig. 2f), did not show significant differences.

Rhythmic patterns of activity are shaped by modularity. The network topology did not shape the 
macroscopic metrics of network bursts (Fig. 2e and 2f), conversely, their “modes” of propagation were influ-
enced. To quantify the propagation of the electrophysiological activity, we estimated the IFR (cf.,section "Spik-
ing and bursting statistics"). Practically, we computed the cumulative firing rate of each cluster both in 4N and 
1N (considering only the active electrodes). In 1N assemblies, we grouped the electrodes into “virtual clusters” 
(cf., section "Dataset and experimental protocols"). Figure 3a shows a representative example of a 1N control 
network. The four colored traces are representative of the four “virtual clusters” used to study the activity of 
the network. From the visual inspection of the raster plot and the IFR profiles, a stereotyped behavior emerged, 
characterized by a weak modulation of the propagation of the network bursts: when this choral activity orig-
inated, it involved almost all the active electrodes. In the representative experiment depicted in Fig.  3a, the 
population events followed a clockwise propagation. By color-coding clusters, the network burst started in the 
purple cluster, then spread to the cyan, the green, and red ones. On the other hand, in the 4N representative 
assembly depicted in Fig. 3b, we can observe more variable and less stereotyped patterns of propagation among 
the clusters with respect to those observed in 1N. We also represented the IFR profiles of three network bursts: 
the first one shows a counterclockwise propagation involving all four interconnected populations (cyan-purple-
red-green), the second network burst involves only three sub-populations (cyan is missing), and the third one 
involves all the clusters in a random sequence (neither clockwise nor counterclockwise).

From a quantitative point of view, we firstly considered the number of clusters involved in each activa-
tion sequence, showing that sequences of 4 clusters are significantly more likely to occur in 1N (relative fre-
quency = 0.8, Fig. 4a, black bars), followed by sequences of 3 and 2 clusters with a relative frequency of 0.18 and 
0.03, respectively. The same analysis performed on 4N networks (Fig. 4a, blue bars) showed a relative frequency 
of 0.58 for 4-cluster activation, and of 0.30 and 0.15 for 3 and 2 clusters, down to 0.05 in the case of a network 
burst confined to one cluster only. Hence, the involvement of all the clusters in the activation sequences was 
the most likely occurrence in both 1N and 4N. However, due to the gaps among the clusters of 4N hindering to 
some extent the progress of cluster activation, in the 4N a wider repertoire of propagation modes of the network 
burst emerged with respect to the one observed in 1N.

The peculiar spatial organization of 4N, where the sub-populations were originally separated by cross-shaped 
boundaries (Fig. 1a), could play a key role also in the pathway of propagation of network bursts among clusters. 
In particular, we could follow an entirely circular path activation sequence (CP, clockwise or counterclockwise), 

(3)H = −�pi ∗ ln
(

pi
)

(4)E = H/(lnN)



7

Vol.:(0123456789)

Scientific Reports |        (2023) 13:15604  | https://doi.org/10.1038/s41598-023-42168-0

www.nature.com/scientificreports/

or a path activation sequence that cross diagonally at some point (DP). In order to understand the propagation 
of the observed data, we considered the activation sequences involving at least 3 clusters, and compared them 
with an aleatory condition (expected dataset), where the probability of having a CP is 1/3, while it is 2/3 for 
DP (cf., section "Clusters activation sequences"). In other words, we considered the total number of observed 
sequences (S) for each experiment, and defined the number of the Expected CP as 1/3 of S. By repeating this 
operation for all experiments, we obtained two matched samples: Observed circular paths and Expected circular 

Figure 2.  Spiking and bursting activity in one-network (1N, black) and in four-network (4N, blue) assemblies. 
(a) Mean Firing Rate (MFR), (b) Mean Bursting Rate (MBR), (c) Burst Duration (BD), (d) Inter Burst Interval 
(IBI), (e) Number of network bursts, (f) Network Burst Duration (NBD). (a–d and f) Each data point represents 
the value of a specific metric (MFR, MBR, etc.) relative to a single electrode. (e) Each data point is relative to a 
MEA. **** refers to p < 0.0001, Mann–Whitney U test.

Table 2.  Summary statistics of basic measurements of neural network functioning. *Mann–Whitney U test.

Parameter Unit Assembly Q1 Median Q3 Mean S.E.M p-values*

MFR spikes/s
1N 0.77 2.71 6.89 4.66 0.24

4.6 ×  10−9

4N 0.48 1.43 3.78 2.63 0.14

MBR bursts/min
1N 3.75 8.21 16.5 10.7 0.42

6.5 ×  10−11

4N 2.23 5.23 9.36 7.44 0.37

BD ms
1N 112 163 225 187 7.18

1.4 ×  10−11

4N 81.4 122 173 147 5.61

IBI s
1N 3.29 6.79 14.2 13.8 0.93

8.3 ×  10−9

4N 5.87 10.6 21.0 18.7 1.13

NB NBs/min
1N 15.2 28.4 67.4 41.0 39.4

0.74
4N 12.1 35.8 86.2 46.9 47.4

NBD ms
1N 392 521 646 524.5 52.6

0.09
4N 333 415 495 431.9 44.8
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paths, that were compared by the Wilcoxon Signed-Rank test. For 1N assemblies no significant variation between 
Observed and Expected CP was found, whereas for 4N assemblies the Observed number of CP was significantly 
higher than the Expected (Fig. 4b). This possibly depended on the gaps of 4N created by the cross-shaped mask 
(Fig. 1b), representing a higher barrier for the diagonal progress of an activation sequence. Overall, the differences 
observed in the lengths (Fig. 4a) and paths of activation sequences (Fig. 4b) between 1 and 4N were consistent 
with the different topological arrangements of these neural networks, thus validating the electrophysiological 
reliability of these experimental systems.

The different modes of propagation of the network bursting activity in 1N and 4N assemblies can be attributed 
to the existence of dominant clusters, which set the pace for the entire network. It has been already proved that 
dissociated cortical networks exhibit a subset of master or leader neurons both in  silico26 and in vitro27 models, 
defined as a neuron that fires at the beginning of a network burst more often than expected by chance. In this 
work, we extended the idea of “leader” to an entire subpopulation that is able to initiate the activation sequences 
(initiator cluster) and evaluated their relative frequencies to assign them to frequency classes. For each 1N and 4N 
experiment, we identified the initiator cluster with maximum absolute frequency, assigning its relative frequency 
to “frequency class 1”, and repeated the operation for the next most frequent initiator cluster, until all clusters 
were assigned to a frequency class (classes 2 to 4). Then, we evaluated the median value of each frequency class. 
The results showed a significantly divergent frequency distribution both in 1N and 4N (black and blue lines in 
Fig. 5a, respectively, Chi-squared test p =  10−5) from the one that characterizes the aleatory condition (Expected) 
in which each cluster has the same probability of initiating a network burst (probability = 0.25, gray dotted 
line in Fig. 5a). From the analysis of the relative frequencies trend of the initiator clusters, two considerations 
arose: firstly, 1N (black line) and 4N (blue line) displayed a similar behavior; secondly, in both configurations a 

Figure 3.  60-s periods of electrophysiological activity of representative (a) one-network (1N) and (b) four-
network systems (4N). The corresponding instantaneous firing rate profiles of a 5-s time window are depicted on 
the top, together with a sketch of the propagation map of the cluster activation sequences. Each color identifies 
a “virtual” (1N) or 4N cluster, while the arrow shows the network burst propagation among the clusters. In the 
case of 1N, all the virtual clusters are involved, while in the case of 4N, the first and third network bursts involve 
all the clusters, while the second one misses the cyan cluster.

Figure 4.  (a) Relative frequency of the number of recruited clusters during network bursts, evaluated by 
means of the IFR profile. (b) Box plots of the observed total numbers of circular path activation sequences in 
1N (black) and 4N (blue), compared with the expected numbers obtained by considering, for each experiment, 
one third of the total number of sequences (under randomness, 1/3 of the recorded activation sequences should 
be circular path activation sequences). The comparisons of the observed and expected values by the Wilcoxon 
Signed-Rank test showed non-significant differences for 1N (p = 0.96) and significant ones for 4N (p = 0.005). 
**refers to p < 0.01. Wilcoxon Signed-Rank test.



9

Vol.:(0123456789)

Scientific Reports |        (2023) 13:15604  | https://doi.org/10.1038/s41598-023-42168-0

www.nature.com/scientificreports/

hierarchy was established among the clusters, with two predominant initiator clusters (i.e., clusters with a higher 
frequency than the expected one).

In order to investigate whether 1N and 4N models exhibit repetitive activation patterns, we compared the 
Observed activation sequences (in terms of recruitment order of clusters during a network burst) with random 
samples generated by Monte Carlo simulations (Expected), consisting of the same number of sequences (cf., 
section "Monte Carlo samplings"). The diversity of activation sequences in Observed and Expected samples was 
quantified in terms of the Shannon equitability index (E), which tends to 1 in random dataset, and is equal to 
0 when only one sequence exists (cf., section "Cluster activation sequence diversity", Eq. 4). By deriving the 
Shannon equitability index values (Eq. 4) for each pair of Observed and Expected samples, we again obtained 
two matched series of data that were compared by the Wilcoxon Signed-Rank test. Our analysis showed that 
the diversity of the Observed activation sequences was significantly lower with respect to that of the random 
activation sequences (Expected), for both 4N (p = 3.2 ×  10−9, Wilcoxon Signed-Rank test) and 1N (p = 3.6 ×  10−7, 
Wilcoxon Signed-Rank test). In other words, some sequences were more represented than under the Expected 
(random) condition, suggesting the idea of the existence of pacemaker neurons (Fig. 5b) highly connected to 
the other neurons of the network forcing the emergence of repetitive activation patterns.

To further explore this behavior, we considered the occurrence of series of identical consecutive activation 
sequences. We defined the length of the series as the number of repeated identical consecutive sequences and 
computed the occurrences of the series. These two values were evaluated jointly: longer series have a higher 
impact than shorter ones of equal occurrence, while series that occur more frequently weight more than less 
frequent ones with the same length. For example, a series of 2 sequences that occurs 10 times will have a weighted 
absolute frequency of 2 × 10 = 20; a series of 4 sequences that occurs 5 times will have a weighted absolute fre-
quency of 4 × 5 = 20. The corresponding cumulative frequency distribution, derived from the relative frequencies 
obtained from weighted absolute frequencies, highlighted a different behavior in 4N and 1N assemblies. In 1N, 
the longer detected series was constituted by 7 identical consecutive sequences with a frequency of 0.03. More 
consecutive repetitions were observed in 4N, where we detected series of up to 14 repeated sequences, these latter 
with a frequency of 0.01. Accordingly, the cumulative frequency distributions of 1N and 4N showed a significant 
difference (Fig. 5c). In addition, the 4N cumulative frequency distribution was significantly different from the 
one obtained from an equivalent dataset of Monte Carlo activation sequences.

HCN channels are involved in the modulation of rhythmic activity. As a possible genesis of the 
network rhythmic activity, the involvement of a pool of neurons in the networks expressing hyperpolarization-
activated cyclic nucleotide-gated ion channels (HCN) was  hypothesized28,29. For this reason, we performed 
experiments by using ivabradine (IVB), a specific HCN channel inhibitor comparing the electrophysiological 
activity with and without such molecule (Fig. 6a). Since IVB acts at the single cell level, we conducted these 
recordings on 1N networks, since both 1N and 4N showed a rhythmic bursting activity with pacemaker fea-
tures, independently on the network organization (Fig. 3). We set a concentration of IVB equal to 15 µM. This 
value was derived by the analysis of the dose response curve, depicted in Fig. 6b and fitted with the Hill curve of 
Eq. (2) (cf., section "Dose–response curve (ic50)"). We delivered increasing concentrations of IVB in the range 
0.3–30 µM and recorded for each concentration the resulting electrophysiological activity (cf., section "Drug 
delivery protocol"). By applying the Hill fitting to the achieved MFRs, we derived an  IC50 value of about 15 µM.

Figure 5.  (a) Median relative frequencies of the starting clusters of activation sequences, obtained from the 
frequencies of starting clusters in each experiment. The ticks of the x-axis indicate the hierarchy of the initiator 
clusters labeling as “1″ the frequency class of the most frequent starting cluster, as ”2″ the frequency class of 
the second most frequent starting cluster, etc. (b) Box plots of the values of the Shannon equitability index, 
used as a measure of diversity for the activation sequences (cf., section "Statistical analysis"), derived from each 
experiment (Observed), and for those derived from a series of Monte Carlo samples (Expected). **** refers to 
p < 0.0001, Wilcoxon Signed-Rank test. (c) Cumulative frequency distributions derived from the total numbers 
of activation sequences involved in series of identical consecutive activation sequences. Significant differences 
were found between the 1N and 4N cumulative frequency distributions (p = 1.1 × 10−3, Kolmogorov–Smirnov 
test). Moreover, the 4N cumulative frequency distribution differs from an equivalent dataset of Monte Carlo 
activation sequences (p = 3.3 × 10−4, Kolmogorov–Smirnov test).
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The effect of IVB consisted in a significant reduction in the firing and bursting frequencies (Fig. 7a,b) and 
in the number of active electrodes (Fig. 7g). Table 3 shows the p-values of data shown in Fig. 7 evaluated with 
Kruskal–Wallis since data do not follow a normal distribution (cf., Supplementary Information S2). However, the 
consequence of IVB delivery was transient, since, after the washout, MFR and the number of active electrodes 
came back to basal values, while MBR also showed the same tendency (Fig. 7a,b,g). Although in the presence of 
IVB the duration of the bursts remained unchanged (Fig. 7c), we observed an increase of the IBI (Fig. 7d) and 
of its standard deviation (Fig. 7e), but not of its variation, in the comparison between basal and IVB (Fig. 7f). 
Eventually, focusing on the collective behavior of the network, the delivery of IVB induced a reduction of the 
number of detected network bursts (Fig. 7h) and concomitantly, an increase of INBI (Fig. 7i).

Hence, we can infer that IVB induced an overall reduction of network activity, and in addition it caused 
a rarefaction of bursts and an increase of inter-burst interval variability, i.e., overall a tendency to abolish the 
rhythmic activity. These data show the involvement of HCN channels in the genesis of an organized spontaneous 
activity of neural networks and in the network ability of realizing rhythmic patterns.

Discussion and conclusions
In this work, we designed an in vitro experimental model to evaluate the role of the modular network organiza-
tion on the patterns of electrophysiological activity exhibited by cortical networks. By exploiting physical poly-
meric constraints and a MEA-based set-up (Fig. 1), we engineered in vitro neuronal networks configured with a 
multi-network spatial organization and we explored the emerging patterns of spontaneous electrophysiological 
activity. This experimental model is in between a random topological configuration (the 1N configuration used 
as a control in this work), where neurons can grow without any constraint defining dense and un-controlled 
connectivity, and more patterned/organized networks where the displacement of each neuron or small assembly 
is finely controlled and the connectivity forced to follow well-defined  rules30,31. Our 4N layout aims to be an 
in vitro configuration closer to the in vivo brain areas, where high dense connectivity exists inside the district (in 
our case, each sub-assembly), while among districts long-range connections are established. In vitro dissociated 
cortical networks display rhythmic sequences of bursts interspersed with pauses embedding isolated  spikes20. 
The characterization of this dynamics has been proved following different routes (e.g., self-organized criticality, 
chaos theory, inferential statistics) demonstrating how cortical networks are able to generate activation patterns 
that are preserved in different experimental models. Rodent neuronal primary cell  cultures25, as well as human 
models derived from induced pluripotent stem  cells32 can recreate networks showing common features in the 
emerging electrophysiological activity. Such evidence is crucial for the aim of developing generalizable models 
of network activities, as the observed spontaneous activity can be considered a general reference system, inde-
pendent from the recording conditions and biological source of neurons.

Our results confirm these findings, since the macroscopic statistics characterizing the spontaneous activity 
maintain their features also when the neuronal system is engineered as an assembly of interconnected neural 
networks (Fig. 2). In this kind of modular topology, the propagation of the bursting activity across the network 
is a distinctive element that confirms previous observations about the occurrence of burst initiation points and 
 propagation33. In a previous study, initiation points have been ascribed to local inhomogeneities of the  network33. 
We confirmed the occurrence of initiation points but also found that their spatial distribution is markedly 
non-random (Figs. 4 and 5). Hence, the choral activity of the network (network bursts) consists of a sequential 
activation of different sub-networks that, independent of the configuration (i.e., 1N or 4N), show non-random 
dominant ensembles as starting points of activation sequences, acting as “network pacemakers” (Fig. 5). In 
addition, some of these spontaneous sequences are more frequent than expected by chance. Remarkably, also 
the temporal distribution of activation sequences showed peculiar features, due to the sporadic occurrence of 
repetitive series of identical sequences. Interestingly, we found that only in the 4N configuration, some sequences 
form long, non-random, repetitive time series of identical activation sequences, i.e., realizing memory effects 
possibly depending on neuroplasticity. In vitro synaptic plasticity has been generally observed following high 

Figure 6.  Effect of the delivery of ivabradine (IVB) on the network activity. (a) 60-s of electrophysiological 
activity of a representative cortical network before (left), during (middle), and after the delivery (right) of 15 µM 
IVB. (b) Dose–response curve of a representative cortical network obtained by delivering IVB in the range of 
0.3–30 µM. The solid red line represents the Hill fitting curve (Eq. 2). The  IC50 value is depicted with a blue star.
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frequency tetanic stimulation of hippocampus  slices34 or dissociated cortical  networks35, and its effect evaluated 
in terms of variation of the synaptic efficacy. In our electrophysiological recordings a behavior occurred as an 
emergent property of spontaneous activity mainly induced by the presence of a pool of pacemaker neurons and 
the complex connectivity established among the sub-assemblies. Even more important, the phenomenon was 
significantly more pronounced in the 4N in vitro experimental model that, differently from the 1N model, has 
been set up creating four neuronal clusters to elementary mimic the in vivo arrangement of brain networks. 
Although the behavior has been unveiled exploring a simplified 4N experimental model, we believe it represents 
very important evidence suggesting the role of the topological connectivity that allows exhibiting complex 
patterns of activation. Instead, the 1N configuration that does not promote features like small-worldness36 or 
 modularity37 (as previously observed  in38) is less able to sustain high-order patterns of spontaneous activity. 
Indeed, the inferring of functional connections by exploiting correlation- or information theory-based methods 
could allow the quantification of these metrics and, more in perspective, the study of how such connections 
evolve as a function of the network  development39,40.

Figure 7.  Effect of 15 µM ivabradine (IVB) on the electrophysiological activity of 1N assemblies. The 
boxplots show data recorded before IVB (Basal), during IVB, and after washout. (a) Mean Firing Rate (MFR) 
p = 6.8 × 10−10, (b) Mean Bursting Rate (MBR) p = 6.1 × 10−15, (c) Burst Duration (BD) p = 0.14, (d) Inter Burst 
Interval (IBI) p = 5.6 × 10−13, (e) Standard deviation of Inter Burst Interval  (SDIBI) p = 6.6 × 10−16, (f) Coefficient of 
variation of the Inter Burst Interval  (CVIBI) p = 3.5 × 10−5, (g) Number of active electrodes p = 0.03, (h) Number 
of network burst (NB) p = 6.9 × 10−13, (i) Inter network burst interval (INBI) p = 1.0 × 10−30. (a–f and i) Each data 
point represents the value of a specific metric (MFR, MBR, etc.) relative to a single electrode. (g and h) Each 
data point is relative to a MEA. *Refers to p < 0.05, ** to p < 0.01, and **** to p < 0.0001, Kruskal–Wallis test.
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The existence of network pacemakers was tested by exploring the role of hyperpolarization-activated cyclic 
nucleotide-gated (HCN)  channels28. Our results showed that the inhibition of HCN currents (achieved by the 
exposure to ivabradine) caused a strong decline of electrophysiological activity together with the partial or total 
disruption of the rhythmicity and propagation of network bursting, thus highlighting a signature of pacemaker 
activity (Fig. 7). Intrinsic pacemaker activities related to different neurophysiological processes have been identi-
fied in many mammalian brain regions, including the respiratory central pattern  generator41,  neocortical42 and 
thalamocortical  neurons43, medial septal  neurons44, substantia nigra dopamine  neurons45, and locus coeruleus 
noradrenergic  neurons46. Moreover, in different of these activities a role has been ascribed to HCN  channels47,48.

Overall, our results indicate that in vitro systems of interconnected neural networks produce a spontaneous 
activity that is characterized by two main features: pacemaker-dependent rhythmic activity, and spatiotemporally 
consolidated network patterns. These latter could also depend on neuroplasticity phenomena. They normally last 
on average for a few seconds, up to a maximum of about 20–25 s, i.e., falling within the temporal range reported 
for short-term synaptic  plasticity49. In vitro and in vivo recordings from  cortical50 and  hippocampal51 assemblies 
revealed a reciprocal interplay between plasticity and activation patterns, since the appearance of rhythmic and 
persistent “modes” causes a memory stabilization. Most importantly, in our data this possibility becomes more 
evident when different neural networks are allowed to interplay with each other, possibly due to a better chan-
neling of signal processing along distinct pathways, where each network would be repetitively stimulated by the 
upstream district and operate similarly on the downstream one, with limited randomly oriented side dispersions.

Hence, considering that there is a close similarity of our spontaneous network activity to what is generally 
known about in vitro neural networks, and that literature data indicate the widespread presence of pacemaker and 
neuroplasticity in the in vivo brain  functioning42, we believe that pacemaker (here hypothesized and analyzed) 
and neuroplasticity (here only hypothesized) could represent the two basic elements characterizing the intrinsic 
electrophysiological activity of neuronal assemblies, both in vitro and in vivo. Regarding this view, it is remark-
able that computational simulation of reconstituted cortical neural networks has been obtained by combining 
pacemaker activities and adaptive  synapses52. In a set of computational works led by the group of W. Rutten, 
the authors proved the central role of pacemaker neurons able to drive the electrophysiological activity of the 
network towards a well-defined dynamical state. These neurons were supposed to be one of the most important 
ingredients of the network together with complex topologies and a time-dependent mechanism able to mimic 
the long-time constants of the network  development53.

In perspective, the achieved results provide meaning to the arrangement of brain networks, whose functioning 
and output could be the result of modulatory effects exerted by external inputs on the above intrinsic properties. 
We therefore propose engineered multi-network neuronal assemblies as in vitro simulations of brain network 
arrangements, and pacemaker activity and synaptic plasticity as essential elements to be considered for the 
decoding of their high-order activity, aimed at the development of computational simulations for predicting 
network behavior under physiological and pathological conditions (Fig. 8). Starting from in vitro brain network 
reconstruction (by exploiting the many improvements achieved in the field of the neuroengineering), continuing 
through the characterization of its essential distinctive features in terms of arrangement and electrophysiological 
functioning, and finally coming out with digital twin reproductions (in silico models), could open the way to 
both a deeper understanding and management of brain network disorders and the development of new genera-
tion artificial intelligence (AI) systems.

Finally, it is worth noticing that the achieved results and the 4N experimental model can also be exploited 
in the light of translational medicine. Many neurological diseases require structured neuronal network models 
to study, for example, the propagation of epileptic  seizures54 or the damage of long-range connections among 
brain districts (e.g., Parkinson’s and Huntington’s  diseases55,56). The possibility of designing a controllable and 

Table 3.  Probability values of statistical comparisons with data from ivabradine (IVB) experiments. *Kruskal–
Wallis test. § Non-significant p-value.

Parameter p-values *

MFR 6.8 ×  10–10

MBR 6.1 ×  10–15

BD 0.13§

IBI 5.6 ×  10–13

SDIBI 6.6 ×  10–16

CVIBI 3.5 ×  10–5

# Active electrodes 0.03

NB 6.9 ×  10–13

INBI 1.0 ×  10–30
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observable in vitro system will allow to study with high precision detail the impairments at the level of single 
neuron, single assembly, or long-range connections, as well as using it as a test bed for the evaluation of neurop-
harmacological drugs or specific stimulation protocols.

Data availability
The peak trains of the entire dataset of this paper as well as the customized Matlab functions used to analyze the 
data have been deposited in Zenodo. The DOI of the deposited data and code reported in this paper is:https:// 
doi. org/ 10. 5281/ zenodo. 83591 35.
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