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Adapting physiologically‑based 
pharmacokinetic models 
for machine learning applications
Sohaib Habiballah 1 & Brad Reisfeld 1,2*

Both machine learning and physiologically‑based pharmacokinetic models are becoming 
essential components of the drug development process. Integrating the predictive capabilities of 
physiologically‑based pharmacokinetic (PBPK) models within machine learning (ML) pipelines could 
offer significant benefits in improving the accuracy and scope of drug screening and evaluation 
procedures. Here, we describe the development and testing of a self‑contained machine learning 
module capable of faithfully recapitulating summary pharmacokinetic (PK) parameters produced by 
a full PBPK model, given a set of input drug‑specific and regimen‑specific information. Because of 
its widespread use in characterizing the disposition of orally administered drugs, the PBPK model 
chosen to demonstrate the methodology was an open‑source implementation of a state‑of‑the‑art 
compartmental and transit model called OpenCAT . The model was tested for drug formulations 
spanning a large range of solubility and absorption characteristics, and was evaluated for concordance 
against predictions of OpenCAT  and relevant experimental data. In general, the values predicted by 
the ML models were within 20% of those of the PBPK model across the range of drug and formulation 
properties. However, summary PK parameter predictions from both the ML model and full PBPK 
model were occasionally poor with respect to those derived from experiments, suggesting deficiencies 
in the underlying PBPK model.

Machine learning is increasingly used in many aspects of drug discovery and  development1–3, with a common 
use being the virtual screening of chemical libraries. Many of the studies published in the literature have focused 
on advances in screening for  bioactivity4–7, with many fewer centered on  pharmacokinetics8–11. These latter stud-
ies have proven to be relatively effective across large chemical libraries, but do not generally have the predictive 
power of special-purpose tools like physiologically based pharmacokinetic (PBPK) models.

PBPK models, which incorporates anatomical, physiological, and biochemical relationships, are widely used 
in the drug development process and have proven useful in predicting drug ADME for a range of  therapeutics12,13, 
including pediatric  drugs14,  biopharmaceutics15, generic  drugs16, monoclonal  antibodies17, and  nanoparticles18. 
In the case of orally administered drugs, compartmental absorption and transit (CAT) PBPK models are often 
used. These models include many details of drug absorption, metabolism, and transport in the gastrointestinal 
tract, which is often divided into discrete segments, each of which may account for drug in various states, e.g., 
unreleased, undissolved, dissolved, and absorbed into the enterocytes. Implementations of such models include 
the ACAT  (advanced compartmental and transient)  model19, part of the proprietary software  GastroPlus®, and 
the OpenCAT   model20,21, developed de novo using the open source software GNU MCSim22.

Usage of PBPK models, like ACAT  or OpenCAT , requires the solution of (often complex) systems of differ-
ential equations that may make implementation difficult in certain workflows, like those common in machine 
learning  pipelines23. One approach to address this limitations is to capture the essential features of PBPK simu-
lation predictions within a trained ML model. Such a model could take as input drug-specific information and 
would output essential PK parameters as a stage in a multi-element analysis pipeline. The aim of this work was 
to explore the feasibility of this approach using OpenCAT  as the underlying PBPK model.
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Methods
To achieve the project aim, a machine-learning model was developed to take as input drug-specific properties 
and produce as output various summary pharmacokinetic measures comparable to those generated by the full 
PBPK model. The development workflow comprised several steps: (i) Generating a dataset comprising properties 
of a large set of virtual drugs, (ii) Simulating the pharmacokinetics of each member of the dataset using the PBPK 
model and calculating summary pharmacokinetic measures, (iii) Developing and training machine learning 
models using the drug properties and summary PK measures, (iv) Critically evaluating the models in terms of 
their predictive capabilities. A schematic of the workflow is shown in Fig. 1.

Dataset generation. Drug properties. The aim of this part of the workflow was to generate a large set of 
virtual drugs whose properties spanned the four classes of the Biopharmaceutics Classification System (BCS)24, 
which organizes compounds into four categories: Class I—high permeability, high solubility; Class II—high 
permeability, low solubility; Class III—low permeability, high solubility; and Class IV—low permeability, low 
solubility. To generate these property sets, drug properties (molecular mass, molar volume, acidic dissociation 
constant, effective permeability, precipitation rate constant, drug solubility, particle radius, and drug density) 
and additional parameters influencing drug pharmacokinetics (the ratio of the drug unbound fraction over its 
partition coefficient ( FuPCi ), metabolic parameters, dose magnitude, and subject body weight) were taken from 
the  literature25–31 to establish realistic ranges for all measures (see Table 1). Assuming a uniform distribution for 
each of the ranges, a Monte Carlo sampling procedure was employed in which a given sample was constructed 
by drawing from each parameter distribution. In total, 15,000 virtual drugs were generated for use in subsequent 
steps in the workflow.

To assess whether the generated virtual drugs were representative of actual drugs, 40 drugs across all BCS 
classes were selected from  ChEMBL32 and  PubChem33 and their properties determined. Tests confirmed that 
90% of the real drugs had at least one ’close match’ in the virtual drugs dataset and all of them had at least one 
’moderate match’. In this analysis, ’close match’ and ’moderate match’ meant that all of the following properties 

Figure 1.  Elements and steps in the workflow.

Table 1.  Ranges for property of interest determined by examining physical properties of actual drugs 
spanning all BCS classes.

Parameter name Range Units

Molecular mass 20–1700 g
gmol

Molar volume 30–1200 g
gmol

Acidic dissociation constant 0–14 –

Particle radius 5–50 µm

Drug density 0.1–0.7 g
ml

Drug solubility 0.001–1000 mg
ml

Precipitation rate constant 0.01–1 h-1

Effective permeability of GI tract epithelia 0.015–8 cm
s

Unbound fraction over partition coefficient in compartment i,  FuPCi 0.01–100 –

Subject’s body mass 45–125 kg

Dose magnitude 1–50 ×  103
µmol

Metabolism rate constant, Km 0.04–10 mM

Metabolism rate constant, Vmax 10-6–10-2 µmol
(min)(mg)(microsomal proteins)
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of the virtual drug were within 15% and 50%, respectively, of those of an actual drug: molecular weight, density, 
molar volume, pKa, solubility, and effective permeability.

Though assigning drugs to a specific BCS classes is not always  straightforward34,35, for the purpose of this 
work, classes were assigned based simply on specific thresholds of solubility and  permeability24,36 Using this pro-
cedure, the library of virtual drugs comprised 6392 Class I, 2097 Class II, 4920 Class III, and 1591 Class IV drugs.

Pharmacokinetic information. For each member of the set of virtual drugs, a simulation was performed using 
the OpenCAT  model, whose structure is shown in Fig. 2. These simulations produced predicted time-course 
concentrations of the chemical in each state (unreleased, undissolved, dissolved) and compartment. For the pur-
pose of comparison to experimental values from the literature, the detailed simulation results were condensed 
into the summary pharmacokinetic metrics (SPKMs) Cmax/dose , tmax , and AUC/dose using the predicted PK 
information from the blood. SPKMs values were normalized using min-max scaling.

Finally, to create the full dataset, the properties of each virtual drug were combined with its corresponding 
normalized SPKMs.

Model development. Prior to model development, values were randomly selected from the full dataset 
(inputs + normalized SPKMs) to create training and testing subsets comprising 80% and 20% of the values, 
respectively. For each machine learning model, the drug properties and additional parameters noted earlier 
were used as features, while the normalized SPKMs were used as labels. Though a multivariate model could be 
constructed to predict all three normalized SPKMs, it was found that distinct models for each label (i.e., each 
normalized SPKM) consistently performed better in recapitulating target values.

Algorithm selection: To inform the process of algorithm selection, two machine learning algorithms appropri-
ate for regression analyses, were evaluated: random  forest37 and gradient  boosting38,39. Preliminary evaluations 
indicated that both gradient boosting and random forest algorithm were equally suitable for this application, 
but because it proved to be more computationally efficient in cases of interest, random forest (RF) regression 
was selected.

Model training: Utilizing the training data set, the algorithm’s hyperparameters were tuned by performing a 
grid search. In addition to hyperparameters, the number of trees were optimized to maximize the accuracy of 
the algorithm while minimizing overfitting. From this process, the number of trees was set to 150 for all models.

Model evaluation. Assessment metrics: To assess the performance of each ML-based model relative to 
those from the OpenCAT  model, two metrics were used: (i) the relative error in predicted normalized SPKMs 
between the OpenCAT  and ML models and (ii) the adjusted coefficient of determination across the entire set of 
virtual drugs, which is defined as

where n is the number of values in the data set, k is the number of independent features included, and R2 is the 
the unadjusted coefficient of determination given by the conventional definition: R2

= 1− SSR/SST , where SSR 
is the sum of squares of the residuals and SST is the total sum of squares.

R
2(adj) = 1−

(1− R2)(n− 1)

n− k − 1
,

Figure 2.  Structural overview of the OpenCAT  PBPK model.
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Feature importance assessment: A study was conducted to evaluate the influence of feature set (number of 
features and features selected) on the accuracy of the model. Subsets having fewer features than the full feature set 
(FFS) are known as reduced feature sets (RFS). The RFS were generated iteratively and utilized the feature impor-
tance  score40 for aggregation. The performance of each model was evaluated when trained using the FFS and all 
RFS. The optimal RFS was selected as the set with the highest R2(adj) value relative to the OpenCAT  predictions.

Testing against experimental data: To further test the models, the normalized SPKMs were compared to those 
from OpenCAT  and from experimentally-measured values for ten specific drugs (see Table 2).

Software. Python60 (v3.8) was used for general data processing. All machine learning simulations were con-
ducted using scikit-learn (v1.1.3)61, and pharmacokinetic simulations were implemented and run using GNU 
MCSim22 (v6.1.0).

Results
Model verification. Full feature set model. Figure 3 shows a comparison of the predictions of the full fea-
ture set (FFS) models with those from OpenCAT  across the testing subset of virtual drugs. The R2(adj) values for 
the individual models were 0.85, 0.93, 0.86 for Cmax/dose , tmax , and AUC/dose , respectively.

To assess the degree of relative error between the machine learning and OpenCAT  model predictions across 
the testing subset of virtual drugs, results were binned to create error frequency distributions (see Fig. 4). In the 
panels of this figure, the abscissa represents the relative error percentage, while the ordinate of the plots represents 

Table 2.  Drugs used for model evaluation.

Drug name CAS number BCS class Literature references

Acetaminophen 103-90-2 Class III/IV 41–43

Codeine 76-57-3 Class I 44,45

Diazepam 439-14-5 Class I 42,46

Enalapril 75847-73-3 Class III 47,48

Fluvastatin 93957-54-1 Class II 49,50

Metoprolol 51384-51-1 Class I 51,52

Midazolam 59467-70-8 Class I 53,54

Ranitidine 66357-35-5 Class III 42,55

Trazodone 19794-93-5 Class II 56,57

Valacyclovir hydrochloride 124832-27-5 Class III 58,59

Figure 3.  Comparison of normalized machine learning-based model predictions and their OpenCAT  
counterparts using the testing subset for (A) Cmax/dose , (B) tmax , and (C) AUC/dose . In all panels, the solid line 
represents perfect agreement and the dashed lines indicate the ± 20% error bounds.
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Figure 4.  Relative error frequency for the full feature training set FFS for (A) Cmax/dose , (B) tmax , and (C) 
AUC/dose.

Figure 5.  Relative error frequency for the optimal reduced feature training set (RFS) for (A) Cmax/dose , (B) 
tmax , and (C) AUC/dose.

Table 3.  Fraction of predictions within relative error ranges for the full and reduced training set models.

Model

± 20% ± 40%

Cmax/dose tmax AUC/dose Cmax/dose tmax AUC/dose

FFS 0.77 0.97 0.82 0.93 0.99 0.95

Optimal RFS 0.83 0.98 0.90 0.96 0.99 0.98
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the relative error magnitude frequency. As summarized in Table 3, the total fraction of samples having relative 
errors in the range ±20% was 0.77, 0.97, and 0.82 for Cmax/dose , tmax , and AUC/dose , respectively. At a threshold 
of ±40% , the fractions were increased to 0.93, 0.99, and 0.95 for these same metrics.

Optimal reduced feature set model. Following the identification of the optimal reduce feature set, an evaluation 
identical to that for the FFS models was conducted. In this case, the R2(adj) values were 0.93, 0.98, and 0.95 for 
the Cmax/dose , tmax , and AUC/dose models, respectively.

Similar to the previous case, histograms were generated to quantify the frequency of obtaining a prediction 
within a certain error percentage (see Fig. 5). As listed in Table 3, for this model the total fraction of samples 
having relative errors in the range ±20% was 0.83 for Cmax/dose , 0.98 for tmax , and 0.90 for AUC/dose . For errors 
in the range of ±40% , these fractions were increased to 0.96, 0.99, and 0.98.

Feature importance. As noted earlier, to assess the influence of each of the features on the model predictions, 
a feature importance study was conducted. It was found that the eight most influential features overall—and 
those used to create the optimal RFS model—were (i) the fraction unbound to partition coefficient ratio for the 
liver  (FuPCliver), (ii, iii) the two metabolism rate constants ( Vmax and KM ), (iv) the subject’s body mass, (v) the 
drug solubility, and (vi, vii, viii) the fraction unbound to partition coefficient ratio for the colon , stomach , and 
duodenum  (FuPCcolon,  FuPCstomach,  FuPCduod). Other results of this study are shown in Fig. 6, which depicts the 
feature importance scores for both the FFS and optimal RFS models.

Model verification against experimental data. As an additional test, the optimized RFS models 
underwent comparison to the experimental data described earlier. The resulting values for the min-max nor-
malized PK parameters are depicted in Fig. 7. There were often several values of the same SPKM from differ-
ent experiments and/or cited uncertainty in these values. These values are represented in the figure as boxes 
(first to the third quartiles) and whiskers (minimum and maximum values). The predicted SPKMs from the 
ML and OpenCAT  models are indicated by symbols. As expected, the agreement between the ML models and 
experimentally-obtained data was similar to that of the full PBPK model. While good agreement with experi-
mental values was seen for many drugs and BCS classes ( R2(adj) of 0.61, 0.79, and 0.77 for Cmax/dose , tmax , and 
AUC/dose , respectively), models showed relatively poor predictive capabilities for others. These deficiencies 
may correspond to shortcomings previously described in the literature for the ACAT  model for certain kinds of 
 drugs62.

Discussion
Agreement between predicted SPKMs for the machine learning models and full OpenCAT  PBPK model were 
generally very good, suggesting that the methodology can be a viable means to introduce PBPK-level accuracy in 
pharmacokinetic predictions to a machine learning workflow. Models based on the optimized reduced feature set 
outperformed those based on the full feature set for all SPKMs evaluated, indicating that a feature optimization 
step is warranted to produce a model with the best fidelity with respect to the original PBPK model.

Though the primary focus here was on translating the OpenCAT  model to a self-contained module appropri-
ate as a component in a machine learning pipeline, it is expected that the methodology will be amenable to almost 
any PBPK model. Moreover, while this study focused on a specific set of model inputs and outputs (SPKMs), 
these can easily be customized for the application of interest.

Despite its promise, there are two potential deficiencies that must be considered. First, the generation of the 
set of virtual drugs used to underpin the methodology relied on randomly sampling values across parameter 

Figure 6.  Feature importance assessment for the ML-based models. Green inverted triangles represent the 
feature importance scores associated with the FFS model while blue triangles represent the scores for the 
optimal RFS model.
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ranges. Although realistic values were used to establish these ranges, some combinations of properties likely 
resulted in unrealistic drug candidates. Second, the derived ML model will suffer the same predictive deficien-
cies and anomalies as the underlying PBPK model, so a prudent choice of the underlying model must be made.

Data availability
The datasets generated and/or analysed during the current study are available in a Zenodo repository, https:// 
doi. org/ 10. 5281/ zenodo. 78373 60.
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