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Affine transformations accelerate 
the training of physics‑informed 
neural networks 
of a one‑dimensional consolidation 
problem
Luis Mandl 1, André Mielke 1, Seyed Morteza Seyedpour 1,2 & Tim Ricken 1,2*

Physics-informed neural networks (PINNs) leverage data and knowledge about a problem. They 
provide a nonnumerical pathway to solving partial differential equations by expressing the field 
solution as an artificial neural network. This approach has been applied successfully to various 
types of differential equations. A major area of research on PINNs is the application to coupled 
partial differential equations in particular, and a general breakthrough is still lacking. In coupled 
equations, the optimization operates in a critical conflict between boundary conditions and the 
underlying equations, which often requires either many iterations or complex schemes to avoid trivial 
solutions and to achieve convergence. We provide empirical evidence for the mitigation of bad initial 
conditioning in PINNs for solving one-dimensional consolidation problems of porous media through 
the introduction of affine transformations after the classical output layer of artificial neural network 
architectures, effectively accelerating the training process. These affine physics-informed neural 
networks (AfPINNs) then produce nontrivial and accurate field solutions even in parameter spaces 
with diverging orders of magnitude. On average, AfPINNs show the ability to improve the L

2
 relative 

error by 64.84% after 25,000 epochs for a one-dimensional consolidation problem based on Biot’s 
theory, and an average improvement by 58.80% with a transfer approach to the theory of porous 
media.

The accurate prediction of the time-dependent behavior of poroelastic porous media is a fundamental challenge 
in geotechnical and geological engineering, its main purpose being the optimization of designs and engineering 
safety assurance1. In the context of porous media, consolidation is the dissipation of pore fluid pressure through 
the solid matrix induced by changes in stress2. Theories of consolidation can be classified into two groups, 
namely coupled and uncoupled theories. In uncoupled theories, the total stress remains constant everywhere 
throughout the consolidation process, and strains are affected only by changes in pore pressure3,4. In coupled 
theories, the interaction between solid matrix and pore fluid is included in the formulation, leading to more 
complex partial differential equations (PDEs) governing displacements and pore fluid pressure5,6. Most coupled 
theories use homogenization approaches. Common models using homogenization are Biot’s theory5, the theory 
of mixtures7,8, and the theory of porous media (TPM)9–11. The models differ primarily in the point of introduction 
of homogenized quantities12. The TPM provides a robust and thermodynamically consistent13–15 framework to 
describe a macroscopic continuum-mechanical model of multiphase, multicomponent fluid-saturated porous 
media. Soil mechanics16–19, environmental engineering20–23, and continuum biomechanics24–27 are examples of 
engineering disciplines where the TPM was successfully employed to solve problems via single-scale macroscopic 
homogenization approaches. Machine-learned surrogate models can be employed to produce efficient solution 
approximations within this framework even for complex simulations28. The primary issue with coupled models 
is their instability. Their direct numerical integration using the standard finite element method (FEM) often 
results in suboptimal solutions29–31. Even for the simplest soil consolidation problem, numerical models based 
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on coupled formulations are ill-conditioned when the soil permeability is low, or when the soil deformability is 
large32. Hence, even in uncoupled theories, analytical approaches are still widely utilized to deal with soil consoli-
dation problems in general2. Various robust analytical approaches have been developed for different consolidation 
problems, including large strain consolidation33, unsaturated soils with vertical loading34, consolidation problems 
in multi-layered soil35, consolidation equations with different boundary conditions36, as well as the consolidation 
of a column with permeable top and impermeable bottom (PTIB) under general transient loading6.

More recently, physics-informed or knowledge-guided machine learning has emerged as a highly prom-
ising method in the scientific community for merging data-driven methods with domain knowledge37,38. By 
including the governing equations of a problem (or other types of information, such as symmetry), the solution 
space is restricted to fields that satisfy these conditions. Consequently, the amount of data required for training 
can be reduced, since the imposed properties no longer need to be deducted from the data. Instead, they are 
incorporated as prior knowledge37,39. Among the wide range of different machine learning methods39, physics-
informed neural networks (PINNs)40 are particularly suitable for addressing typical engineering problems, since 
the structure of problem-describing differential equations and the corresponding specific boundary conditions 
is analogous to the structure in numerical or analytical solution techniques. It has been known since 199841 
that differential equations can be modeled using a combination of artificial neural networks’ (ANNs)40–42, their 
universal approximation capabilities (cf. Cybenko43, Hornik44, Maiorov and Pinku45, and Kidger and Lyons46), 
and automatic differentiation47. However, this method’s enormous potential with modern computing methods 
has only recently been reestablished40. This straightforward, yet versatile concept has been applied to various 
problems from all fields of engineering, e.g., incompressible Navier–Stokes equations48, heat transfer49, systems 
biology50, and subsurface flow51. Gradient pathologies, where the separate terms in gradient-based optimiza-
tion operate against each other, and propagation failures52,53 are well-known challenges due to the composite 
construction of the loss function in PINNs54. In the latter case, the solution adhering to the boundary values 
cannot be propagated into the inner field, resulting in the discovery of trivial solutions which technically satisfy 
the PDE residual. These issues also arise in coupled problems, e.g., in poromechanical consolidation55,56, leading 
to convergence problems. PINNs have been utilised to develop surrogates for numerous processes within porous 
media. For instance, immiscible two-phase fluid transport in porous media, where the fluid flux results in shocks 
and rarefactions57. Bekele58 utilized PINNs to solve Barry-Mercer’s problem59 which models deformation due to 
a fluid source in the domain. The uncoupled theory of consolidation where only pore water pressure is solved 
has been studied both in one dimension for a permeable top and permeable bottom60 as well as in two dimen-
sions by modeling consolidation with drained top boundary in one direction, and both drained top and bottom 
boundary in the other direction61. Nonlinear diffusivity and Biot’s theory were addressed by Kadeethum et al.62 
for isotropic and homogeneous porous media, where nonlinear diffusivity is a special variant of Biot’s theory 
with decoupled balance of linear momentum and balance of mass, hence, only solving for fluid pressure. All 
physical constants were set to 1.0 for both nonlinear diffusivity and Biot’s equation, where the latter encapsulates 
Dirichlet and Neumann boundary conditions. Haghighat et al.63 demonstrated that combining a dimension-
less form for fully and partially saturated flow in porous media with a sequential training strategy and adaptive 
weighting methods improves stability. The authors primarily demonstrate how a sequential stress-split training 
strategy, comparable to sequential techniques used for simulation with finite elements, improves robustness and 
convergence at the expense of additional computational resources in the form of longer training. Effectively, the 
training process is separated for each output variable by using independent ANNs, cf.64, where in each iteration, 
first the pressure and its network are optimized and evaluated before the different quantities, i.e., displacement 
and strain, and the respective networks are updated and evaluated. This ansatz is then used for the Mandel 
problem, which describes the deformation of a fluid-saturated, poroelastic rectangular domain under load from 
top and bottom by using Biot’s theory65, Barry-Mercer’s problem, and a two-phase drainage problem, where 
fluid drains from the bottom of a solid column due to gravity with a gas phase at the top. The proposed method 
performed well in all three problems with a customized PINN setup63. Similarly, Amini et al.66 used PINNs with 
nondimensionalized equations for thermo-hydro-mechanical processes in porous media alongside a sequential 
training strategy while using adaptive weighting strategies to further facilitate the difficulties in training PINNs 
due to the nature of the optimization problem with competing terms in the composite loss function, mentioned 
by several authors53,54,62,63,66–69. Based on the balances of linear momentum, mass, and energy alongside Darcy’s 
law for fluid flow and Fourier’s law for heat transfer, Amini et al.66 use this approach to model various setups, 
including a one-dimensional consolidation problem with displacement, pressure, and temperature as variables.

In this work, we show how affine transformations in the output layer of ANNs accelerate the convergence 
behavior of PINNs. For this purpose, we use Biot’s theory of porous media to demonstrate the behavior through 
a simplified theory with an analytical solution and the TPM as a more complex problem with a numerical solu-
tion. To our best knowledge, this is the first solution of a TPM problem using PINNs.

The paper is structured in the following manner: In the “Methods” section, we explain the rationale for the 
chosen consolidation problem itself and the potential challenges for training PINNs on this problem. In the 
“Results and discussion” sections, we present how we chose parameters for the affine transformations and com-
pare vanilla PINNs to AfPINNs and discuss improvements in mean and standard deviation for loss, absolute 
deviations of field variables, and the L2 relative error with the remaining hyperparameters held constant. Fur-
thermore, we discuss the number of epochs necessary to surpass given lower limits for both variants. Moreover, 
we conjecture reasons for the behavior discovered in this work and discuss potential future applications.
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Methods
We start by explaining the concept of PINNs before motivating the addition of affine transformations. After a 
subsequent formalization of including affine transformations in PINNs, we explain similarities to other well-
known techniques in physics-informed machine learning. We will then describe the chosen one-dimensional 
consolidation problem using both Biot’s theory and the TPM, including the respective reference solutions, their 
characteristics, and typical challenges when dealing with this type of consolidation problem. We conclude this 
section with the base setting for all training processes used within this work as we combine PINNs and the PDEs 
underlying the consolidation problem.

Physics‑informed neural networks.  PINNs are ANNs constrained by a differential equation. The funda-
mental idea is that the physical laws described by the differential equation are added to the loss term in addition 
to the classical loss function, restricting the ANN solutions to those satisfying these laws. Considering the gen-
eral nonlinear partial differential equation on the bounded domain � ⊆ R

n , the common notation is given as

with the field solution u(x, t) and the parameterized nonlinear differential operator N[·] with parameters ��� . Since 
we can treat ANNs as universal approximators, we may use one to approximate the solution u(x, t) . The notation 
can be compactified further by integrating the temporal component into x , yielding an arbitrary spatiotemporal 
nonlinear differential operator N∗[·] on the spatiotemporal domain �∗ ⊆ R

n+1 . Additionally, we can introduce 
BCs on the boundary of our domain ∂�∗ with a general differential operator B [·] for representing different types 
of BCs, e.g., Dirichlet and Neumann BCs given as b(x):

We can utilize automatic differentiation for the derivatives. Since all operations (addition, multiplication, and 
nonlinear activation function) and their derivatives are known, they can be inferred from the computational 
graph. This allows the general network training with backpropagation and additionally allows to get the deriva-
tive of the output of the ANN with respect to the inputs to an arbitrary order. For the sake of brevity in the 
mathematical descriptions, we abbreviate the PDE as

An ANN in a PINN setting simultaneously approximates the field solution and its derivatives, thereby recon-
structing the PDE itself, which is used as an additional regularization term in the loss during training (see Eqs. 5 
and 7). Through the addition of regularization terms (as shown in Eqs. 5–8), the ANN can be influenced by 
data in the form of boundary conditions, field variables, and additionally by physical laws in the form of dif-
ferential equations. The former directly allows for the integration of Dirichlet as well as higher-order BCs into 
the scheme through the differential operator B [·] . Without loss of generality, we adapt this general notation for 
the construction of the loss function by directly introducing Dirichlet and Neumann BCs in the loss function 
for two reasons: First, to keep the theoretical formulation closer to the implementation and secondly, to prepare 
for later use in one-dimensional consolidation. In this work, we take the mean square error (MSE) loss for Dir-
ichlet BCs on u(x) , the PDE itself through (f(x) ), and Neumann BCs on ∇nu(x) . By introducing the network 
predictions as a function û(xi;θθθ) parameterized by the input x and the collection of shared weights and biases 
θθθ , we obtain the following loss:

where for each term different collocation points are sampled, indicated by the superscripts as being sampled for 
Dirichlet BCs ( x(u)i  ), the PDE evaluation itself ( x(f )i  ), and Neuman BCs ( xuni  ). The hat ( ̂·  ) indicates quantities 
approximated by the ANN. Furthermore, wu , wf  , and wun are weights that can be adapted to change the influ-
ence of the respective terms in the cumulative loss function67,68. Within this work, we set wu = wf = wun = 1 , 
i.e., we do not utilize loss weighting techniques. While other types of ANN architectures such as convolutional 
or recurrent neural networks have been combined with physics-informed machine learning, see for example 

(1)
∂u(x, t)

∂t
+N[u(x, t);���] = 0, x ∈ �, t ∈ [0,T],

(2)N
∗[u(x);���] = 0, x ∈ �∗,

(3)B [u(x);���] = b(x), x ∈ ∂�∗.

(4)f(x):=N
∗[u(x);���].

(5)L = wuLu + wfLf + wunLun ,

(6)Lu =
1

Nu

Nu
∑

i=1

(

û(x
(u)
i ;θθθ)− ui

)2
,

(7)Lf =
1

Nf

Nf
∑

i=1

(

f̂(x
(f )
i ;θθθ)− fi

)2
=

1

Nf

Nf
∑

i=1

(

f̂(x
(f )
i ;θθθ)

)2
,

(8)Lun =
1

Nun

Nun
∑

i=1

(

∇nû(x
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the overview by Cuomo et al.67, a widespread comparative study of the approximation capabilities is to the best 
knowledge of the authors not present. Hence, within this work, only fully-connected neural networks are used.

Affine transformations for physics‑informed neural networks.  In principle, given the requirements 
for a universal approximator, every ANN has the potential to adapt to some target function within the available 
function space. Due to the training process, which is gradient-based and attributes approximation errors to 
weights from the last to the first layer, this process can be slowed down. This happens, for example, by the inter-
nal covariate shift70 or generally small gradients in the first layers. Our basic idea for using affine transformations 
was to give the network a bias for the location and width of the initial distribution, which is as close as possible to 
the desired distribution. Since these distributions may be in different orders of magnitude and locations for each 
output quantity, an offset factor b and a scaling factor w are specified for each quantity, summarized as vectors 
w and b . This can be understood as an affine transformation layer. ANNs with affine transformations (AfNNs) 
in the output can straightforwardly be used in PINNs. The only component added by using the affine layer is a 
scaling of the gradients with the factors w in the last layer of the underlying ANN. All fundamental operators 
are known, so arbitrary derivatives of outputs with respect to the inputs can be computed. We call this an affine 
physics-informed neural network (AfPINN). The affine transformations thus influence the general setup in two 
ways: Scaling and offset factors cause a change in the initial distributions of the output variables, and the factors 
additionally scale the gradients during the training with backpropagation. Hence, in the optimal setup, AfNNs 
and AfPINNs are not only initially closer to the desired solution, but also optimized gradients accelerate the 
training process. For a multivariate case, this implies a coupled behavior of the hyperparameters of the optimiza-
tion method employed, such as the learning rate, and the transformation parameters. In addition, in the mul-
tidimensional case, there is the possibility of distributing gradients along the different optimization directions. 
This can help in optimization with competing components in the aggregated loss function since distorted loss 
landscapes are made more regular by scaling (cf. Krishnapriyan et al.69). Conversely, learning rate and scaling 
factors are directly correlated in the univariate case, so that they influence each other. Hence, we keep the learn-
ing rate fixed throughout this work. For the sake of clarity, we want to emphasize that scaling and offset factors 
of the affine layer are hyperparameters, whereas the weights and biases of the other layers within the ANN are 
optimized using a stochastic optimization algorithm, e.g., a variant of gradient descent. The differences between 
the affine layer and the classical fully-connected layer are the lack of a nonlinear activation function and the fact 
that each neuron has only one connection to the output of the previous layer, i.e., one associated input neuron. A 
similarity of the idea to batch normalization and its aim to reduce the internal covariate shift as laid out by Ioffe 
and Szegedy70 is recognizable. Batch normalization aims to normalize the output values after each layer by recen-
tering and rescaling. This prevents changes in previous layers induced by changes in the input distribution in 
subsequent layers, thus accelerating training. However, batch normalization tries to enforce output distributions 
with a mean of 0 and a standard deviation of 1. In order to predict values in a domain with previously unspeci-
fied bounds, which can occur in the solution of PDEs, an unrestricted prediction must be possible at least in the 
output layer. Here, affine transformations in the output layer are seen as complementary to batch normalization.

One‑dimensional consolidation with sine loading using Biot’s theory.  The one-dimensional 
problem, as for example derived by Stickle and Pastor6, consists of an initially unloaded PTIB column of length 
L with a load applied on the perfectly drained upper boundary. Every movement is one-dimensional, i.e., dis-
placement occurs in the z-direction, normal to both the upper and lower boundary, where the latter is fixed and 
impermeable (cf. Fig. 1). The governing equations are given as:

Figure 1.   Sketch of the PTIB column with the initial and boundary conditions including the load profile for 
generating an analytical solution and the variation used for physics-informed neural networks. The latter uses 
Dirichlet BC for displacement on the top, whereas the first uses a Dirichlet BC for stress. The displacement BC 
for PINNs can be sampled from the analytical solution g(t) for the displacement at z = 0 . The analytical solution 
is calculated based on the prescribed stress σ(z = 0, t) as explained in the section on the analytical solution for 
Biot’s theory. Furthermore, Biot’s theory (A) and TPM (B), which both describe behaviour of the PTIB column 
within this paper are given in short notation on the right.
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where u is the (vertical) displacement, p is the pore fluid pressure, z is the vertical position, t is the time, � and 
µ are the Lamé constants, k is Darcy’s permeability, ρ is the fluid density, and g is the gravitational acceleration. 
Since we do not focus on the meaning of the parameters in the context of this work but only consider their orders 
of magnitude and influence on the results, they are replaced by two factors α and β:

The respective boundary and initial conditions for this problem are:

where Eq. (15) defines the loading pattern. This loading pattern consists of a stress boundary to obtain the ana-
lytical solution from which we can sample pressure and displacement values for the adapted problem which will 
be used in PINNs and AfPINNs. In the following, we will only consider the time frame t ∈ [0 s, tend = 1 s] and 
the length z ∈ [0 m, L = 1 m] . Hence, the loading pattern consists of the first quarter of a sine period. Figure 1 
shows the consolidation problem with its boundary and initial conditions for the analytical solution and a vari-
ant that will be used for PINNs.

Analytical solution.  Following the work of Stickle and Pastor6, we can derive an analytical solution for the 
given problem setup and load for Biot’s theory. The authors’ work presents a scheme based on the evaluation 
and subsequential summation of series elements for pressure to obtain the global evolution of pore pressure and 
vertical displacement.

The individual series elements result from the solution of the related Sturm-Liouville eigenvalue problem of the 
homogeneous problem, since the pore pressure can be expressed as a linear combination of the eigenfunctions. 
Substituting the solution of the homogeneous problem into the original problem alongside the use of f (0) = 0 
for the load function f (t) = a · sin

(

π t
2

)

 yields the following expression for the series elements:

The integral included in the solution of the inital value problem for the selected load function is given by

with Nn = αβ

(

(1+2n)π
2L

)2
 and the series index n. We found using 10,000 series elements to suffice in precision 

for our purposes. This type of displacement-driven consolidation may yield pressure spikes at the start of loading, 

(9)(�+ 2µ)
∂2u(z, t)

∂z2
−

∂p(z, t)

∂z
= 0,

(10)
∂2u(z, t)

∂t∂z
−

k

ρg

∂2p(z, t)

∂z2
= 0,

(11)α
∂2u(z, t)

∂z2
−

∂p(z, t)

∂z
= 0,

(12)
∂2u(z, t)

∂t∂z
− β

∂2p(z, t)

∂z2
= 0.

(13)u(z, t = 0) = 0,

(14)p(z, t = 0) = f (0) = 0,

(15)σ(z = 0, t) = −f (t) =− a · sin

(

π t

2

)

,

(16)p(z = 0, t) = 0,

(17)u(z = L, t) = 0,

(18)pz(z = L, t) = 0,

(19)p(z, t) =

∞
∑

n=0

pn(t) sin

(

(1+ 2n)πz

2L

)

,

(20)u(z, t) =
f (t)(L− z)

α
−

1

α

∞
∑

n=0

2L

(1+ 2n)π
pn(t) cos

(

(1+ 2n)πz

2L

)

.

(21)pn(t) =
4

π(2n+ 1)

[

e−Nnt f (0)+

∫ t

0
e−Nn(t−τ)f ′(τ )dτ

]

=
4

π(2n+ 1)

∫ t

0
e−Nn(t−τ)f ′(τ )dτ .

(22)
∫ t

0
e−Nn(t−τ)f ′(τ )dτ =

πa
(

−2Nne
−Nnt + 2Nn cos

(

π t
2

)

+ π sin
(

π t
2

))

4N2
n + π2

,



6

Vol:.(1234567890)

Scientific Reports |        (2023) 13:15566  | https://doi.org/10.1038/s41598-023-42141-x

www.nature.com/scientificreports/

as typically β ≪ α , so the first load is almost completely converted into pore fluid pressure as the solid skeleton 
has a higher resistance. This phenomenon is mitigated in part through low load increments by the sine function. 
Furthermore, significantly different orders of magnitude can appear in coupled pressure-displacement problems. 
High values of α are associated with small displacements and low values of β are associated with large 
pressures.

One‑dimensional consolidation with sine loading using the theory of porous media.  We utilize 
a one-dimensional form of the TPM, which can be derived from the full set of equations of a two-phasic, incom-
pressible, and isothermal continuum while neglecting volume forces, for example described by Bertrand et al.71. 
These equations are given as:

with (vertical) displacement u, pore fluid pressure p, vertical position z, time t, Lamé constants � and µ , and 
Darcy permeability k. Once again introducing factors α and β while reordering terms, we obtain the equations

The same boundary conditions as for Biot’s theory are used (see Eqs. 13–18). Similarly, we use data points from 
the reference solution for the displacement at the upper boundary to obtain a displacement-driven problem, 
as outlined in Fig. 1. The reference solution was obtained by simulating of a two-dimensional column with 
the finite element method as described by Bertrand et al.71. The simulation was done using FEniCS72 with the 
DOLFINx solver73 with 1000 elements in and 100 elements perpendicular to the consolidation direction for 
x = (z, x) with z ∈ [0 m, 1 m] and x ∈ [0 m, 0.1 m] , and 1000 time steps for t ∈ [0 s, 1 s] . The traction bound-
ary was given with a maximum of a = 0.1 , while the equation constants were fixed to α = β = 1 as was done for 
Biot’s theory. Taylor-Hood elements were used for discretization. Only the central row at the symmetry axis was 
extracted to obtain the one-dimensional reference solution. Figure S.1 in the supplementary material compares 
displacement and pore fluid pressure for Biot’s theory and the TPM with the given settings, i.e., identical load-
ing, boundary conditions, and equation parameters. Using the TPM results in a larger absolute displacement, 
while the pressure decays somewhat more gradually compared to using Biot’s theory with identical parameters. 
The global behavior is similar, but the TPM shows a different behavior towards the end of the simulation time 
due to additional nonlinear terms.

AfPINNs for consolidation problems.  Figure 2 shows the setup of AfPINNs used for the one-dimen-
sional consolidation problem using Biot’s theory. In an analogous approach for the TPM, the equation terms 
within the PDE box in the upper right are adjusted for the TPM. The remaining parts are unchanged.

Training AfPINNs for one‑dimensional consolidation.  The base hyperparameters for all AfPINNs 
were 12 hidden layers with 40 neurons and tanh activation, 2 input neurons (for z and t) , 2 output neurons (for 
displacement u and pressure p) with linear activation, 100 sample points on the BCs, 100 sample points on the 
ICs, and 1000 collocation points within the domain. Training was performed for 25,000 epochs using ADAM 
optimization74 with a fixed learning rate of 10−3 using DeepXDE75 on the full data batch. All weights and biases 
were initialized using the Glorot normal initializer76.The underlying problem strongly encourages trivial solu-
tions, especially for the pressure field, because no non-zero values are introduced for the pressure. Both initial 
and boundary conditions are given as Dirichlet- or Neumann-type conditions with fixed values of 0. In contrast, 
the displacement field, whose values differ from 0, is given as a Dirichlet boundary condition. In addition, even 
the order of magnitude is given, because in the shown problem, the largest displacement is at the upper edge, 
i.e., exactly where the displacement is prescribed. Accordingly, the network must learn that non-zero values for 
the pressure field may occur and the numerical size of the maximum value must be identified, which may lie 
outside of the predefined initialization range. Therefore, the particular values of the pressure field can be derived 
from the PDE system alone. This is an obstacle per se for the underlying problem since even trivial solutions, i.e., 
u(z, t) = p(z, t) = 0 for arbitrary z and t, satisfy all initial and boundary conditions and the PDEs, except for the 
displacement boundary condition for u(0, t). Hence, an additional obstacle arises in the optimization problem 
since not only must correct values be found that satisfy all constraints, including the PDEs, but also trivial solu-
tions must be averted. Thus, a major problem is generating and propagating the correct solution into the field. 
Due to the composition of the loss function, terms with a larger value are strongly favored during training. The 
further the values have to leave the initialization range to represent the true solution, the geometrically closer 
the optimization is in the direction of the trivial solution since here, only the unoptimized partial term of the 
displacement boundary condition remains non-zero at the open end. Based on the linearized strain used, we 
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move in a small-strain region, so that umax
L ≪ 1 holds. Gradient-based optimization entails the risk that local 

minima cause significant problems. In the case of PINNs, it may be necessary to tolerate large approximated field 
values after some initialized order of magnitude before converging to the correct solution, which comes from 
erroneous values from boundary conditions or field values during the optimization. This region of high interim 
values in the optimization between initial and sought-for solution obstructs the path of the optimization in the 
loss landscape. Accordingly, gradient-based optimization likely fails and yields a trivial solution. This must be 
addressed using either an adapted gradient-based method or an adjusted initialization scheme to either choose 
a feasible starting point or to change the optimization landscape. The method provided here aims for the latter 
two by implementing affine transformations at the ANN’s output layer.

Results and discussion
Our main findings can be separated into three parts. First, an initial study of the influence of scaling and off-
set values in AfPINNs for the one-dimensional consolidation problem using Biot’s theory, as described in the 
“Methods” section, is presented. Secondly, from the initial study, a subsequent comparison of vanilla PINNs and 
AfPINNs for Biot’s Theory with optimal scaling and offset values from the initial study are compared. Lastly, a 
transfer learning approach using the chosen affine transformation parameters without considering other prior 
knowledge of the AfPINNs for the consolidation problem using the TPM is done, showing the flexibility of our 
method.

Influence of affine transformations on a one‑dimensional consolidation problem with Biot’s 
theory. 
First, we performed a logarithmic grid search for the consolidation problem with the fixed values α = 1 , β = 1 , 
as well as a sine loading of f (t) = sin

(

π t
2

)

 , where a = 1 . The column length was set to L = 1 and the simula-
tion time is scaled to accommodate the load of the first quarter period of a full load cycle of the sine func-
tion, i.e., tend = 1 . We tested all permutations for the transformation parameters wu , wp , bu , and bp of the set 
{1e−5, 1e−4, 1e−3, 1e−2, 1e−1, 1e−0, 1e−1, 1e−2} resulting in 4096 combinations, where the AfPINN for 
every combination was trained three times to gather statistics. Thus, a grand total of 12288 training runs were 
performed. Table 1 shows the best 15 results regarding the L2 relative error of both field variables u and p after 
training a single AfPINN with each of these combinations. The L2 relative error is thereby evaluated discretely 
on the grid of 101× 101 points as L2(x, x̂) =

||x−x̂||2
||x||2

 . The worst instances show an L2 relative error of up to 
3760.52, showcasing the extremes of the given set with wu = 1e−5 , wp = 1e−5 , bu = 1e−2 , and bp = 1e−2 . The 
relevant deviation always concerns the pressure, which is approximately one order of magnitude higher than the 
absolute displacement error’s maximum. This corroborates the specific nature of the given problem, where the 
computation of the pressure is more challenging within the training process, as no value other than 0 is given 
in all boundary conditions.

We proceed with our analysis of the 5-dimensional data set by looking at the minimum and maximum of 
the L2 relative error in the pairwise plots of Fig. 3, where the points of the best 15 values according to Table 1 
are additionally marked in the contour plots of the minimal error. Figure 3b shows that no choice of only two 
parameters can force convergence, so a higher-order solution (at least 3 parameters) must be considered. Even the 
better ranges show relative errors between 32 and 100%. However, all combinations of bu and wu , as well as bp and 
wp have the potential for complete divergence, while at least high values of the scaling factors wu and wp with low 

Figure 2.   Affine physics-informed neural network set up for one-dimensional consolidation using Biot’s theory 
including boundary and initial conditions with Neumann- and Dirichlet-type conditions subsumed under the 
boundary condition operator B [·] . The losses alongside the optimization loop are depicted with red boxes. The 
ANN is depicted with input layer (IL), hidden layers with nonlinear activation (HL), output layer with linear 
activation (OL), and affine layer (AL) with the affine transformations encapsulated in orange.
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values of the respective complementary offset parameter, i.e., bp and bu , limit the error to the mentioned interval. 
Similarly, high scaling factors can offset each other, while low offset parameters prevent complete divergence. In 
contrast, a considerably simpler interpretation is evident for Fig. 3a. In the plots for scaling and offset parameters 
of the same field variable, there is a range in which even the best value does not converge to a reasonable solution 
so that high scaling parameters can only compensate high offset parameters. This can be understood as a high 
offset shifting the values out of the corresponding target range, which only high scaling factors can compensate 
for. Furthermore, as shown in Fig. 3a and in Table 1, the 15 best values are more restricted in the choice of scal-
ing factors, where wu and wp are predominantly set to take the value 1e−2 , while 1e−3 has one occurrence each 
in the best 15 values. The offset factors scatter here to 1e−2 , 1e−3 , 1e−4 , 1e−5 for bu , and additionally to 1e−1 
for bp . Moreover, all offset factors below a certain limit (cf., among others, the plot of bu versus bp  3a) allow for 
convergence to a good L2 relative error. In contrast, the scaling factors show a lower and upper limit for the 
stability range (cf., in particular, the plot of wu versus wp in Fig. 3a).

These conclusions are supported by studying the maximum absolute errors of displacement (cf. Fig. 3c,d) and 
pressure (cf. Fig. 3e,f) in a similar way. On the side of the minima, the same trends as for the minimum L2 rela-
tive error, especially regarding the position of steep gradients, are discernible. This shared global behavior of the 
minima shows that the coupled problem is only jointly solvable since, according to the characteristics of the PDE 
system, only a coupled solution is sufficient. Low absolute errors in pressure coincide with low absolute errors in 
displacement. This basic characteristic of coupled systems underlines the complexity of solving aggregated loss 
functions with competing terms by optimization methods since erroneous solutions propagate to other variables 
and cause the overall system to diverge. Therefore, the analysis cannot be disentangled.

Besides the lower absolute error obtained for the displacement, the favorable range in the pair plot of log(bu ) 
and log(wu ) is significantly wider along log(wu ) for displacement than for pressure. This shows that the pressure 
is potentially much more difficult to optimize for, and that in addition to the larger absolute errors, it is also much 
more difficult to localize the optimal parameter for offset and scaling. This also reflects the basic characteristic 
of the chosen consolidation problem, where values for the (maximum) displacement are given, while the (maxi-
mum) pressure value has to be learned completely from the PDE and the corresponding boundary conditions. 
Another difference is the position of the largest absolute error on the minimum side. For the displacement, it is 
located in the pair plot for displacement scaling factor wu and displacement offset parameter bu , while for the 
pressure, it is exactly the opposite: The largest value is located in the pair plot for pressure scaling factor wp and 
pressure offset parameter bp . Looking at the side of the maxima, the interaction also emerges: Subplot per subplot, 
the maximum L2 relative error (Fig. 3b) can be composed qualitatively of a superposition of the respective plots 
of the maximum absolute error for displacement (Fig. 3d) and pressure (Fig. 3f).

As expected, the maximum error for the displacement is independent of the offset and scaling factor of the 
pressure and vice versa for the pressure and the offset and scaling factors of the displacement. From Fig. 3d, 
one can derive a lower bound for wu between 1e−1 and 1e0 and an upper bound for bu between 1e0 and 1e−1 , 
where higher values of bu can be counterbalanced with high values of wu . Following the same approach, one 
can analogously derive from Fig. 3f the lower bound for wp in the same range as wu and a higher bound for bp 
as bu , again allowing higher values of bp to be balanced with high wp values. Notably, the bounds for offset and 
scaling factors are of the same order of magnitude. Here, it seems that there is at least a rough correlation with 
the maximum field values, or their range, i.e., u ∈ [0, umax = 0.07969] and p ∈ [0, pmax = 0.048889] . Again, the 
pressure and displacement are of the same order of magnitude and thus only slightly differ. In the logarithmic 

Table 1.   The 15 best combinations of scaling ( wu and wp ) and offset parameters ( bu and bp ) for α = β = 1 , 
based on the L2 relative error. Maximum absolute errors (MAE) for both displacement and pressure are given 
as well. The maximum values for displacement u and pressure p are umax = 0.07969 and pmax = 0.048889 
respectively. The analytical reference solution was computed as explained in the “Methods” section.

wu wp bu bp L2 rel. err. max(abs(u− û)) max(abs(p− p̂))

1e−2 1e−2 1e−5 1e−4 1.00e−2 2.54e−4 1.34e−3

1e−2 1e−2 1e−3 1e−1 1.11e−2 2.27e−4 1.77e−3

1e−3 1e−2 1e−5 1e−5 1.14e−2 2.64e−4 1.76e−3

1e−2 1e−3 1e−5 1e−1 1.15e−2 2.73e−4 1.37e−3

1e−2 1e−2 1e−4 1e−5 1.15e−2 4.41e−4 1.57e−3

1e−2 1e−2 1e−4 1e−2 1.18e−2 2.93e−4 1.50e−3

1e−2 1e−2 1e−2 1e−3 1.20e−2 5.12e−4 1.55e−3

1e−2 1e−2 1e−3 1e−2 1.22e−2 5.57e−4 1.47e−3

1e−2 1e−2 1e−5 1e−5 1.22e−2 4.52e−4 1.71e−3

1e−2 1e−2 1e−2 1e−1 1.22e−2 3.57e−4 1.29e−3

1e−2 1e−2 1e−3 1e−3 1.24e−2 2.64e−4 1.60e−3

1e−2 1e−2 1e−4 1e−4 1.24e−2 2.92e−4 1.83e−3

1e−2 1e−2 1e−2 1e−2 1.25e−2 3.27e−4 1.64e−3

1e−2 1e−3 1e−3 1e−1 1.26e−2 7.50e−4 1.39e−3

1e−2 1e−3 1e−4 1e−1 1.27e−2 4.92e−4 1.55e−3
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plots, hardly any differences are discernible when looking at the values at which the gradients between high 
and low values commence, although a correlation seems natural. Nevertheless, the respective lower and upper 
bounds to delimit stability areas are missing here. What remains unclear for now is why the areas of stability in 
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Figure 3.   Pairwise contour plots of the minimum and maximum of the L2 relative error as well as the 
maximum absolute error for displacement u and pressure p over the tested parameter combinations. The 
logarithm is used for all quantities for better visualization. Further, the best 15 results as given in Table 1 are 
marked as red crosses in the plots of minimal values.
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the plots of maximum values behave in exactly the opposite way to the areas of good convergence in the plots of 
minimum values for the scaling factors. High values of the scaling factors provide a limitation of the divergence, 
but at the same time smaller values are necessary for reliable convergence. The best values on the side of the 
maximum of the maximum absolute error already show an error of 100 = 1 = 100% and therefore, no meaning-
ful convergence happens. Thus, it seems that limiting values of the divergence only prevent a deterioration, but 
do not enable an improvement.

Finally, we can use the minimum plots (cf. Fig. 3a,c,e) to delimit the areas of acceptable convergence or, 
respectively, of good results. Ranges can be given for the four parameters in which reasonable results can be 
expected. These ranges are log(wu) = log(wp) ∈ [−3.5,−1] and log(bu) = log(bp) ∈ [−5, 0] . Note that we could 
hypothetically extend the lower limit of the offset factors towards −∞ , but we limit ourselves to the previously 
studied region. We can now deviate from the grid search considering these values and perform a Bayes optimiza-
tion in this area to obtain the final optimized values.

We performed a Bayes optimization for the four parameters in the given ranges with scikit-optimize77 and 
its standard settings for Bayes optimization using Gaussian processes with 1000 calls. Updating Table 1 with the 
new values obtained from Bayes optimization for the scaling, offset parameters, and the L2 relative error as the 
metric yields Table 2. Even though more values with good L2 relative error are now among the best 30, the final 
value range is already known from the grid search. A residual variance remains due to the stochastic training 
properties of ANNs and PINNs. In particular for the scaling factors, the corresponding results are concentrated 
in or around the interval [1e−3, 1e−2] . Likewise, a stronger scattering of the offset factors is recognizable here, 
although the interval was also already estimated. Finally, only one run from the Bayes optimization performs 
better than the previous best value and even falls below an L2 relative error of 1e−2 . The corresponding results 
in form of field plots for displacement u, pressure p, and the resulting absolute error are shown in Fig. 4. Never-
theless, this improvement can also be attributed to a stochastic effect since no result was obtained from the 999 
other values from the Bayesian optimization that also fall below the lowest value from the grid search. To quantify 
the stochastic effect, 51 additional runs were made with the best values, which yielded a mean L2 relative error 

Table 2.   The 30 best combinations of scaling ( wu and wp ) and offset parameters ( bu and bp ) for α = β = 1 
based on the L2 relative error by updating Table 1 with the results from a Bayes optimization. Values from the 
previous grid search are displayed in underline.

wu wp bu bp L2 rel. err.

3.18e−3 1.26e−2 9.86e−5 3.82e−4 8.69e−3

1e−2 1e−2 1e−5 1e−4 1.00e−2

1.01e−3 1.03e−2 2.98e−2 2.89e−3 1.04e−2

2.84e−3 2e−2 9.71e−4 3.22e−5 1.04e−2

2.92e−2 8.12e−3 2.78e−3 1.06e−1 1.04e−2

1.14e−3 1.55e−2 3.22e−2 3.65e−5 1.08e−2

1e−2 1e−2 1e−3 1e−1 1.11e−2

1e−3 1e−2 1e−5 1e−5 1.14e−2

1.11e−2 1.47e−2 1.45e−4 7.55e−2 1.14e−2

8.97e−3 4.58e−2 2.26e−2 5.37e−5 1.15e−2

1e−2 1e−3 1e−5 1e−1 1.15e−2

9.89e−3 9.35e−3 5.80e−3 1.16e−5 1.15e−2

1e−2 1e−2 1e−4 1e−5 1.15e−2

1.64e−3 5.61e−3 6.88e−4 3.43e−2 1.16e−2

6.03e−3 6.45e−3 1.88e−2 1.96e−4 1.17e−2

1e−2 1e−2 1e−4 1e−2 1.18e−2

9.42e−3 1.07e−2 4.33e−3 8.26e−5 1.18e−2

3.68e−3 6.51e−3 1.25e−2 1.18e−3 1.19e−2

6.77e−3 1.03e−2 1.44e−3 4.21e−5 1.19e−2

8.39e−4 3.23e−2 7.52e−3 2.96e−1 1.19e−2

5.62e−3 3.62e−3 1.65e−5 3.25e−5 1.19e−2

3.35e−3 2.86e−2 4.19e−2 2.82e−2 1.20e−2

1e−2 1e−2 1e−2 1e−3 1.20e−2

5.65e−3 1.04e−2 7.53e−4 1.39e−3 1.21e−2

2.51e−3 4.83e−3 6.53e−5 1.98e−5 1.22e−2

1e−2 1e−2 1e−3 1e−2 1.22e−2

1e−2 1e−2 1e−5 1e−5 1.22e−2

1e−2 1e−2 1e−2 1e−1 1.22e−2

4.51e−3 2.47e−3 5.90e−5 1.42e−3 1.22e−2

3.07e−2 2.46e−3 4.39e−2 3.86e−2 1.23e−2
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of 7.51e−3 with a standard deviation of 3.29e−3 . This is a further improvement over the values in Table 2. The 
plot shown in Fig. 4 was the run closest to the mean yielding a L2 relative error of 7.50e−3.

While the prediction and the analytic solution agree visually, the difference plots show deviations in the 
expected magnitude (cf. Table 1). Especially in the initial and the closely following time steps, an almost ideal 
solution is generated for the displacement, while the AfPINN solution predicts somewhat larger values. In addi-
tion to the global trend that error increases over time, there is also a trend that errors are propagated from top to 
bottom according to the force introduced into the system. A different behavior is evident for the pressure field. 
The AfPINN solution gives a stronger upward-deviating value compared to the analytical solution, especially 
in the beginning. Based on this, periodic deviations occur where the AfPINN solution is slightly smaller than 
the analytical solution.

The pressure error is an order of magnitude smaller than the displacement error (see Fig. 4). Nevertheless, 
the areas of larger errors coincide in the two plots. The area in which the displacement has the greatest accuracy 
at the first time steps coincides with the area in which the pressure has its greatest deviation. The error increases 
for larger times. Periodic patterns in one error plot can also be found in the other error plot. Similar patterns 
were observed in other runs with the same settings.

Comparison of standard PINNs and AfPINNs for Biot’s theory.  Based on the previous analysis, 
we can now compare vanilla PINNs, implemented by setting scaling parameter equal to 1 and offset parameter 
equal to 0, with AfPINNs. As argued in the previous section, wu = 1e−2 and wp = 1e−2 are reasonable assump-
tions since the influence of the offset factors is smaller as long as they are below a certain limit. There is no det-
riment from choosing them to be in the same order of magnitude as the scaling values, so we have decided on 
bu = 1e−2 and bp = 1e−2 here for further analysis. For both variants, 500 instances were trained while saving 
loss, L2 relative error, and the maximum absolute error of u and p every 500 epochs. Based on this, the average 
value in each epoch, as well as the minimum and maximum value for PINNs and AfPINNs, can now be specified 
for each variable. Figure 5 contains the corresponding plots, where for each time mean, minimum, and maxi-
mum value of the 500 runs are shown.

Considering all four quantities (MSE loss in Fig. 5a, L2 relative error in Fig. 5b, MAE of displacement u in 
Fig. 5c, and MAE of pressure p in Fig. 5d), AfPINNs do not only achieve lower, i.e., better mean value at all stages 
compared to PINNs but the distance between the curves of AfPINNs and vanilla PINNs is constant on a logarith-
mic scale. Further, the mean of AfPINNs after 25,000 epochs is in a similar range as the lowest value of a vanilla 
PINN, while AfPINNs have a smaller range between lowest and highest values at all stages, which is particularly 
evident for the L2 relative error in Fig. 5b. Furthermore, the mean value of the pressure MAE is higher than the 

Figure 4.   Field plots for a replicate run with the best values from a Bayes optimization in terms of relative L2 
error ( wu = 3.18e−3 , wb = 1.26e−2 , bu = 9.86e−5 , and bp = 3.82e−4 ). Analytically calculated pressure and 
displacement curves, the AfPINN solution, and the absolute difference between the exact (displacement u and 
pressure p) and AfPINN (displacement û and pressure p̂ ) solutions are plotted. The values were evaluated on a 
grid of 101× 101 points resulting in an L2 relative error of 7.50e−3.
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mean value of the displacement MAE for both PINNs and AfPINNs. The same applies for the upper and lower 
bounds for each field quantity. If vanilla PINNs reach a certain value, AfPINNs have reached this value earlier 
on average, i.e., with a lower number of training epochs. Due to the discrete steps of 500 epochs, a strong kink 
appears after the initial 500 steps, after which improvement gradually flattens. In addition, we compared the 
1000 collocation points we chose as default to PINNs and AfPINNs with 100 and 10,000 collocation points. The 
plots in Fig. S.4 in the supplementary material show that the number of collocation points has no discernible 
influence on statistical average over 500 runs.

The results we obtained for Biot’s theory and later also the TPM are in good agreement with the results we 
obtained for the Burgers’ equation, which are presented in the supplementary material in section A. First, also 
in the plots for MSE Loss, L2 relative error, and maximum of the absolute error of the field variable we can 
observe the identical tendency that AfPINNs reach significantly smaller values (cf. Fig. S.2). Both the mean value 
is smaller and the scatter in the min-max range is same or smaller, even though this is somewhat concealed by 
the logarithmic y-axis. Further, Fig. S.3 shows an example result for Burgers’ equation with an AfPINN.

Based on these impressions, we can now consider precise numerical values. For the four values (MSE 
loss, maximum absolute deviation in pressure and displacement, and L2 relative error), we consider the 
mean (Table S.1a) and standard deviation (Table S.1b) of the 500 runs each, the resulting improvement of 
AfPINNs over PINNs (Table 3), and how many epochs it takes to fall below the given values (Table 4). Looking 
first at the MSE loss, for normal PINNs the standard deviation is an order of magnitude larger than the corre-
sponding mean value. Consequently, the mean value for the AfPINNs is an order of magnitude lower overall and 

(a) MSE loss (b) L2 relative error

(c) max(abs(u û)) (d) max(abs(p p̂))

Figure 5.   Comparison of AfPINNs and vanilla PINNs for Biot’s theory by mean (thick line), along with 
minimum and maximum value as shaded area calculated over 500 runs each with intermediate values taken 
every 500 steps for 25,000 total epochs. MSE Loss, L2 relative error, and maximum of the absolute error for 
displacement u and pressure p are plotted with a logarithmic y-scale. It can be seen that AfPINNs perform better 
on average and have a significantly lower variability than PINNs.

Table 3.   Improvement of mean and standard deviation of 500 AfPINN runs over 500 PINN runs for MSE 
Loss, L2 relative error, and maximum of the absolute error for displacement u and pressure p every 5000 
epochs as percentages for Biot’s theory.

Epochs

MSE loss max(|u− û|) max(|p− p̂|) L2 relative error

Mean (%) SD (%) Mean (%) SD (%) Mean (%) SD (%) Mean (%) SD (%)

0 99.30 99.94 72.36 98.46 83.79 98.60 86.96 99.01

5000 94.97 97.75 80.37 90.14 60.77 83.66 68.38 93.37

10,000 93.12 96.90 77.59 90.65 53.15 91.36 64.59 95.25

15,000 91.61 97.63 72.96 88.25 52.66 88.92 65.85 93.34

20,000 86.95 94.29 69.93 84.05 48.70 87.60 65.08 92.37

25,000 88.41 97.59 67.39 84.56 48.50 85.03 64.84 89.75
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the standard deviation is in the same order of magnitude as the mean value. In addition, even before a training 
epoch has finished, AfPINNs show a significantly smaller MSE loss than vanilla PINNs. Thus, AfPINNs start 
at a point with a lower loss with respect to optimization and exhibit significantly lower stochastic fluctuations, 
as shown by the standard deviation, during training. For the maximum absolute deviation of both fields, both 
AfPINNs and normal PINNs exhibit a standard deviation in the dimension of the mean value. Hence, AfPINNs 
produce better initial value on average as well as lower values in general, the distance between AfPINNs and 
PINNs for the displacement being just under half an order of magnitude, while this is approximately halved 
for the pressure within the same order of magnitude. The standard deviation of the pressure is slightly larger 
than the standard deviation of the displacement for AfPINNs, as shown in Table S.1b. After 25,000 epochs, this 
results in a mean L2 relative error of 1.51e−2 for AfPINNs versus the 4.30e−2 value for classical PINNs. We 
can now calculate the percentage improvements for each epoch based on Tables S.1a and S.1b as xold−xnew

xold
 . State-

ments about the improvement of the mean and the improvements of the standard deviations can be given. These 
improvements, given in percentages, are shown in Table 3. For all four metrics, the improvements in both mean 
and standard deviation, the values decrease with an increasing number of epochs, but significant improvements 
remain. After 25,000 epochs, there are mean improvements of 88.41% for the MSE loss, 67.39% for the maximum 
absolute error of displacement u, 48.50% for the maximum absolute error of pressure p, and 64.84% for the L2 
relative error for AfPINNs over vanilla PINNs.

The number of epochs necessary on average to fall below a given fixed value are shown in Table 4. Since the 
metrics were evaluated every 500 epochs during the training, only multiples of 500 are displayed in the table. 
Two effects are visible here despite the residual fuzziness due to the discrete log step size. AfPINNs reach value 
thresholds at a significantly lower number of epochs than PINNs, and AfPINNs reach values which PINNs 
cannot. Not only the initial values of AfPINNs are offset, but also vanilla PINNs need significantly longer for 
individual increments. For example, the transition in the maximum absolute error of the pressure between 
7.5e−3 and 5e−3 can be used for a comparison. The AfPINNs need on average approximately 1000 iterations 
to accomplish this transition, while vanilla PINNs need approximately 8500 epochs. Further, AfPINNs need 
another 7500 epochs to reach 2.5e−3 , while vanilla PINNs do not, although there are still 12,000 iterations 
left in the training process. Following the reasoning in the explanation for affine transformations, we kept the 
learning rate fixed in all quantities as not to mix effects of learning rate changes and changes in transformation 
parameters. Other particularly strong examples of such divergences, where significantly more steps and thus 
significantly more computational resources must be expended, are found in the MSE loss at the transition from 
2.5e−5 to 1.0e−5 , and in the L2 relative error at the changes from 2.5e−1 to 1.0e−1 , as well as 7.5e−2 to 5.0e−2 . 

Table 4.   Number of epochs necessary for falling below given values for the mean of 500 PINN and 500 
AfPINN runs of the MSE Loss, L2 relative error, and maximum of the absolute error for displacement u 
and pressure p for Biot’s theory. The values in the training of the networks are recorded every 500 epochs. 
Accordingly, the mean values are also taken only every 500 epochs, so that only multiples of 500 occur.

Value

MSE Loss max(|u− û|) max(|p − p̂|) L2 relative error

PINN AfPINN PINN AfPINN PINN AfPINN PINN AfPINN

5.0e−1 0 0 0 0 0 0 1000 500

2.5e−1 500 0 500 0 0 0 2500 500

1.0e−1 500 0 500 0 500 0 4500 1000

7.5e−2 500 0 500 0 500 0 6500 1000

5.0e−2 500 0 500 500 500 0 17,500 1500

2.5e−2 500 0 500 500 1500 500 – 8000

1.0e−2 500 0 2500 500 4000 1000 – –

7.5e−3 500 0 3000 500 5500 1000 – –

5.0e−3 500 0 3500 500 13,000 2000 – –

2.5e−3 500 0 10,000 500 – 9500 – –

1.0e−3 500 500 – 2000 – – – –

7.5e−4 500 500 – 3000 – – – –

5.0e−4 500 500 – 16,500 – – – -

2.5e−4 1000 500 – – – – – –

1.0e−4 3000 500 – – – – – –

7.5e−5 4000 500 – – – – – –

5.0e−5 4000 500 – – – – – –

2.5e−5 6500 500 – – – – – –

1.0e−5 19,000 1000 – – – – – –

7.5e−6 23,500 1000 – – – – – –

5.0e−6 – 1000 – – – – – –

2.5e−6 – 2500 – – – – – –

1.0e−6 – – – – – – – –



14

Vol:.(1234567890)

Scientific Reports |        (2023) 13:15566  | https://doi.org/10.1038/s41598-023-42141-x

www.nature.com/scientificreports/

Likewise, it is evident in the maximum absolute displacement that AfPINNs produce significantly lower errors 
and reach errors comparable to normal PINNs after 500 epochs already. Given these results, we conclude that 
affine transformations accelerate the training of PINNs.

Comparison of standard PINNs and AfPINNs for the theory of porous media.  Starting from the 
analysis of Biot’s theory, we take identical affine transformation parameters ( wu = wp = bu = bp = 1e−2 ) and 
transfer them directly to AfPINNs for solving the TPM formulation of the consolidation problem for the same 
material and boundary values described in the “Methods” section. We base our considerations here on the close-
ness and fundamentally similar structure of the equations with additional, albeit numerically weaker terms in 
the TPM (see Fig. S.1 in the supplementary material, which shows a comparison between the results from both 
theories for the given values). Again, we compare 500 training runs between vanilla PINNs and AfPINNs with 
loss, L2 relative error, and maximum absolute errors in displacement and pressure, shown in Fig. 6. The loss and 
error plots for TPM (Fig. 6) and Biot’s theory (Fig. 5) show nearly identical global behavior. Again, the curves of 
the AfPINNs are oriented at the lower bounds of the values obtainable by vanilla PINNs. Likewise, the loss and 
the maximum absolute error of the displacement flattens out very quickly, while the optimization focus changes 
to the maximum absolute error of the displacement and thus also the relative L2 error. In this case, the logarith-
mic distance between AfPINNs and vanilla PINNs is almost constant. Due to the similarity of the equations and 
identical transformation parameters, the global behavior and the values reached are likely to be similar. Likewise, 
we have not been able to identify any noteworthy influence of the number of collocation points for the TPM (cf. 
Fig. S.5 in the supplementary material) although we compare across orders of magnitude in terms of numbers, 
which we have already not been able to establish for Biot’s theory  (cf. Fig. S.4 in the supplementary material).

The plot of the maximum absolute error of the displacement (Fig. 6c) seems to show a constant lower bound 
for the mean as 1e−3 , which is reached relatively early. Accordingly, the evaluation is analogous to that for Biot’s 
theory, so we study particular numerical values based on improving values and falling below given thresholds 
regarding the number of epochs to achieve these. Table S.2a shows the mean, Table S.2b shows the standard 
deviation (both in the supplementary material), and Table 5 shows the resulting improvements for the TPM 
formulation. We refrain from evaluating a table akin to Table 4 since there are no relevant changes compared to 
Biot’s theory. Given Table 5, we can quantify an average improvement of roughly 50% in pressure and displace-
ment after 25,000 epochs. In combination, this leads to a mean relative L2 error improvement of 58.80% after 
25,000 epochs while decreasing the standard deviation by 90.53% . The largest improvement is achieved for the 
loss. However, the training loss itself is never a suitable metric for determining the quality of a model, since it was 
specifically used as the minimization goal for the training. Hence, other metrics should be employed to quantify 
the approximation quality. Here, we decided to use the L2 relative error and the maximal differences between 
ground truth field values and their approximations.

(a) MSE loss (b) L2 relative error

(c) max(abs(u− û)) (d) max(abs(p− p̂))

Figure 6.   Comparison of AfPINNs and vanilla PINNs for TPM by mean (thick line), as well as minimum and 
maximum value as shaded area calculated over 500 runs each with intermediate values taken every 500 steps 
for 25,000 total epochs. MSE Loss, L2 relative error, and maximum of the absolute error for displacement u and 
pressure p are plotted with logarithmic y-axis.
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Conclusions
AfPINNs consistently outperform standard PINNs on the coupled problems presented here both in training 
time and approximation quality. The scaling and offset factors have to be found by a feasible search strategy, e.g., 
a combination of grid and Bayesian search. Unfortunately, no direct correlations between the factors and the 
order of magnitudes of the problem parameters were found. For Biot’s theory, the average improvement reaches 
64.84% , while a transfer approach of the TPM using the same parameters and factors showed an improvement 
of up to 58.80% in the L2 relative error after 25,000 epochs. Furthermore, the standard deviation is improved 
by 89.75% for Biot’s theory and by 90.53% for TPM given the transfer approach.

We have provided empirical evidence for the feasibility and usefulness of using affine transformations in 
PINNs and presented some reasoning as to why this makes sense. The approach helps to alleviate issues arising in 
unbalanced optimization problems with competing terms in the aggregated loss functions and internal covariate 
shifts. Many details remain to be fully elucidated, such as whether a faster approximation scheme for the scaling 
and offset factors using the problem parameters can be found. The underlying theoretical work needs improve-
ment and a proper foundation. Analytical or classical numerical solutions are currently preferable for relatively 
simple toy problems. Larger, more complex problems may profit from the improved properties of AfPINNs. We 
did not yet consider second-order optimization methods, such as limited-memory Broyden–Fletcher–Gold-
farb–Shanno as sometimes used in PINNs (cf. Karniadakis et al.37). Nevertheless, this work showed that trans-
ferring the concept of PINNs to strongly coupled problems is possible.

In conclusion, we showed that AfPINNs can significantly reduce the training time and that the choice of 
parameters also improve the general convergence behavior significantly, without resorting to complex training 
or sampling schemes.

Data availibility
Data underlying the results presented in this paper are not publicly available at this time but may be obtained 
from the corresponding author upon reasonable request.
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