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Identification of essential genes 
associated with SARS‑CoV‑2 
infection as potential drug target 
candidates with machine learning 
algorithms
Golnaz Taheri 1,2,4* & Mahnaz Habibi 3,4

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) requires the fast discovery of effective 
treatments to fight this worldwide concern. Several genes associated with the SARS-CoV-2, which are 
essential for its functionality, pathogenesis, and survival, have been identified. These genes, which 
play crucial roles in SARS-CoV-2 infection, are considered potential therapeutic targets. Developing 
drugs against these essential genes to inhibit their regular functions could be a good approach 
for COVID-19 treatment. Artificial intelligence and machine learning methods provide powerful 
infrastructures for interpreting and understanding the available data and can assist in finding fast 
explanations and cures. We propose a method to highlight the essential genes that play crucial roles in 
SARS-CoV-2 pathogenesis. For this purpose, we define eleven informative topological and biological 
features for the biological and PPI networks constructed on gene sets that correspond to COVID-19. 
Then, we use three different unsupervised learning algorithms with different approaches to rank 
the important genes with respect to our defined informative features. Finally, we present a set of 18 
important genes related to COVID-19. Materials and implementations are available at: https://​github.​
com/​Mahna​zHabi​bi/​Gene_​analy​sis.

As of January 2023, Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2), the virus that causes 
Coronavirus disease 2019 (COVID-19), has infected more than 650 million people worldwide and led to the 
deaths of more than 6.6 million people1. SARS-CoV-2 is a member of the Coronaviridae family of respiratory 
viruses and it is the third zoonotic coronavirus to emerge in the last 2 decades. SARS-CoV-2, in comparison to 
the other two coronaviruses, SARS-CoV (2002) and Middle East respiratory syndrome (MERS)-CoV (2012), 
has a lower rate of fatality and a higher rate of infection2.

Although there have been thousands of clinical trials, there are no approved medications for COVID-19 yet3. 
However, SARS-CoV-2 has a lower mutation rate than other coronaviruses. On the other hand, high genomic 
diversity is seen for SARS-CoV-2 both between individual patients and within the same virus class. This diver-
sity enables the virus to adjust to a variety of hosts and circumstances within those hosts and is mostly related 
to disease development, drug resistance, and treatment results4. Therefore, even insignificant but continuous 
virus alterations and mutations would reduce the efficiency of vaccines or typically used drugs for COVID-19 
treatments. Hence, collecting information about the virus’s evolution and pathology will be necessary to control 
the pandemic situation.

Many researchers are working to identify antiviral drugs and effective vaccines. Therefore, researchers are 
sharing their findings on SARS-CoV-2’s genome and evolution around the world. Some of these researchers are 
focusing on finding a therapy with the help of existing drugs using the drug repurposing method as a faster and 
less expensive approach5. Gene analysis is another useful method for drug repurposing and understanding differ-
ent patients’ responses to the virus. Essential gene analysis can improve the understanding of SARS-CoV-2 data 
by recognizing the biological pathways of host cells affected by the virus. From the large amount of SARS-CoV-2 
related data released, this kind of analysis can help to characterize possible drug targets and drug mechanisms of 
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action6. As a result, to find an effective treatment, obtaining knowledge from data that characterized the SARS-
CoV-2 host infection is a valuable approach.

Several genes associated with SARS-CoV-2, which are essential for its functionality, pathogenesis, and survival 
such as TNF, EGFR, and P53 have been recognized7. These genes crucial roles in SARS-CoV-2 infection and are 
considered possible therapeutic targets8. Ranking important and more relevant genes from all of the COVID-
19 associated genes proposed by recent studies will help researchers focus on select sets of genes for further 
investigation. Developing drugs against these essential genes to inhibit their regular functions and associated 
physiological pathways could be a good approach to COVID-19 treatment.

In this work, we developed three unsupervised machine learning algorithms to specify important genes, 
which could help to identify effective COVID-19 treatments. For this purpose, we constructed two biological 
and Protein–Protein Interaction (PPI) networks corresponding to the COVID-19 related genes. Then, we defined 
eleven informative topological and biological features for each gene as a node in the network. We calculated three 
different scores with respect to our predefined features for each gene with respect to each algorithm. Afterward, 
we introduced the high-score genes in each algorithm with meaningful relationships to COVID-19 as candidate 
genes for more investigation. Finally, we presented a list of 18 genes that have been identified as top genes by at 
least two of our algorithms. These 18 genes could be targeted by some drugs like Abivertinib, chloroquine, and 
acetylcysteine which are approved as COVID-19 drugs.

Related works
As an active area of machine learning research, feature selection tries to select a good subset of features to rep-
resent data. The eliminated features are mostly not informative; therefore, they are not considered for further 
analysis. Feature selection for supervised problems has been widely studied9. However, because class labels are 
unavailable to improve the search in unsupervised learning, feature selection for unsupervised problems is more 
complicated10. Feature selection for unsupervised problems such as clustering identifies a subset of features that 
builds informative clusters10. Therefore, feature selection for clustering reduces the data’s size and the run-time of 
learning algorithms and leads to more compact learning models with better generalization capability. The filter 
and wrapper are the two main approaches for unsupervised feature selection problems11. The filter approach 
assesses the significance of a specific feature subset primarily based on the inherent characteristics of the data, 
including variance, entropy, correlation, and local preservation, among other features. Filter approaches are 
often quick, scalable, and independent of any specific clustering algorithm. These filter methods are divided 
into univariate and multivariate techniques, which use some criteria to evaluate each feature and rank them 
by identifying and removing irrelevant features11. The univariate methods based on spectral analysis, such as 
Laplacian Score for Feature Selection (LSFS)12, follow the idea of modeling or identifying the local or global data 
structure using the eigensystem of Laplacian or normalized Laplacian matrices derived from an object similarity 
matrix. On the other hand, the multivariate methods jointly evaluate features, and the primary objective of these 
methods is to achieve feature selection or ranking rather than finding the cluster labels. In recent years, some 
multivariate methods under a new perspective called self-representation of features have been proposed. The 
assumption behind these methods is that a linear combination of appropriate features and a coefficient matrix 
with sparsity constraints can well approximate each feature. The Non-Convex Regularized Self-Representation 
(RSR)12 and Structure-Preserving Nonnegative Feature Self-Representation (SPNFSR)12 as an extended version 
of RSR, are two of the most used algorithms in this category of methods. The wrapper approach tries to evaluate 
the importance of a feature subset by considering its precision as the quality of the clustering result after apply-
ing a specific clustering method. Therefore, this approach depends on the selected clustering method and has a 
high computational cost11.

Determining associated genes with disease pathology is important in finding appropriate drugs. For COVID-
19 related genes, infection-related genes, such as the inflammatory cytokines TNFα , interleukins IL-1A, IL-1B, 
IL-R1, and IL-6, have been confirmed. Some verified genes are also related to certain diseases, such as heart 
disease, or some types of cancers, such as TP53 and EGFR, related to COVID-1913. There are extensive studies 
to identify essential genes related to COVID-19 disease, which can be used to identify therapeutic targets14–16. 
However, there is no comprehensive benchmark set of essential genes; therefore, comparing essential genes as 
the results of different methods is challenging. In this study, we introduced three sets of genes, each containing 
50 high-score genes as essential, including a total of 131 genes. To investigate the 131 top essential genes, we com-
pared these genes with four sets of essential genes known by independent algorithms with different approaches. 
The first set contains 93 genes related to disease pathology, which were identified by combining the biological 
and topological information of genes introduced by Habibi et al.17. This collection includes genes related to 
underlying diseases that play a vital role in the biological processes targeted by the virus. We denoted this set of 
genes as “Habibi”. The second set includes 130 related proteins HCoVs (SARS-CoV, MERS-CoV, HCoV-229E, 
and HCoV-NL63) which have been obtained with different experimental evidence. These host proteins are either 
direct targets of HCoV proteins or are involved in critical pathways of HCoV infection. We showed this set of 
genes with “VIPER”18. The third set includes 26 essential genes that can be introduced as drug targets. The authors 
of this study identified potential targets for repurposing based on Mendelian randomization. We denoted this 
set with “Erola”19. The fourth set contains 32 essential genes identified as the hub gene in the pathways related 
to COVID-19. We denoted this set with “Debmalya”20.

Results and discussion
Identifying essential genes as drug targets plays a vital role in determining the mechanism of action of disease. 
Essential genes as drug targets are divided into three categories. The first category includes essential genes from 
the set of 29 identified virus proteins as SARS-COVID proteins21. The second category of essential genes includes 



3

Vol.:(0123456789)

Scientific Reports |        (2023) 13:15141  | https://doi.org/10.1038/s41598-023-42127-9

www.nature.com/scientificreports/

numbers of host genes that directly interact with virus genes. Gorden et al.21 showed that 332 genes in the host 
cell interact with virus genes. The third category of essential genes includes host genes that do not directly interact 
with virus proteins but have been identified as host response genes, and disruption of these genes in the host 
cell can disrupt critical signaling pathways for the infection process7. This study only studied essential genes 
in the host cell as drug targets. We utilized three machine learning algorithms-LSFS, RSR, and SPNFSR, with 
different approaches to scoring 20,040 host proteins; then we selected 50 genes with the highest score as the top 
genes of each of these algorithms. This study aims to address the issue of identifying essential genes associated 
with COVID-19 as potential drug targets from two perspectives. Firstly, we utilized three distinct unsupervised 
machine-learning algorithms to solve the problem and analyzed the top 50 genes for each algorithm. We have 
presented a comprehensive list of these top 50 genes for each algorithm in Supplemental Table S1. Furthermore, 
we have listed the top 3 genes for each algorithm in Table 1 and provided evidence from other studies to support 
their potential as drug targets.

Secondly, we narrowed down our investigation to 18 genes that were identified by at least two of the three 
algorithms as promising drug targets. In Table 5, we have presented the potential drugs for these 18 genes, which 
have been confirmed by Drug Bank.

Datasets.  Identifying associated essential genes with disease pathology plays a major role in finding appro-
priate drugs. Thus, the starting point is to find suitable datasets to extract complete information about proteins 
and their relationships with COVID-19. For this purpose, we use the PPI network gathered in17. This dataset 
contains the physical interactions between proteins that are collected from the Biological General Repository 
for Interaction Datasets (BioGRID)22, Agile Protein Interactomes Data analyzer (APID)23, Homologous interac-
tions (Hint)24, Human Integrated Protein–Protein Interaction reference (HIPPIE)25 and Huri26. All of the pro-
teins in this dataset are mapped to universal protein resource (UniProt) ID27 and those proteins that could 
not be mapped to a Uniprot ID have been removed. This interactome contains 20,040 proteins and 304,730 
interactions. We also use 1374 informative biological processes on the Gene Ontology (GO)28 that are reported 
by Habibi et al.17. These biological processes are linked to 332 human proteins, and Gorden et al.21 identified 
strong connections between these 332 human proteins and viruses. They define a biological process annotation 
as informative if it has two characteristics. (1) At least k proteins annotated with it. (2) Each of its descendants 
GO terms should have less than k proteins annotated with them. In this study, we set three for the value of k. 
We denoted these informative biological processes as IBPs. Among the 20,040 proteins, 9849 participate in the 
mentioned biological processes.

Evaluation of high‑score COVID‑19 related genes.  In this subsection, we studied the 50 top main 
genes with high-scores with respect to three different machine learning algorithms. Table 1 shows the three 
high-score genes resulting from three algorithms and the ranks of each gene in each algorithm. As mentioned 
earlier, these three algorithms have different approaches.

The three genes, TNF, PTGS2, and BCL2, are identified as the three top genes with the highest scores selected 
by the LSFS algorithm. Studies have shown that TNF could be a key driver of inflammation in patients with severe 
COVID-1929. It could be targeted by existing immunomodulatory therapies. In30, the results of molecular docking 
analysis indicated that niacin showed effective binding capacity in COVID-19 and could help in COVID-19 treat-
ment. One of the important pharmacological targets of niacin in COVID-19 was BCL2 and the other was PTGS2.

The three genes NTRK1, APP, and ELAVL1, are identified as the three top genes with the highest scores 
selected by the RSR algorithm. Studies on the NTRK1 gene showed that this gene is associated with the most 
important symptoms of severe COVID-19, and Fostamatinib, by targeting this gene, has been identified as a 
therapeutic drug for the control of acute respiratory distress syndrome (ARDS) in COVID-19 patients31. A recent 
study showed that the COVID-19 upstream regulators increased APP expression significantly. They revealed that 
molecular mechanisms of COVID-19 may lead to long-term neurological manifestations resulting from elevated 
APP expression32. Another study to prove the value of cellular RNA-binding proteins as therapeutic targets for 
COVID-19 treatment tested multiple drugs. Their results showed that one of these compounds targeting ELAVL1 
caused a meaningful inhibition of SARS-CoV-2 protein production33.

Table 1.   Three high-score genes resulting from three algorithms and the ranks of each gene in each algorithm.

LSFS ranks  RSR ranks  SPNFSR ranks

TNF 1 99 9

PTGS2 2 126 15

BCL2 3 102 77

NTRK1 76 1 55

APP 93 2 86

ELAVL1 138 3 111

CYP3A4 57 113 1

ABCB1 68 81 2

CYP2C9 81 79 3
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The three genes CYP3A4, ABCB1, and CYP2C9, are identified as the three top genes with the highest scores 
selected by the SPNFSR algorithm. Authors in34 summarize medication updates for COVID-19 treatment in 
patients with an inflammatory state and their interactions with drug transporters. They showed CYP3A4, ABCB1, 
and CYP2C9 could be suitable targets for COVID-19 potential treatments.

We also evaluated the list of significant diseases and associated pathways related to each of the 50 high-score 
genes for each of the algorithms. Figure 1 also shows that different types of cancer, autoimmune diseases, and 
diabetes have large numbers of common genes, with the top 50 genes resulting from the three algorithms. We 
also reported some of the significant disease pathway enrichments identified by the Database for Annotation, 
Visualization, and Integrated Discovery (DAVID) tools35. In the DAVID tools evaluation results, Fisher’s Exact p 
values are used to measure the gene enrichment in annotation terms. The geometric mean of members’ p values 
in a corresponding annotation cluster is also used to estimate the Group Enrichment Score. Table 2 shows the 
significant disease pathways with respect to the selected 50 high-score genes that are reported through the LSFS 
algorithm. These significant disease pathways like Hepatitis C, Influenza A, and Tuberculosis have significant 
p values. From a drug repurposing aspect, effective and most used drugs that target these common genes with 
selected 50 top genes (for both of the above-mentioned groups of diseases) could be possible COVID-19 treat-
ments. Table 3 reports some of the significant disease pathway enrichments identified by the DAVID tool with 
respect to the selected 50 high-score genes that are reported through the RSR algorithm. These significant disease 
pathways like Hepatitis B and different types of cancers have significant p values. These pathways contain disease-
associated genes that are reported through the RSR algorithm. Therefore, effective, and most used drugs for these 

Figure 1.   The list of top diseases and number of related disease genes for the LSFS (green), RSR (orange), and 
SPNFSR(blue) algorithms.

Table 2.   Top significant disease pathways resulting from the LSFS algorithm.

 Term  Count  p value

Annotation cluster 1 (enrichment score: 12.121)

 hsa05168: Herpes simplex infection 20 4.20E−18

 hsa05160: Hepatitis C 13 8.31E−11

Annotation cluster 2 (enrichment score: 7.794)

 hsa05145: Toxoplasmosis 19 8.34E−21

 hsa05160: Hepatitis C 13 8.31E−11

 hsa05164: Influenza A 13 1.92E−09

 hsa05133: Pertussis 10 1.93E−09

 hsa05161: Hepatitis B 12 3.66E−09

 hsa05152: Tuberculosis 12 2.99E−08
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diseases that target these common genes with selected 50 top genes could be possible COVID-19 treatments. 
Table 4 reports some of the significant disease pathway enrichments identified by the DAVID tool with respect to 
the selected 50 high-score genes that are reported through the SPNFSR algorithm. The significant disease path-
ways, such as Influenza A and Rheumatoid arthritis, exhibit significant p values and contain disease-associated 
genes that are identified through the SPNFSR algorithm. Hence, targeting the common genes in these pathways, 
including the top 50 selected genes, with effective and widely-used drugs for these diseases may lead to potential 
COVID-19 treatments and we recommend them for more comprehensive clinical studies.

In this study, we also studied the important biological processes in these high-score gene sets for each of the 
algorithms. We used the DAVID tool and identified five subsets of biological processes with significant p values 
as COVID-19 related modules. Figure 2 illustrates the p values of each of these modules and the connections 
between the genes of each of the modules for the LSFS algorithm. With the help of the DAVID tool analysis, 
it was identified that a part of the Fc-epsilon receptor signaling pathway (with a p value of 1.8 ∗ E−15 ) was a 
submodule in these high-score genes. Studies on this module showed that this signaling pathway is followed by 
the PI3k cascade, which is referred to as the COVID-19 associated pathway20. Studies also have shown that this 
module is associated with cytokine production in inflammatory diseases36. Another identified significant module 
is a part of the TLR signaling pathway as a MyD88-dependent pathway. In the MyD88-dependent pathway, the 
MyD88 protein recruits IRAK family proteins. The IRAK4 protein activates TRAF6 and this protein ultimately 
activates NF-κ B resulting in the production of excessive and dangerous inflammatory cytokines in patients 
with COVID-1929. Figure 3 contains six submodules with a significant p value from the DAVID tool for the 
RSR algorithm. We found that these modules have been identified in various studies related to COVID-1937,38. 
Figure 4 shows the value of each of these modules and the interaction network between them for the SPNFSR 
algorithm. We found that all of them have been cross-linked with important biological processes or COVID-19 
related pathways. Treatment with Ang 1–7 is suggested in several studies. Ang 1–7 decreases the expression of 
intracellular signaling molecules such as the MAPK family (ERK1/2), which play an essential role in augment-
ing the inflammatory response39. Ang 1–7 also inhibits the NF-κ B signalings and reduces the expression of Ang 
II-induced ICAM-1 and VCAM-1. Treatment of COVID-19-affected patients with AT1R blockers (ARBs) may 
promote the ACE2/Ang 1–7 receptor with the reduction of proinflammatory cytokines and an increment in the 
level of anti-inflammatory cytokines40.

Finally, we studied the two sets of genes which includes the intersection (C) and the union (U) of the high-
score genes for these three algorithms. We found that the vascular cell adhesion protein 1 (VCAM1) is reported 
across all three algorithms. VCAM1 is expressed on inflamed vascular endothelium in inflamed tissue and plays 
an important role in immune responses27. Also, it makes leukocytes migrate to locations of inflammation27. The 

Table 3.   Top significant disease pathways resulting from the RSR algorithm.

 Term  Count  p value

Annotation cluster 1 (enrichment score: 4.211)

 hsa04110: Cell cycle 9 6.28E−07

 hsa05203: Viral carcinogenesis 8 2.09E−04

 hsa05161: Hepatitis B 6 0.00176293

Annotation cluster 2 (enrichment score: 2.758)

 hsa05215: Prostate cancer 9 4.30E−08

 hsa05205: Proteoglycans in cancer 9 2.24E−05

 hsa05213: Endometrial cancer 5 2.63E−04

Table 4.   Top significant disease pathways resulting from the SPNFSR algorithm.

 Term  Count  p value

Annotation cluster 1 (enrichment score: 3.057)

hsa05212: Pancreatic cancer 7 5.06E−06

hsa04010: MAPK signaling pathway 11 7.22E−06

hsa05160: Hepatitis C 8 3.28E−05

hsa05166: HTLV-I infection 10 5.25E−05

hsa05161: Hepatitis B 8 5.71E−05

Annotation cluster 2 (enrichment score: 4.663)

hsa05164: Influenza A 11 2.36E−07

hsa05133: Pertussis 8 7.10E−07

hsa05152: Tuberculosis 9 2.57E−05

hsa05160: Hepatitis C 8 3.28E−05

hsa05161: Hepatitis B 8 5.71E−05
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Figure 2.   The biological processes with significant p values for top high-score genes through the LSFS 
algorithm.

Figure 3.   The biological processes with significant p values for top high-score genes through the RSR 
algorithm.
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systematic analyses showed that the increased expression of VCAM1 is related to COVID-19 disease severity 
and may contribute to coagulation dysfunction41. Set, U, denotes the union of these three algorithms’ results 
containing 131 genes. Among these 131 genes, five MOV10, RHOA, CSNK2A2, CSNK2B, and RIPK1 are identi-
fied as targets of the SARS-CoV-2 virus and have direct interactions with virus genes. Recent studies show that 
fostamatinib, as a potential drug for controlling COVID-19, can target two genes, CSNK2A2 and RIPK131. Set, 
U, contains some infection-related genes, such as the inflammatory cytokines TNFα , interleukins IL-1A, IL-1B, 
IL-R1, and IL-6, and other important genes, such as TP53 and EGFR. These essential genes associated with 
COVID-19 have been validated in clinical trials13.

We compared the essential genes that are reported through four independent methods (Habibi, VIPER, Erola, 
Debmalya) with different approaches to essential genes resulting from our algorithms. Figure 5 compares the 
high-score genes obtained by LSFS, RSR, and SPNFSR, with the mentioned four algorithms. In this Figure, each 
gene detected through the mentioned algorithms is denoted with a darker color, and genes not reported through 
these algorithms showed with a lighter color. Figure 5 shows that 18 genes were identified by at least two of our 
proposed algorithms. Among these 18 genes, 14 genes as COVID-19 related genes are recognized by at least 
one of the four mentioned methods. We also find that high-score genes from the union of three algorithms, U, 
approve 17 drugs out of 21 experimental, unapproved drugs for COVID-19 reported in Drug Bank31. This set 
of drugs contains 69 experimental, unapproved drugs, and from these 69 drugs, 21 drugs have target informa-
tion from host genes. Figure 6 shows the list of drugs approved by our high-score genes and related COVID-19 
genes reported by other methods. Figure 6 shows that our high-score genes approved more experimental drugs 
for COVID-19.

Evaluation of selected high‑score COVID‑19 related genes as drug targets.  In the previous sub-
section, we evaluated the high-score genes obtained by each of our proposed machine-learning algorithms. The 
results of the previous subsection showed that each of these sets of genes with high scores has valuable genes as 
drug target potential. We also showed that 18 genes were confirmed by at least two of our algorithms, and more 
than 77% (14/18) of these genes were confirmed by at least one of the four studied methods. In the following, 
we analyze these genes in detail as genes with high potential in the COVID-19 treatment. Table 5 shows the 
complete list of these 18 genes and potential drugs for them. Each of these drugs is confirmed in Drug Bank as 
a potential drug in clinical trials or an approved drug for COVID-19 treatment31. In Table 5, the genes that have 
been confirmed in other studies or in36 to be associated with SARS-CoV-2 are shown in bold.

•	 TNF: TNF-α is one of the pro-inflammatory cytokines typically that is upregulated in acute lung injury 
and triggers cytokine release syndrome. The TNF-α facilitates SARS-CoV-2 interaction with angiotensin-
converting enzyme 2 (ACE2). Therefore, the TNF inhibitors may perform as an effective therapeutic strategy 
for mitigating disease progression in severe SARS-CoV-2 infection42.

•	 LT-α : As a member of the TNF family, it mediates a large type of inflammatory and antiviral responses. In 
COVID-19 patients, activated B cells produce IL-1, IL-6, IL-8, TNF, LT-α , and other cytokines, which can 
aggravate the cytokine storm43.

•	 TLR4: The TLR family plays an important role in pathogen recognition and activation of innate immunity. 
TLR4 has a significant role in the pathogenesis of SARS-CoV-2, and its overactivation provokes a long 

Figure 4.   The biological processes with significant p values for top high-score genes through the SPNFSR 
algorithm.
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or excessive innate immune response. TLR4 seems to be an appropriate therapeutic target in COVID-19 
patients31.

•	 CXCL12: It plays a crucial role in diverse cellular functions like immune surveillance and inflammation 
response. The authors in44 showed that between mild and severe COVID-19 patients, significant differences 
were detected in plasma levels of CXCL12.

•	 ICAM1: It is an essential molecule in immune-mediated and inflammatory processes as a co-stimulatory sig-
nal for leukocyte trans-endothelial migration and T cell activation. The authors in45 showed that in COVID-
19 patients, the levels of ICAM-1 were elevated and correlated with disease severity.

•	 IL1R1: It is an essential mediator involved in multiple cytokine-induced immune and inflammatory responses. 
The elevated levels of IL1R1 were reported in COVID-19 patients in recent studies46.

•	 PTGS2: It is responsible for the prostanoid biosynthesis involved in inflammation and mitogenesis. A recent 
study47 specifies the common key genes of COVID-19 and lung cancer through network analysis and one of 
these hub genes is PTGS2.

•	 NFKB1: It has a major role in the regulation of the early response to viral infection. Inappropriate activation 
of NFKB has been associated with several inflammatory diseases and upregulated levels of NFKB have been 
reported in COVID-19 patients48.

Figure 5.   Comparison of high-score genes reported by LSFS, RSR, and SPNFSR, with the four mentioned 
algorithms.

Figure 6.   List of drugs approved by our high-score genes and related COVID-19 genes reported by other 
methods.



9

Vol.:(0123456789)

Scientific Reports |        (2023) 13:15141  | https://doi.org/10.1038/s41598-023-42127-9

www.nature.com/scientificreports/

•	 IKBKB: It causes dissociation of the inhibitor and activation of NF-κ B, activated by numerous stimuli such 
as inflammatory cytokines and bacterial or viral products. Several studies confirmed the benefit of IKKs in 
weakening COVID-19. Therefore, IKBKB could be a potential therapeutic target for COVID-19 treatment7.

•	 IL1B: It is involved in inflammatory responses. It causes neutrophil activation, T-cell activation and cytokine 
production, B-cell activation, and antibody production. Patients with severe COVID-19 present high levels 
of IL-1B7.

•	 CD14: It collaborates with other genes to mediate the innate immune response to bacteria and viruses. It has 
been identified as a target candidate in the treatment of COVID-1931.

•	 TRAF6: As s member of the TNF family, it plays diverse roles in immune cells that regulate immune responses 
via control of inflammatory responses and recognition of innate immune signals. The SARS-CoV inhibits 
TLR-mediated signaling, reducing cytokine production during antiviral reactions by lowering the levels of 
TRAF3 and TRAF6 and then inactivating their downstream molecules, such as MAPK and transcription 
factors NF-κB49.

•	 CSNK2A1: It can regulate numerous cellular processes, like apoptosis, transcription, and viral infection, 
and plays a major role in cancer progression and viral infection. It can be considered a potential drug target 
in cancers and COVID-19 therapy. Therefore, repurposing the cancer drugs to target CSNK2A1 could be a 
suggestion50.

•	 UBE2I: It is essential for nuclear architecture and chromosome segregation. The authors in51 hypothesized 
that interferences in the host nucleocytoplasmic trafficking of proteins partially depend on the SARS-CoV-2 
relations with UBE2I.

•	 TP53: It works as a tumor suppressor, which means that it controls cell division by keeping cells from grow-
ing and dividing too fast or in an uncontrolled way. Researchers believe that SARS-CoV-2 will degrade the 
important tumor suppressor TP53, which will boost the virus’s ability to survive in host cells7.

•	 EGFR: It is a component of the cytokine storm which contributes to a severe form of COVID-19. Recent 
studies showed that SARS-CoV-2 depends on EGFR/ERK signaling and demonstrated EGFR inhibitors’ 
utility for COVID-19 treatment52.

•	 ESR1: It controls multiple cellular processes like growth, differentiation, and function of the reproductive 
system. The authors in53 revealed that estrogens interact with ESR1/2 receptors and can inhibit SARS-CoV-
2-caused inflammation and immune response in host cells.

•	 VCAM1: It mediates the adhesion of lymphocytes, monocytes, eosinophils, and basophils to vascular 
endothelium. Recent studies indicated increased expression of vascular and inflammatory factors VCAM1 
in COVID-19 lung tissue54.

Table 5.   The list of shared genes that is identified by at least two of the proposed algorithms and the potential 
drugs for them which is confirmed in Drug Bank. Genes with the approved drug have been shown in Bold.

Gene name Drug treatment

TNF Infliximab

Adamumab

LT-α Etanercept

TLR4 Cyclobenzaprine

Golotimod

CXCL12 Tinzaparin

ICAM1 Nafamostat

IL1R1 Anakinra

PTGS2 Celecoxib

NFKB1 Dacomitinib

IKBKB Acetylcysteine

IL1B Anakinra

CD14 Atibuclimab

TRAF6 –

CSNK2A1 –

UBE2I –

TP53 Zinc

EGFR Abivertinib

ESR1 Zinc

VCAM1 Adalimumab
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Conclusion
One of its main complications in COVID-19 patients is hyper-inflammation or the cytokine storm. Therefore, 
paying attention to inflammatory regulatory elements involved in SARS-CoV-2 infection can be the first step 
toward a comprehensive understanding of molecular regulatory mechanisms and the development of treat-
ment strategies for COVID-19. The scientific community is trying to find new therapies for these inflammatory 
regulatory elements of COVID-19. For this purpose, researchers face a major challenge in identifying the fewest 
and most important COVID-19 related genes that could be used as potential drug targets. Numerous studies 
have been carried out to discover a suitable group of genes associated with COVID-19, and the results of these 
studies include a long list of genes, each of which could be important. It could be possible to identify effective 
drug targets by prioritizing these genes based on their topological and biological properties. We presented three 
machine learning algorithms (LSFS, RSR, SPNFSR) to prioritize COVID-19 related genes and organize these 
genes. The newly introduced algorithms are based on the feature selection method.

In the first part of this work, we defined 11 biological and topological features for each gene. The first four 
features, based on the centrality measure of each gene in the PPI network, are introduced as the topological 
features of the gene. We also built a COVID-19 related biological network. This network was a weighted net-
work that fitted into a set of biological processes containing 332 proteins that were targeted by the virus. In this 
biological network, we have presented five features according to the topological characteristics of each gene as 
another measure for each gene. We also defined two other features for each gene in the PPI network. The first 
one was based on the number of drugs from the Clinical-Drug group that targeted the gene. The second one was 
based on the number of COVID-19 related signaling pathways that contain the gene. Then, with the help of three 
unsupervised machine learning algorithms, we assigned a score to these features. We assigned a score to each gene 
with the help of the topological and biological features of each gene and the value of each feature. We prioritized 
the set of genes based on these scores. In the result part of this work, we looked at the three high-scoring genes 
in each algorithm and discovered a direct link between these genes and COVID-19. We also evaluated the 50 top 
high-scoring genes of each algorithm with different measures. In the first measure, we evaluated the common 
genes between the list of 50 genes and disease genes for each algorithm. Our results show that these genes have 
the most in common with various types of cancer, diabetes, and autoimmune diseases. As another measure, we 
reported some of the significant disease pathways like Hepatitis C, Influenza A, and Tuberculosis with significant 
p values that contain disease-associated genes that have a lot in common with the list of 50 high-scoring genes. 
We also studied the biologically significant processes associated with these 50 high-scoring genes. We identified 
critical modules such as MyD88, Wnt, and MAPK, which have been linked to SARS-CoV-2 in multiple studies. 
Finally, we presented a list of 18 genes that have been identified as top genes by at least two of our algorithms. In 
Table 5 we showed the complete list of these 18 genes and potential drugs for them that were confirmed in Drug 
Bank as potential drugs in clinical trials or approved drugs for COVID-19 treatment. According to Table 5, our 
algorithms have identified many inflammatory related genes that play a key role in SARS-CoV-2 immunopatho-
genesis (such as TNF, IL1B, PTGS2, NFKB1, ICAM1, TP53, CD14, CXCL12, and EGFR) and this shows the high 
accuracy of our proposed method for gene analysis. We also compared our results with four different methods 
with completely different approaches and more than 77% (14/18) of the final set of genes were confirmed by at 
least one of the four studied methods.

Materials and methods
In this section, we present a new method to identify essential genes associated with COVID-19 from two inputs: 
the PPI network and informative biological processes related to COVID-19. In the first step, we calculate four 
topological features for each protein in the PPI network. We also construct a biological network with respect to 
informative biological processes related to COVID-19 and calculate five informative features for each protein 
in the biological network. We also consider two biological features for each protein in the PPI network with 
respect to COVID-19 pathology. Then, for each protein, we generate a feature matrix X = [xij]m×n , where xij 
represents the j-th feature for the i-th protein. In this step we used scaling to a range normalization technique 
to normalize our feature matrix.

In the second step, we use three unsupervised feature selection algorithms (LSFS, RSR, and SPNFSR) to calcu-
late appropriate scores for each feature ( Sj ). Then, we define the Essentiality Score for each protein ( pi ) as follows:

The workflow of the proposed method to identify essential genes is illustrated in Fig. 7.

Informative topological and biological features.  In this section, we define informative topological 
and biological features for each protein in our dataset.

Informative topological features for PPI network.  In a topological sense, a PPI network is modeled as an undi-
rected graph G =< V ,E > . Each protein in the PPI network is represented as a node, v, and the physical interac-
tion between two proteins (u and v) is considered as an edge, uv. If uv is an edge of graph G, a node u is the neigh-
bor of node v, and the set of neighbors of node u is represented by N(u). A path between u and v is determined 
as a sequence of distinct nodes u = u0, u1, . . . , un = v such that uiui+1 is an edge of G. The length of a path is 
equal to the number of edges in this path. The distance between two nodes u and v is equal to the length of the 
shortest path between these two nodes, which is denoted by d(u, v). The following four informative topological 
features are defined for each node of the PPI network. 

Essentiality Score (pi) =

n
∑

j=1

xijSj
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1.	 Degree: The number of neighbors of node u is defined as degree and denoted by d(u).
2.	 Betweenness: The betweenness centrality measure of each node u on graph G is defined as follows: 

 where ψv,w denotes the total number of shortest paths between two nodes v and w and ψv,w(u) shows the 
number of shortest paths between two nodes v and w pass through node u.

3.	 Pagerank: Another measure of centrality that is defined for each node u is the pagerank. This measure selects 
the score for each node u in the graph as a weighted contribution of all the scores assigned to the node v 
connected to u iteratively, as follows: 

 where d is a parameter between 0 and 1. PR(u) is the resulting score vector, whose i-th element is the score 
associated with node u. The larger score indicates the importance of the node according to its similarity with 
the other connected nodes.

4.	 Closeness: The closeness centrality measure for each node, u, is defined as follows: 

 where d(u, v) is the length of the shortest path between two nodes, u and v.

Informative topological features for biological network.  In this section, we introduce a biological network with 
respect to 1374 informative biological processes related to COVID-19. This biological network is also modeled 
as a weighted undirected graph G = �ρ, ι,ω� . In this graph, each protein that participates in the mentioned 

(1)B(u) =
∑

v,w∈V

ψv,w(u)

ψv,w
,

(2)PR(u) = (1− d)+ d ∗





�

v,v �=u

1
�

w,w �=v 1
PR(v)



,

(3)C(u) =
|V | − 1

∑

v∈V d(u, v)
,

Figure 7.   The workflow of the proposed methods.
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biological processes is represented as a node. Two nodes, u and v are connected through an edge uv if two pro-
teins participate in the same biological process. The weight of edge uv which is denoted by ω(uv) , is the number 
of biological processes in which two proteins, u and v, participate. The length of the path in a weighted graph 
G = �ρ, ι,ω� , is the sum of the weights of edges encountered when passing through it. The length of a path is 
equal to the weight of edges in this path. The distance between two nodes u and v is equal to the weight of the 
shortest path between these two nodes, which is denoted by dω(u, v) . The following five informative topological 
features are defined for each node of a weighted biological network. 

1.	 Weight: The weight of u on weighted graph G = �ρ, ι,ω� , is defined as follows: 

2.	 Betweenness: The betweenness centrality measure of each vertex u on graph G is defined as follows: 

 where the shortest path between two nodes, v and w is determined with respect to the length of the path 
in the weighted graph.

3.	 PageRank: Another measure of centrality that is defined for each node u is the PageRank. This measure 
selects the score for each node u in the graph as a weighted contribution of all the scores assigned to the 
node v connected to u iteratively, as follows: 

 where d is a parameter between 0 and 1. P R (u) is the resulting score vector, whose i-th element is the 
score associated with node u.

4.	 Closeness: The closeness centrality measure for each node, u, is defined as follows: 

5.	 Entropy: Suppose that W = [wij] be the weighted matrix correspond to weighted graph G = �ρ, ι,ω� where 

 For j-th node, we defined Pj as follows: 

 where N = |ρ| . We also define probability distribution vector π =< P1, P2, . . . , PN > . Then the entropy of 
weighted graph is calculated as follows: 

 The effect of each node, u, on network entropy is defined as follows: 

 where G − u is the weighted network that constructed with respect to removal of node u and its connected 
edges from network.

Informative biological features with respect to COVID‑19 pathology.  In this section, we also define two biologi-
cal features for each protein in the PPI network with respect to COVID-19 pathology. 

1.	 For the first feature, we use a set of experimental unapproved drugs in clinical trials for COVID-19 treatment 
that are available on the Drug Bank31. This set includes 708 drugs, of which 347 drugs have been studied 
clinically in more than one clinic. Among these 347 drugs, 213 drugs can target human proteins. This class 
of drugs is represented by Clinical-Drug. For each protein in the PPI network, the number of drugs approved 
through this protein is considered the first biological feature related to COVID-19 pathology.

2.	 For the second feature, we consider the most important signaling pathways related to COVID-19 (NF-κ B, 
Chemokine, Jak-STAT, P53, NOD-like, TNF, CAMP, RAS, Pap1, MAPK, PI3k-Akt, Toll-like(TLR)). The 
authors in7 proposed a comprehensive analysis for finding important pathways related to COVID-19 and 

(4)W(u) =
∑

v∈N(u)

ω(uv),

(5)B (u) =
∑

v,w∈V

ψv,w(u)

ψv,w
,

(6)P R (u) = (1− d)+ d ∗





�

v,v �=u

ω(uv)
�

w,w �=v ω(vw)
P R (v)



,

(7)C (u) =
|V | − 1

∑

v∈V dω(u, v)
.

(8)wij =

{

w(uivj) if uivj ∈ ι

0 otherwise

(9)Pj =

∑N
i=1 wij

∑N
j=1

∑N
i=1 wij

,

(10)Entropy(G ) = −

N
∑

i=1

Pi log(Pi).

E(u) = |Entropy(G )− Entropy(G − u)|,
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they suggested these pathways as most important pathways related to COVID-19. For each protein in the 
PPI network, we calculate the number of these signaling pathways in which the protein participates.

Unsupervised machine learning algorithms.  Since the problem of finding the most important set of 
COVID-19 related genes is still an open question, it can be considered a problem without a response variable or 
exact answer. Therefore, to find an efficient answer, we used our defined informative features for our constructed 
COVID-19 related networks. Then, we employed three different unsupervised feature selection algorithms with 
different approaches to identify an efficient set of genes. It is worth mentioning that, in supervised learning 
methods, feature selection has been extensively studied. Due to the lack of information about class labels to help 
the search for relevant knowledge in unsupervised learning methods, selecting features is a significantly more 
difficult challenge7. Suppose X = [xij]m×n represents the feature matrix that xij represents the j-th feature of 
the i-th sample. We assign a feature vector −→pi =< xi1, . . . , xin > to each sample and define the column matrix 
Fj = [x1j , . . . , xmj]

T for the j-th feature. To find the appropriate score for each feature, we use three different 
unsupervised machine learning algorithms as follows. In the Supplemental file, we have described the detailed 
information and steps for each of these algorithms. We also added the detailed information about feature values 
for each algorithm in Supplemental Table S2.

Laplacian score for feature selection (LSFS).  Suppose that S = [sij]m×m indicates the weighted matrix where 

sij = e−
|

−→

pi−
−→

pj |
2

t  if the euclidean distance between two feature vectors −→pi  and −→pj  is less than δ . Also, suppose that 
D = [di] is the diagonal matrix where di =

∑n
k=1 sik and L = D − S is the Laplacian matrix. The Laplacian Score 

for each feature, j, is calculated as follows:

where J = [1, 1, . . . , 1]T and ˜Fj = Fj −
Fj

TDJ

JTDJ
J . In this algorithm, we consider that δ = 5 and t = 100 respectively.

Non‑convex regularized self‑representation (RSR).  Suppose that Wt indicates the weighted matrix and wt
j  is the 

j-th row of Wt . Let Gt
B = [gtB,i]m×m is the diagonal matrix where

and Gt
W = [gtw,j]n×n is the diagonal matrix where gtW ,j =

p
2�w

t
j �

p−2
2  (0 < p < 1) . For each 1 ≤ t ≤ N , the weighted 

matrix W (t+1) is calculated iteratively as follows:

where I is the identity matrix and � > 0 . Finally, to compute each feature’s weight using Sj = �wj
�2 (j = 1, 2, . . . , n) 

where wj denotes the j-th row of the weighted matrix W. In this algorithm, we consider that p=0.1, �=1, N=60 
and ε=0.01 respectively.

Structure preserving nonnegative feature self‑representation (SPNFSR).  Suppose that Sm×m indicates the 
weighted matrix where S = (|S| + |ST |)/2 shows the similarity of two feature vectors −→pi  and −→pj  . Set two identity 
matrices Rm×m , Qn×n . Compute matrix L = (I − S − ST + SST ) and M = XTLX . Suppose that M = M+

−M− 
where M+

ij = (|Mij| +Mij)/2 and M−

ij = (|Mij| −Mij)/2 . The elements of weighted matrix W is calculated iter-
atively as follows:

where α ≥ 0 and β ≥ 0 and two matrices R and Q as diagonal matrices updated iteratively as follows:

where ε is a very small constant. Finally, to compute each feature’s weight using Sj = �wj
�2 (j = 1, 2, . . . , n) 

where wj denotes the j-th row of the weighted matrix W. In this algorithm, we consider that α=0.05, β=0.05 and 
ε=0.01 respectively.

Data availability
The datasets generated and analysed during the current study are available in our GitHub repository, [https://​
github.​com/​Mahna​zHabi​bi/​Gene_​analy​sis].

(11)Sj =
˜Fj
T
L ˜Fj

˜Fj
T
D ˜Fj

,

gtB,i =
1

max{2�
−→

pi −
−→

pi Wt
�2, ε}

(12)Wt+1
= ((Gt

W )−1XTGt
BX + �I)−1(Gt

W )−1XTGt
BX,

(13)Wij = Wij
(αM−W + XTRX)ij

((XTRX + βQ + αM+)W)ij
,

rii =
1

max{2�xi − xiW�2, ε}
,

qii =
1

max{2�wi
�2, ε}

.
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