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Novel insights for a nonlinear 
deterministic‑stochastic class 
of fractional‑order Lassa fever 
model with varying kernels
Saima Rashid 1,2, Shazia Karim 3, Ali Akgül 2,4,5, Abdul Bariq 6* & S. K. Elagan 7

Lassa fever is a hemorrhagic virus infection that is usually spread by rodents. It is a fatal infection 
that is prevalent in certain West African countries. We created an analytical deterministic‑stochastic 
framework for the epidemics of Lassa fever employing a collection of ordinary differential equations 
with nonlinear solutions to identify the influence of propagation processes on infected development 
in individuals and rodents, which include channels that are commonly overlooked, such as ecological 
emergent and aerosol pathways. The findings shed light on the role of both immediate and 
subsequent infectiousness via the power law, exponential decay and generalized Mittag‑Leffler 
kernels. The scenario involves the presence of a steady state and an endemic equilibrium regardless 
of the fundamental reproduction number, ℜ

0
< 1 , making Lassa fever influence challenging 

and dependent on the severity of the initial sub‑populations. Meanwhile, we demonstrate that 
the stochastic structure has an exclusive global positive solution via a positive starting point. 
The stochastic Lyapunov candidate approach is subsequently employed to determine sufficient 
requirements for the existence and uniqueness of an ergodic stationary distribution of non‑negative 
stochastic simulation approaches. We acquire the particular configuration of the random perturbation 
associated with the model’s equilibrium ℜs

0

< 1 according to identical environments as the presence 
of a stationary distribution. Ultimately, modeling techniques are used to verify the mathematical 
conclusions. Our fractional and stochastic findings exhibit that when all modes of transmission are 
included, the impact of Lassa fever disease increases. The majority of single dissemination pathways 
are less detrimental with fractional findings; however, when combined with additional spread 
pathways, they boost the Lassa fever stress.

Lassa fever , formerly known as Lassa hemorrhagic fever, is a deadly infectious species with serious consequences 
for the public’s  health1. The Lassa fever is primarily circulated by rodents (a multi-mammate rat) and is prevalent 
in West African  countries1. Lassa fever is an extremely infectious condition characterized by an elevated tem-
perature (38 C ◦ ) and the degeneration of internal organs (including the spleen)2. The condition has been named 
after Lassa, a municipality in Borno State, located in Nigeria’s northeastern region, where the initially identified 
Lassa fever case was discovered in  19692–4.

Lassa fever ways of dissemination encompass rodent-to-rodent, rodent-to-human, human-to-human, human-
to-rodent and human-to-environment5–14. In accordance with the World Health  Organization14, approximately 
80% of Lassa fever-affected individuals exhibit no clinical signs (i.e., are asymptomatic), and one in every five 
contaminated individuals has been determined to be in a severe inflammation  scenario13–15.Lassa virus infection 
is the underlying cause of Lassa fever, and it has an elevated death rate, particularly among expectant mothers and 
individuals with pre-existing medical  histories4. According to an investigation carried out by Richmond et al.16, 
Lassa virus could potentially be employed to deploy missiles featuring infectious bacteria or physical arsenals. The 
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infection has impressive efficacy in its spread. One instance of Lassa fever becoming infected in an entire com-
munity may initiate a  pandemic17. As a result of the socioeconomic and biological consequences of Lassa virus, 
more research on the virus is required to gain a better understanding of transmission mechanisms and control.

Undoubtedly, the Lassa virus’s host is a multi-mammate rodent (commonly referred to as Mastomys natalen-
sis) that develops repeatedly and spreads extensively throughout the West Africa. Rodents from infected environ-
ments are seven times more likely to become infected compared with animals from controlled  environments16. 
Yearly, roughly thirty thousand intriguing Lassa virus ailments occur, with 5500–15,000  casualties3,5,13. Despite 
this, there is currently no approved vaccine for Lassa fever. Nonetheless, it can be successfully alleviated by the 
antiviral drug, which is widely accessible and highly efficient if administered shortly after the start of the course 
of infection (i.e., throughout the six weeks of illness onset)14. Furthermore, as reported  in10, Lassa fever imple-
mentation may necessitate medication for viruses, substance substitution, and bloodstream transplants. As a 
result, successful treatment for Lassa fever getting sick is unable to ensure permanent resistance to  recurrence10.
Certain elements may contribute to the prevalence (for example, human-to-human sickness, rodent-to-rodent 
illness, and ecological damage), whereas individuals (for example, therapy, ecological decontamination, and 
medical education campaigns) can lower the illness stress in a particular region.

Because of its significant incidence and the possibility of dissemination, the World Health Organization 
decided to place Lassa fever on its model, identifying critical illnesses that require greater involvement via health-
care administrators and scientists to enable greater focus on mitigation and regulation  strategies18. To the extent 
of our understanding, few research investigations have been conducted with the objective of shedding more 
insight into the prevalence and medical manifestations of Lassa fever. As a result, additional scientific backing 
and epidemiological inquiries on the evolution of the propagation of Lassa fever are required, particularly with 
regard to the effect of elements influencing the environment. The Lassa fever time series case data were obtained 
from the open website of the Nigeria Centre for Disease  Control19 for the period of November 28, 2022, to April 
13, 2023. All case data are laboratory confirmed by the Nigeria Centre for Disease Control situation  report19. 
Figure 1 presents the number of Lassa fever laboratory cases confirmed weekly by states in Nigeria.

While searching for evidence, we discovered that multiple scholars have proposed finding algorithms that 
are capable of being utilized for obtaining fractional differential operators. The primary explanation for why 
this happens is that in practical application, obstacles prove manifestations of procedures that are analogous to 
the behaviours displayed by certain mathematical formulas. The discoveries of Hadamard, Caputo, Riez and 
Hilfer contribute to a fractional calculus that contains an index-law kernel. Because of Caputo’s subsequent 
improvements, which enabled the use of classical initial values, the resulting form has been used in a variety of 
scientific  fields20.  Prabhakar21 contemplated an alternative kernel via three settings as an outcome of the power-
law and the generalized Mittag-Leffler function. Numerous investigators have felt drawn to this adaptation, and 
investigations on both concepts and their implementation were carried  out22–32. Actually, both of the algorithms 
have distinct principles; e.g., the index-law kernel merely aids in the replication of procedures that demonstrate 
power-law actions, whereas the combination of the index-law and the generalized three-parameter kernel assists 
in the replication of procedures that indicate power-law behaviour. Mittag-Leffler encounters a sphere with 
potential as  well21,33. Because the environment is convoluted, Caputo and  Fabrizio34 proposed an innovative 
kernel: an unusual exponential kernel alongside Delta Dirac features. A differential operator that is well-noted 
currently since it has the capability to reproduce procedures after diminishing memory. In fact, the notion of 
the fractional derivative that works with a non-singular kernel was developed by this kernel, ushering in an 
entirely novel era in fractional  calculus35. Several of the investigators observations of the kernel’s non-fractionality 
prompted the development of an additional kernel, the generalized Mittag-Leffler work, that had one setting. 
Atangana and  Baleanu35 suggested this formulation, which signifies yet another expansion breakthrough in the 
field of fractional calculus. The fractional derivative techniques are being successfully implemented in a variety 
of research disciplines of research.  Author36 presents the fundamental concepts of fractional differentiation, 
existence-uniqueness concepts and computational approaches to solving fractional differential equation. Nev-
ertheless, whereas the crossover features of the Mittag-Leffler and the exponential kernel are widely identified 
as powerful mathematical approaches for illustrating practical problems, it is critical to recall that solely the core 
problems observing the crossover features of each of these approaches can be simulated according to multiple 
limitations, as in major difficulties, these two components are likely ineffective in confirming precisely at which 

Figure 1.  Confirmed Lassa fever cases in Nigeria epidemiological week 48, 2022 to week 15, 2023.
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the crossover happened.Atangana and  Seda37 just introduced intriguing concepts referred to as piecewise dif-
ferentiation and integration, of which a contemporary variant is defined as a piecewise within a specific time 
frame. The following is a previously developed mathematical instrument for facilitating multifaceted, significant 
challenges alongside convoluted cross-over practises. A new method of illustration will address an extensive 
variety of structural problems. But none of them observed random perturbation techniques in their inquiries, 
and just a handful of mathematical examinations via Lassa fever diseases of the model have been carried out. 
To the best of our understanding, no investigation has been performed to analyze the Lassa fever transmission 
pathways of the illnesses mentioned in a trustworthy and inexpensive manner. Rashid et al.38 presented the new 
numerical simulation for the fractional model of deathly Lassa hemorrhagic fever disease in pregnant women 
with optimal analysis. Atangana and  Rashid39 contemplated the analysis of a deterministic-stochastic oncolytic 
M1 model involving immune response using piecewsie fractional differential equation technique. Shah et al.40 
expounded the coupled system of drug therapy via piecewise fractional differential equations. Arik and  Araz41 
crossover behaviors via piecewise concept: a model of tumor growth and its response to radiotherapy.

It is apparent that the disease transmitted by rodents has data pertaining to its prior phases and an instruc-
tional mechanism; to be more particular, memory plays a crucial part in vector-borne disease transmission 
dynamics. The host population’s memory correlates with personal consciousness, thereby lowering the contact 
rate between vectors and hosts, whereas rodents employ previous information about the human’s location, blood 
selection, colour, and the smell of human  sweat38,39. In mathematical modelling of infectious diseases, these sorts 
of phenomena can be readily represented by a fractional-order system. It ought to be additionally highlighted 
that a majority of real-world phenomena are not merely predictable, considering the outcome of an analysis is 
completely dictated by the attribute information and initial conditions. Uncertainty is a characteristic of random 
systems. The identical assortment of parameter settings and initial conditions will result in a combination with 
multiple outcomes. In a nutshell, predetermined designs constitute a system that takes numerals as components 
and generates information as the results. A randomly generated simulation involves a random element that 
takes an assortment as a source of information and produces a circulation as a consequence. These patterns 
of distribution might indicate the degree of unpredictability in the information being supplied (for example, 
predictable suggestions along with noise) or an arbitrary procedure (for example, randomly generated data)42,43.

Mathematical modeling is regarded as a crucial instrument to illustrate the evolving behaviors of various 
prevalent illnesses. Multiple epidemiological models for figuring out and managing multiple prevalent illnesses 
in a specific area are being constructed by various scientists and environmentalists. In the last two decades, 
numerical modeling has been extensively employed to characterize the transmission of multiple illnesses (see, 
for example,44). Different understandings are currently being investigated to broaden the knowledge of the Lassa 
fever, specifically capturing its significant deductions via predictive  modeling45. Simulations define the fluctuating 
course of transmission; even so, because of their pragmatic strategy, stochastic differential equations are suit-
able for modelling biological phenomena. When juxtaposed with deterministic designs, stochastic algorithms 
produce superior outcomes because, after multiple runs of operation, a distribution of the anticipated outcomes, 
including the mean of ailments at any moment t , is capable of being developed, while deterministic frameworks 
produce one estimated  value39,46. There are plenty of strategies and techniques for examining stochastic  systems47.

Our research is an extension of the work of Peter et al.48 and Ibrahim and  Denes49 by: (i) implementing eco-
logical contaminants into an individual’s dissemination route. The context is defined by the substrates, buildings, 
and additional supplies in which the infectious agent is stored. (ii) Launching pollutants into an individual’s dis-
semination paths. By airborne particles, we mean airborne substances that have been focused on individuals and 
atmospheric activity. These two channels weren’t typically regarded as receiving massive amounts of sick drivers. 
Taking into account the Lassa fever transmission structure, we proposed a stochastic perturbation technique to 
simulate the propagation evolution of the Lassa fever that includes differing individual settings for long-term 
behaviour, employing the existing research on modelling outbreaks. We divide the entire community into ten 
different groups. Consequently, our research focuses on (i) human-to-human transmission, (ii) rodent-to-human 
transmission, (iii) rodent-to-rodent transmission, (iv) environment-to-human transmission, (v) aerosol to human 
transmission and (vi) environment to rodent transmission. These investigations constitute the cornerstone of 
our research with the piecewise differential equation techniques, and the knowledge acquired compared to them 
will assist us in developing and analyzing a broader investigation regarding additional dissemination channels 
when white noise and random perturbations are involved.

Model configuration
The cumulative human community, denoted as Nh(t) , is classified into five categories, including those who are 
vulnerable to the pathogen, or Xh(t) , individuals who carry the pathogen but aren’t contagious, Ph(t) , those who 
are contagious yet do not exhibit symptoms, Qha(t) , those who are contagious but have symptoms, Qhs(t) and 
individuals who have healed from Lassa fever, or Rh(t) are presented as:

The overall rodent community, denoted as Nr(t) , is categorized as follows: rodents vulnerable to the pathogen, 
denoted as Xr(t) rodents contaminated well with Lassa virus infection and not contagious, denoted as Pr(t) and 
contaminated rodents, denoted as Nr(t) to:

We take into consideration the aforementioned limited propagation routes: human-to-human, rodent-to-human 
and rodent-to-rodent. We also take into account informal pathogens like E-H interaction, A-H interaction and 
E-R interaction. We employ Gs to represent the accumulation of the Lassa fever pathogen on ecological interfaces 

(1)Nh(t) = Xh(t)+ Ph(t)+Qha(t)+Qhs(t)+ Rh(t).

(2)Nr(t) = Xr(t)+ Pr(t)+Qr(t).
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and Ga to represent the accumulation of the viral infection in the atmosphere and as such, to account for unin-
tended propagation mechanisms, where Gs,Ga , provides the highest pathogen maximum load on interfaces and 
equipment and in the atmosphere is presented by �v with Ga ≤ �v .

We presume that �1 represents the steady rate of vulnerable living organisms recruiting new members. 
Throughout an infectious disease outbreak, the vulnerable people advance to the exposure group Ph as described 
ϒh = γh

(

Qr
Nr

+ ρ1Qhs
Nh

+ ρ2Qha
Nh

+ ρ3Gs
�v

+ ρ4Ga
�v

)

.

Here, ρ1 is the reconfiguration value which suggests interaction with Qhs is less contagious than interacting 
to Qr . γh is the enhanced surface rate between highly vulnerable individuals and afflicted rodents, vulnerable 
beings and contagious beings, vulnerable beings, the viral disease in the atmosphere, and the pathogen in the 
atmosphere. In this manner, the adjustment specifications ρ2, ρ3 and ρ4 also consider the degree of reinfec-
tion of interaction with Qha , Gs and Ga , respectively. Indications from the guarantees of inclusivity stated as 
ρ4 < ρ3 < ρ1 < ρ2 < 1.

The unprotected individuals advance to the contagious cohort at a speed of α1 , where µα1 is the ratio of 
affected populations who are latent and (1− µ)α1 is the fraction who develop symptoms. All categories of indi-
viduals instinctually pass away at the speed ϑ1 . Individuals who are infectiously indicative can pass away from 
the ailment at a speed of δ , whereas there are no incidences of infectiously subclinical people passing away from 
the infestation. Individuals who are infectiously displaying symptoms or not come back at rates of φ1 and φ2 , 
respectively. Throughout a power of infestation, the vulnerable rodents are attracted to the unprotected class Pr 
at a steady rate �2 and relocate there for ϒr = γr

(

Qr
Nr

+ φ1Gs
�v

)

, where γr is the proportion of efficacious interac-
tion between rodents that are vulnerable to getting sick and afflicted rodents, as well as between vulnerable 
rodents and potentially polluted in the surroundings. The modifying variable, φ1 , demonstrates that interaction 
with Gs becomes less contagious than interaction with Qr . All rodents inherently pass away at a speed of ϑ2 , and 
unprotected rodents transition to the contagious category at a rate of α2 . Because they are consumed by human 
beings as meals, rodents can indeed perish at a rate of υ . Since afflicted rodents can persist to absorb the pathogen 
for the rest of their lives, pathogens do not cause rodents to drop dead. By urinating, excreting feces, haemor-
rhage, and secreting mucus, afflicted rodents, contagious indicative beings, and contagious symptom less beings, 
respectively, release the Lassa fever pathogen into the surroundings at rates of β1 , β2 and β3 , respectively. We also 
make the assumption that a component of the pathogen accumulation advances into the atmosphere via air flow 
and anthropogenic at a rate of ξ2 , whereas the remaining pathogen accumulation degrades on contaminated 
interfaces and in the atmosphere at a rate of ξ2 and ξ3 , respectively. The first order nonlinear ordinary differential 
equations that represent the Lassa fever framework in Fig. 2 are as follows:

Figure 2.  Schematic view of Lassa fever model.
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supplemented by the initial conditions (initial conditions):

Table 1 displays the elements and representations for the parameters and their variables.
However, in the framework (3), it is assumed that people currently reside in a steady environment. Even so, 

the perturbation in the surroundings will indeed influence certain aspects of the outbreak model’s process vari-
ables. Having subsequently discovered that the stochastic framework can further adequately represent biological 
mechanisms and viral infections, there has been a significant rise in enthusiasm for taking random perturbation 
into account in virology  configurations42,43. The framework can currently be perturbed stochastically in a variety 
of manners. Assuming that random perturbations constitute a single sort of white noise that is proportional to 
every component, respectively, comprises one of the most crucial steps. Considering the foregoing, it really is 
supposed in the proposed investigation that the white noise is individually proportional to the compartments 
X∗
h ,P

∗
h,Q

∗
ha ,Q

∗
hs,R

∗
h,X

∗
r ,P

∗
r ,Q

∗
r ,G

∗
s  and G∗

a , respectively. Regarding that, the dynamical framework presumes 
the respective structure, linking the deterministic framework (3):

(3)



























































Ẋh = �1 −ϒhXh − ϑ1Xh,
Ṗh = ϒhXh − (α1 + ϑ1)Ph,
Q̇ha = µα1Ph − (φ1 + ϑ1)Qha ,
Q̇hs = (1− µ)α1Ph − (δ + φ2 + ϑ1)Qhs,
Ṙh = φ1Ph + φ2Qhs − ϑ1Rh,
Ẋr = �2 −ϒrXr − (ϑ2 + υ)Rh,
Ṗr = ϒrXr − (α2 + ϑ2 + υ)Ph,
Q̇r = α2Pr − (υ + ϑ2)Qr ,
Ġs = β1Qha + β2Qhs + β3Qr − (ξ2 + ξ3)Gs,
Ġa = ξ3Gs − ξ2Ga ,

(4)
Xh(0) = Xh0 ≥ 0, Ph(0) = Ph0 ≥ 0, Qha(0) = Qha0 ≥ 0, Qhs(0) = Qhs0 ≥ 0,

Rh(0) = Rh0 ≥ 0, Xr(0) = Xr0 ≥ 0, Pr(0) = Pr0 ≥ 0, Qr(0) = Qr0 ≥ 0,

Gs(0) = Gs0 ≥ 0, Ga(0) = Ga0 ≥ 0, ∀ t ≥ 0.

Table 1.  Explanation of system’s feature.

Symbols Explanation Values

µ Percentage of people who develop to Qha Nil

δ Mortality from infection for people Day−1

�v The greatest infection transmission rate Virus

�1 Individuals recruiting quantity Human/day

�2 Rodents recruiting quantity Rodents/day

ϑ1 Individuals natural mortality rate Day−1

ϑ2 Rodents natural mortality rate Day−1

φ1 Qha rate of recuperation Day−1

φ2 Qhs rate of recuperation Day−1

υ Rationale for rodent mortality resulting from human intake Day−1

ξ2 Rate of infection deterioration in Vs Day−1

ξ3 The speed of infection development from Vs to Va Day−1

β1 The speed at which Qha releases infection in Gs Infection/individual ×day−1

β2 The speed at which Qhs releases infection in Gs Infection/individual×day−1

β3 The speed at which Qr releases infection in Gs Infection/individual×day−1

α1 Individuals’ rate of switching from Ph to Qha and Qhs Day−1

α2 Rodents’ rate of switching from Pr to Qr Day−1

γr Rate for interaction among Xr ,Qr and Gs Day−1

γh Rate for interaction among Xh ,Qha ,Qhs ,Qr ,Ga and Gs Day−1

ρ1 An altered factor Nil

ρ2 An altered factor Nil

ρ3 An altered factor Nil

ρ4 An altered factor Nil
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Where Bm(t), m = 1, ..., 10 are mutually independent standard Brownian motions described on a com-
plete probability space (�,F, {Ft}t≥0,P) with a {Ft}t≥0 filtration entertaining the regular  requirements50, and 
σm, m = 1, ..., 10 represents the intensity of white noises Bm, (m = 1, ..., 10) , respectively).

For the sake of inconvenience, we use the following symbols:
ℜd̄
+ =

{

x̄ = (x1, ..., xd̄)
T̄ ∈ ℜd̄; x̄ι > 0, ι ∈ [1, d̄]

}

, ℜ̄d̄
+ =

{

x̄ = (x1, ..., xd̄)
T̄ ∈ ℜd̄; x̄ι ≥ 0, ι ∈ [1, d̄]

}

.
For any x̄, ȳ ∈ ℜ, then x̄ ∨ ȳ = max{x̄, ȳ} and x̄ ∧ ȳ = min{x̄, ȳ}.
The stochastic differential equation in d-dimensions is presented below:

where u : ℜd × [ζ0, T̃] �→ ℜd and q : ℜd × [ζ0, T̃] �→ ℜd×m1 are Borel measurable having B = {B(ζ )}ζ≥ζ0 is an 
ℜm1-valued Wiener process, and v0 is an ℜd-valued random variable presented as �.

Therefore, C̄2,1(ℜd × [ζ0,∞); ℜ+) is considered as the family of all non-negative functions V(v, ζ ) on 
ℜd × [ζ0,∞) that are continuously twice differentiable in v ∈ ℜd and once in ζ ∈ [ζ0,∞) . The differential for-
mulation L for the stochastic differential Eq. (6) is given as

Introducing the functional V ∈ C̄2,1(ℜd × [ζ0,∞), then

where Vζ := ∂V
∂ζ

; Vs1 = (Vvς , ...,Vvd), Vvv = (Vvς ,Vvς )d×d.

For v(ζ ) ∈ ℜd, then Itô’s method can be described as:

Here, we furnish the associated overview here to assist viewers who are familiar with FC (see;20,34,35).

The Caputo fractional derivative involves the power-law function. The Caputo fractional-order derivative allows 
usual initial conditions when playing with the integral transform, for instance the Laplace  transform51,52.

where M̄(χ) is stated to be normalized mapping with M̄(0) = M̄(1) = 1.
The Caputo-Fabrizio operator which has attracted many research scholars due to the fact that it has a non-

singular kernel. Also the Caputo-Fabrizio operator is most appropriate for modeling some class of real-world 
problem which follows the exponential decay  law53. With the passage of time, developing a mathematical model 
using the Caputo-Fabrizio fractional-order derivative became a remarkable field of research. In recent times, 
several mathematicians were busy in development and simulation of Caputo-Fabrizio fractional differential 
 equations54.

The fractional derivative operator of the Atangana-Baleanu of Caputo type is defined as:

(5)































































dXh =
�

�1 −ϒhXh − ϑ1Xh

�

dt + σ1XhdB1(t),
dPh =

�

ϒhXh − (α1 + ϑ1)Ph
�

dt + σ2PhdB2(t),
dQha =

�

µα1Ph − (φ1 + ϑ1)Qha

�

dt + σ3QhadB3(t),
dQhs =

�

(1− µ)α1Ph − (δ + φ2 + ϑ1)Qhs

�

dt + σ4QhsdB4(t),
dRh =

�

φ1Ph + φ2Qhs − ϑ1Rh

�

dt + σ5RhdB5(t),
dXr =

�

�2 −ϒrXr − (ϑ2 + υ)Rh

�

dt + σ6XrdB6(t),
dPr =

�

ϒrXr − (α2 + ϑ2 + υ)Ph
�

dt + σ7PrdB7(t),
dQr =

�

α2Pr − (υ + ϑ2)Qr

�

dt + σ8QrdB8(t),
dGs =

�

β1Qha + β2Qhs + β3Qr − (ξ2 + ξ3)Gs

�

dt + σ9GsdB9(t),
dGa =

�

ξ3Gs − ξ2Ga

�

dt + σ10GadB10(t),

(6)dv(ζ ) = u(v(ζ ), ζ )dζ + q(v(ζ ), ζ )dB(ζ ), v(ζ0) = v0, ∀ ζ0 ≤ ζ ≤ T̃ < ∞,

L =
∂

∂ζ
+

d
∑

ς=1

uς (v, ζ )
∂

∂vς
+

1

2

d
∑

i,ς=1

m1
∑

m=1

qςm(v, ζ )qςm(v, ζ )
∂2

∂vς ∂vi
.

LV(v, ζ ) = Vζ (v, ζ )+ Vv(v, ζ )f(v, ζ )+
1

2

d
∑

i,ς=1

m1
∑

m=1

qim(v, ζ )gςm(v, ζ )Vvv(v, ζ ),

dV(v(ζ ), ζ ) = LV(v(ζ ), ζ )dζ + Vv(v(ζ ), ζ )q(v(ζ ), ζ )dB(ζ ).

C
0D

χ
ζ G(ζ ) =

1

Ŵ(1− χ)

ζ
∫

0

G′(w)(ζ − w)χdw, χ ∈ (0, 1].

CF
0 D

χ
ζ G(ζ ) =

M̄(χ)

1− χ

ζ
∫

0

G′(w) exp

[

−
χ

1− χ
(ζ − w)

]

dw, χ ∈ (0, 1],
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where ABC(χ) = 1− χ + χ
Ŵ(χ)

 indicates the normalization mapping.
The kernel used in Atangana-Baleanu fractional differentiation appears naturally in several physical problems 

as generalized exponential decay and as a power-law asymptotic for a very large  time55,56. The choice of this 
derivative is motivated by the fact that the interaction is not local, but global, and also, the trend observed in 
the field does not follow the power-law. The generalized Mittag-Leffler function completely induced the effect 
of memory, which is very important in the nonlinear Baggs-Freedman  model57.

As fractional-order models describe the non-local behavior of biological systems and posses hereditary 
property, moreover, it provides information about its past and present state for the future, therefore, we represent 
the dynamical system (3) of Lassa virus in the framework of fractional-order Caputo’s derivative to conceptual-
ize the transmission of Lassa fever in a more accurate way. Thus, the system consist of fractional derivatives is 
presented by

The structure of this essay can be described as follows: In Section “Model configuration”, we demonstrate that 
the deterministic framework (3) has a forward and backward at ℜ0 = 1. In Section “Stochastic analysis”, we use a 
stochastic Lyapunov candidate technique to develop the necessary requirements for an ergodic stationary distri-
bution of effective solutions to the stochastic system (5) to arise and be distinct. Also, the unique global positive 
solution for every positive initial conditions is provided in detail. We accurately communicate the piecewise 
fractional differential equations with varying kernels of the stochastic system (5) in Section “Numerical simula-
tions” under the same assumptions as stated  in37, reflecting the strong extinction and persistence of the illness. 
In Section “Results and discussion”, simulation results are provided to certify our diagnostic results gained in 
Sections  “Stochastic analysis and Numerical simulations”. This manuscript is concluded with a concise summary.

Deterministic behaviour
Here, we demonstrate the mathematical and biophysical significance of our framework. Additionally, we will 
calculate the fundamental reproduction number and evaluate the steady state’s consistency.

Theorem 2.1 The closed set�̃ :=
(

Xh,Ph,Qha ,Qhs,Rh,Xr ,Pr ,Qr ,Gs,Ga

)

 is a positive invariant set for the pro-
posed fractional-order system (7).

Proof To prove that the system of Eq. (7) has a non-negative solution, the system of Eq. (7) implies

Thus, the fractional system (7) has non-negative solutions. In the end, from the first four equations of the frac-
tional system (7), we obtain

ABC
0 D

χ
ζ G(ζ ) =

ABC(χ)

1− χ

ζ
∫

0

G′(w)Eχ

[

−
χ

1− χ
(ζ − w)χ

]

dw, χ ∈ (0, 1],

(7)



























































c
0D

χ
t Xh = �1 −ϒhXh − ϑ1Xh,

c
0D

χ
t Ph = ϒhXh − (α1 + ϑ1)Ph,

c
0D

χ
t Qha = µα1Ph − (φ1 + ϑ1)Qha ,

c
0D

χ
t Qhs = (1− µ)α1Ph − (δ + φ2 + ϑ1)Qhs,

c
0D

χ
t Rh = φ1Ph + φ2Qhs − ϑ1Rh,

c
0D

χ
t Xr = �2 −ϒrXr − (ϑ2 + υ)Rh,

c
0D

χ
t Pr = ϒrXr − (α2 + ϑ2 + υ)Ph,

c
0D

χ
t Qr = α2Pr − (υ + ϑ2)Qr ,

c
0D

χ
t Gs = β1Qha + β2Qhs + β3Qr − (ξ2 + ξ3)Gs,

c
0D

χ
t Ga = ξ3Gs − ξ2Ga .

(8)







































































c
0D

χ
t Xh

�

�

Xh=0
= �1 ≥ 0,

c
0D

χ
t Ph

�

�

Ph=0
= ϒhXh ≥ 0,

c
0D

χ
t Qha

�

�

Qha=0
= µα1Ph ≥ 0,

c
0D

χ
t Qhs

�

�

Qhs=0
= (1− µ)α1Ph ≥ 0,

c
0D

χ
t Rh

�

�

Rh=0
= φ1Ph + φ2Qhs ≥ 0,

c
0D

χ
t Xr

�

�

Xr=0
= �2 −ϒrXr − (ϑ2 + υ)Rh ≥ 0,

c
0D

χ
t Pr

�

�

Pr=0
= ϒrXr − (α2 + ϑ2 + υ)Ph ≥ 0,

c
0D

χ
t Qr

�

�

Qr=0
= α2Pr ≥ 0,

c
0D

χ
t Gs

�

�

Gs=0
= β1Qha + β2Qhs + β3Qr ≥ 0,

c
0D

χ
t Ga

�

�

Ga=0
= ξ3Gs ≥ 0.
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Solving the above inequality, we obtain

so by the asymptotic behavior of Mittag-Leffer  function33, we obtain

Taking the same steps for the sixth, seventh and eighth of system (8), we get Nr =
�2

ν+ϑ2
. Analogously, we can deal 

the ninth and tenth compartment of (8), which yields Gs ≤
(β1+β2)�1ϑ1+β3�2ϑ1

ϑ1ϑ2(ξ2+ξ3)
,Ga ≤

(β1+β2)�1ϑ2ξ3+ξ3β3�2ϑ1
ϑ1ϑ2ξ2(ξ2+ξ3)

. 
Hence, the closed set �̃ is a positive invariant region for the fractional-order Lassa fever model (7).   �

• We demonstrate that the solutions continue to stay positive and bounded in the suggested region, � , under 
the assumption that all specifications are positive for time t . We shall examine the framework for Lassa fever 
�̃ :=

(

Xh,Ph,Qha ,Qhs,Rh,Xr ,Pr ,Qr ,Gs,Ga

)

 spreads in the domain, which is as follows:

• The biological meaningful equilibria of fractional system (7) are disease-free equilibrium and endemic equi-
librium, depending on infected classes in both the populations. To obtain the infection-free equilibrium, we set 
the fractional derivative c0D

χ
t Xh,

c
0D

χ
t Ph,

c
0D

χ
t Qha ,

c
0D

χ
t Qhs,

c
0D

χ
t Rh,

c
0D

χ
t Xr ,

c
0D

χ
t Pr ,

c
0D

χ
t Qr ,

c
0D

χ
t Gs,

c
0D

χ
t Ga 

to zero of the fractional system (7) without infection, and get

• To use the next generation matrix  strategy58, the dominant eigenvalue of the matrix FG−1 corresponds to the 
fundamental reproduction number ℜ0 of system (3). Therefore, we have

After, making use of the Jacobian of F and G reviewed at E0 , we obtain the next generation matrix at disease-free 
equilibrium is

where

c
0D

χ
t �̃ ≤ �1 +ϒhXh + µα1Ph + (1− µ)α1Ph + φ1Ph + φ2Qhs

≤ �1 − ϑ1Nh.

�̃(t) ≤
(

�̃(0)−
�1

ϑ1

)

Eρ(−ϑtρ)+
�1

ϑ1
,

�̃(t) ≤
�1

ϑ1
≈ Nh,

(9)

� :=
{

�̃ ∈ ℜ10
+ : Nh ≤

�1

ϑ1
,Nr ≤

�2

υ + ϑ2
,Gs ≤

(β1 + β2)�1ϑ1 + β3�2ϑ1

ϑ1ϑ2(ξ2 + ξ3)
,Ga ≤

(β1 + β2)�1ϑ2ξ3 + ξ3β3�2ϑ1

ϑ1ϑ2ξ2(ξ2 + ξ3)

}

.

E0 =
(�1

ϑ1
, 0, 0, 0, 0,

�2

υ + ϑ2
, 0, 0, 0, 0

)

.

F =

















ϒhXh

0
0

ϒrXr

0
0
0

















, V =

















(ϑ1 + α1)Ph
(ϑ1 + φ1)Qha − µα1Ph

(ϑ1 + φ2 + δ)Qhs − (1− µ)α1Ph
(ϑ2 + α2 + υ)Pr

(υ + ϑ2)Qr − α2Pr
−β1Qha − β2Qhs − β3Qr + (ξ2 + ξ3)Gs

ξ2Ga − ξ3Gs

















.

FG−1 =



















˜b11 ˜b12 ˜b13 ˜b14 ˜b15 ˜b16 ˜b17
0 0 0 0 0 0 0
0 0 0 0 0 0 0
˜b41 ˜b42 ˜b43 ˜b44 ˜b45 ˜b46 ˜b47
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0



















,
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The fundamental reproductive number ℜ0 can be formulated as

which is employed to establish whether the ailment manifests itself or not.
Next, we will illustrate the persistence of infection in the fractional-order system. It describes the level of 

endemicity of infection in the system. Biologically speaking, the infection persists in the system if the level of 
infected fraction stays at a higher level for t large enough.

(i)  When ℜ0 ≤ 1, then fractional-order model (7) has a steady state E0 =
(

�1
ϑ1

, 0, 0, 0, 0, �2
υ+ϑ2

, 0, 0, 0, 0
)

 and 
is globally asymptotically stable in the positive invariant set �.

(ii) When ℜ0 > 1, then E0 is unstable and the fractional-order system (7) is uniformly persistent. Thus, there 
is a unique globally asymptotically stable endemic equilibrium E1 =

(

X∗
h ,P

∗
h,Q

∗
ha ,Q

∗
hs,R

∗
h,X

∗
r ,P

∗
r ,Q

∗
r ,G

∗
s ,G

∗
a

)

 
in the interior of �, where

and

˜bιk =























































































































































































γh

�

�vξ2(ξ2+ξ3)ϑ1(ρ2(δ+φ2+ϑ1)µα1)+(1−µ)ρ1(ϑ1+φ1)α1

�

�vξ2(ξ2+ξ3)ϑ1(φ1+ϑ1)(δ+φ2+ϑ1)(ϑ1+α1)

+
γh

�

�1(ρ3ξ2+ρ4ξ3)(δ+φ2+ϑ1)µα1β1+(1−µ)φ1(ϑ1+φ1)α1β2

�

�vξ2(ξ2+ξ3)ϑ1(φ1+ϑ1)(δ+φ2+ϑ1)(ϑ1+α1)
, ι = 1, k = 1,

γhρ2
ϑ1+φ1

+ �1γhρ3β1
�v(ξ2+ξ3)(ϑ1+φ1)ϑ1

+ �1γhρ4ξ3β2
�vϑ1ξ2(ξ2+ξ3)(φ1+ϑ1)

, ι = 1, k = 2,

γhρ1
ϑ1+φ2+δ

+
�1γhρ3β2

�v(ξ2+ξ3)(ϑ1+φ1)ϑ1
+ �1γhρ4ξ3β2

�vϑ1ξ2(ξ2+ξ3)(φ2+δ+ϑ1)
, ι = 1, k = 3,

�1γh(�vξ2(ξ2+ξ3)ϑ2+�2β3(ρ3ξ2+ρ4ξ3)α2)
�vϑ1ξ2�2(ξ2+ξ3)(υ+α2)(ϑ2+υ+α2)

, ι = 1, k = 4,

�1γhϑ2
ϑ1�2(υ+α2)

+ �1γhρ3β3
�v(ξ2+ξ3)ϑ1(υ+α2)

+ �1γhρ4ξ3β3
�vξ2(ξ2+ξ3)ϑ1(υ+α2)

, ι = 1, k = 5,

�1γhρ3
�vϑ1(ξ2+ξ3)

+ �1γhρ4ξ3
�vξ2ϑ1(ξ2+ξ3)

, ι = 1, k = 6,

�1γhρ4
�vξ2ϑ1

, ι = 1, k = 7,

�2γrφ1

�

(δ+φ2+ϑ1)µα1β1+(1−µ)(ϑ1+φ1)α1β2

�

�vϑ1(ξ2+ξ3)(ϑ1+φ1)(ϑ1+δ+φ2)(ϑ1+α1)
, ι = 4, k = 1,

�2γrφ1β1
�vϑ2(ξ2+ξ3)(ϑ1+φ1)

, ι = 4, k = 2,

�2γrφ1β2
�vϑ2(ξ2+ξ3)(δ+ϑ1+φ2)

, ι = 4, k = 3,

γr

�

�v(ξ2+ξ3)ϑ2+φ1�2β3

�

α2

�vϑ2(ξ2+ξ3)(υ+ϑ2+α2)(υ+α2)
, ι = 4, k = 4,

γr
υ+α2

+ �2γrφ1β3
�vϑ2(ξ2+ξ3)(υ+α2)

, ι = 4, k = 5,

�2γrφ1
�vϑ2(ξ2+ξ3)

, ι = 4, k = 6.

(10)ℜ0 =
( ˜b11 + ˜b44)+

√

( ˜b11 − ˜b44)2 + 4 ˜b14 ˜b41

2
,

(11)

X∗
h =

�1

ϒ∗
h + ϑ1

, P∗h =
�1ϒ

∗
h

(ϑ1 + α1)(ϒ
∗
h + ϑ1)

, Q∗
ha =

�1µα1ϒ
∗
h

(ϑ1 + φ1)(ϒ
∗
h + ϑ1)(ϑ1 + α1)

,

Q∗
hs =

(1− µ)�1α1ϒ
∗
h

(ϑ1 + φ2 + δ)(α1 + ϑ1)(ϑ1 + α1)(ϑ1 +ϒh)
,

R∗
h =

µ�1α1φ1ϒ
∗
h

ϑ1(ϑ1 + φ1)(α1 + ϑ1)(ϑ1 +ϒh)
+

φ2�1α1(1− µ)ϒ∗
h

ϑ1(α1 + ϑ1)(ϒ
∗
h + ϑ1)(ϑ1 + δ + φ2)

,

X∗
r =

�2

ϒ∗
r + ϑ2 + υ

, P∗r =
�2ϒ

∗
r

(ϑ2 + α2 + υ)(ϒ∗
r + ϑ2 + υ)

, Q∗
r =

�2α2ϒ
∗
r

(ϑ2 + υ)(ϒ∗
r + ϑ2 + υ)(ϑ2 + α2 + υ)

,

G∗
s =

β1µα1�1ϒ
∗
h

(ξ2 + ξ3)(ϑ1 + φ1)(ϑ1 + α1)(ϑ1 +ϒ∗
h )

+
(1− µ)β2α1�1ϒ

∗
h

(ξ2 + ξ3)(ϑ1 + α1)(ϑ1 + φ2 + δ)(ϑ1 +ϒ∗
h )

+
β3α2�2ϒ

∗
r

(ξ2 + ξ3)(υ + ϑ2)(υ + ϑ2 + α2)(υ + ϑ2 +ϒ∗
r )

,

G∗
a =

ξ3β1µα1�1

ξ2(ξ2 + ξ3)(ϑ1 + φ1)(ϑ1 + α1)(ϑ1 +ϒ∗
h )

+
ξ3β2α1�1ϒ

∗
h (1− µ)

ξ2(ξ2 + ξ3)(ϑ1 + α1)(ϑ1 + φ1 + δ)(ϑ1 +ϒ∗
h )

+
ξ3β3α2�2ϒ

∗
r

ξ2(ξ2 + ξ3)(ϑ2 + υ)(ϑ2 + α2 + υ)(ϑ2 + υ +ϒ∗
r )

,
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Theorem 2.2 (i)  When γhϑ2w1
�2

µ2 <
γ
h�1ϑ

2
2

�2
2ϑ1

µ2w6w8 with b1 > 0, then the model (3) will endure a forward bifurca-

tion at ℜ0 = 1. (ii)  When γw′µ <
γhϑ2
�2

2
µ2w

2
1 −

γh�1ϑ
2
2

�2
2ϑ1

µ2w2w6 with b1 > 0, then the model (3) will endure a 
backward bifurcation at ℜ0 = 1.

Proof Suppose ym = (y1, y2, y3, y4, y5, y6, y7, y8, y9, y10)
T =

(

Xh,Ph,Qha ,Qhs,Rh,Xr ,Pr ,Qr ,Gs

)T
. Then, frame-

work (3) can be composed as ẏm = g1(x1) as shown in:

where ϒh = γh
y6+y7+y8

+
γhρ1 y4

y1+y2+y3+y4+y5
+

γhρ2 y3
y1+y2+y3+y4+y5

+
γhρ3y9
�v

+
γhρ4y10

�v
 and ϒr = γr

(

φ1y9
�v

+
y8

y6+y7+y8

)

.

By adjusting ℜ0 = 1 , we select γh as the bifurcation deviates. Let γr ∝ γh , which suggests that γr = τγh for 
such t > 0 . Following that we obtain from the value of ℜ0

where

Now, the Jacobian matrix of model (3) is provided as assessed at the DFE E0 in view of the bifurcation criterion 
γ ∗
h  presented as

where k22 = −(ϑ1 + α1), k33 = −(ϑ1 + φ1), k44 = −(ϑ1 + φ2 + δ), k77 = −(ϑ2 + υ + α2), k = −(υ + ϑ2).

The zero eigenvalue is connected with an appropriate eigenvector w̄ = (w1,w2,w3,w4,w5,w6,w7,w8,w9,w10)
T.

ϒ∗
h = γh

(Q∗
r

N∗
r

+
ρ1Q

∗
hs

N∗
h

+
ρ2Q

∗
ha

N∗
h

+
ρ3G

∗
s

�∗
v

+
ρ4G

∗
a

�∗
v

)

,

ϒ∗
r = γr

(Q∗
r

N∗
r

+
φ1G

∗
s

�∗
v

)

.

(12)























































ẏ1 = g1 = �1 −ϒhy1 − ϑ1y1,
ẏ2 = g2 = ϒhy1 − (α1 + ϑ1)y2,
ẏ3 = g3 = µα1y2 − (φ1 + ϑ1)y3,
ẏ4 = g4 = (1− µ)α1y2 − (δ + φ2 + ϑ1)y3,
ẏ5 = g5 = φ1y3 + φ2y4 − ϑ1y5,
ẏ6 = g6 = �2 −ϒry6 − (ϑ2 + υ)y6,
ẏ7 = g7 = ϒry6 − (α2 + ϑ2 + υ)y7,
ẏ8 = g8 = α2y7 − (υ + ϑ2)y8,
ẏ9 = g9 = β1y3 + β2y4 + β3y8 − (ξ2 + ξ3)y9,
˙y10 = g10 = ξ3y9 − ξ2y10,

(13)γh = γ ∗
h =

2

γ ∗
h′ + γ ∗

H ′
4
+

√

(γ ∗
h′ − γ ∗

H ′
4
)2 + 4γ ∗

H ′
2
γ ∗
H ′
3

,

(14)

γ ∗
h′ =

ϑ1�vξ2(ξ2 + ξ3)
(

ρ2µα1(ϑ1 + φ2 + δ)− ρ1α1(µ− 1)(ϑ1 + φ1)
)

ϑ1�vξ2(ξ2 + ξ3)(ϑ1 + φ1)(δ + φ2 + ϑ1)(ϑ1 + α1)

+
�1(ρ3ξ2 + ρ4ξ3)

(

µα1β1(ϑ1 + φ1 + δ)− (µ− 1)(ϑ1 + φ1)α1β2
)

ϑ1�vξ2(ξ2 + ξ3)(ϑ1 + φ1)(δ + φ2 + ϑ1)(ϑ1 + α1)
,

γ ∗
H ′
3
=

�1α2
(

�vξ2)(ξ2 + ξ3)ϑ2 +�2β3(ρ3ξ2 + ρ4ξ3)
)

�v�2ϑ1ξ2(ξ2 + ξ3)(υ + α2)(υ + ϑ2 + α2)
,

γ ∗
H ′
2
=

�2τφ1
(

µα1β1(ϑ1 + δ + φ1)− α1β2(µ− 1)(ϑ1 + φ1)
)

ϑ2�v(ξ2 + ξ3)(ϑ1 + φ1)(ϑ1 + φ2 + δ)(ϑ1 + α1)
,

γ ∗
H ′
4
=

τα2
(

�vϑ2(ξ2 + ξ3)+�2φ1β3
)

�vϑ2(ξ2 + ξ3)(υ + α2)(υ + ϑ2 + α2)
.

(15)

JE0 =



































−ϑ1 0 − γ ∗
h ρ2 − γ ∗

h ρ1 0 0 0 −
γ ∗
h ϑ2�1

�2ϑ1
−

γ ∗
h ρ3�1

�vϑ1
−

γ ∗
h ρ4�1

�vϑ1

0 k22 γ ∗
h ρ2 ∗ γ ∗

h ρ1 0 0 0
γ ∗
h ϑ2�1

�2ϑ1

γ ∗
h ρ3�1

�vϑ1

γ ∗
h ρ4�1

�vϑ1
0 µα1 k33 0 0 0 0 0 0 0
0 (1− µ)α1 0 k44 0 0 0 0 0 0
0 0 φ1 φ2 − ϑ1 0 0 0 0 0

0 0 0 0 0 − (υ + ϑ2) 0 − τγ ∗
h −

τγ ∗
h φ1ϑ2
ϑ2�v

0

0 0 0 0 0 0 k77 τγ ∗
h

τγ ∗
h φ1ϑ2
ϑ2�v

0

0 0 0 0 0 0 α2 k88 0 0
0 0 β1 β2 0 0 0 β3 − (ξ2 + ξ3) 0
0 0 0 0 0 0 0 0 ξ3 − ξ2



































,
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It is constructed using the respective formulae:

The findings for (16) yields

Ad d i t i o n a l l y,  a  l e f t  e i g e nv e c t o r  ( c o n n e c t e d  t o  z e ro  e i g e nv a l u e )  p rov i d e d  by 
ū = (ℑ1,ℑ2,ℑ3,ℑ4,ℑ5,ℑ6,ℑ7,ℑ8,ℑ9,ℑ10)

T, which meets ū.w̄ = 1 is procured by transposing the matrix pre-
sented as

 The above system of equations gives

To obtain, we employ the property umẇm = 1, (m = 1, ..., 10). Then, taking w2 = 1, without loss of generality 
provides us ℑ2 =

1
1+(H1w3+H2w4+H3w7+H4w8+H5w9+H6w10)

> 0, where

(16)

− γ ∗
h ρ2w3 − ϑ1w1 − γ ∗

h ρ1w4 −
ϑ2�1γ

∗
h w8

ϑ1�2
−

�1γ
∗
h ρ3w9

ϑ1�v
−

�1γ
∗
h ρ4w10

ϑ1�v
= 0,

ϑ2�1γ
∗
h w8

ϑ1�2
+

ρ3�1γ
∗
h w9

ϑ1�v
+

ρ4�1γ
∗
h w10

ϑ1�v
− (ϑ1 + α1)w2 + γhρ2w3 + γ ∗

h ρ1W4 = 0,

µα1w2 − (φ1 + ϑ1)w3 = 0,

(1− µ)α1w2 − (δ + φ2 + ϑ1)w4 = 0,

− ϑ1w5 + φ1w3 + φ2w4 = 0,

− (υ + ϑ2)w6 − τγ ∗
h w8 −

τγ ∗
h φ1�2

ϑ2�v
w9 = 0,

τγ ∗
h w8 − (α2 + υ + ϑ2)w7 +

τγ ∗
h φ1�2w9

ϑ2�v
= 0,

α2w7 − (υ + ϑ2)w8 = 0,

β1w3 + β2w4 + β3w8 − (ξ2 + ξ3w9) = 0,

ξ3w9 − ξ2w10 = 0.

w1 =
γ ∗
h ρ2w3

ϑ1 − γ ∗
h ρ1w4

−
γ ∗
h ϑ2�1w8

ϑ2
1�2

−
γ ∗
h ρ3�1w9 − γ ∗

h ρ4�1w10

ϑ2
1�v

,

w2 = w2 > 0, w3 =
µα1w2

ϑ1 + φ1
, w4 =

(1− µ)α1w2

ϑ1 + φ2 + δ
, w5 =

φ1w3 + φ2w4

ϑ1
,

w6 =
τγ ∗

h (ϑ2�vw8 − φ1�2)

ϑ2�v(υ + ϑ2)
, w7 =

τγ ∗
h (ϑ2�vw8 + φ1�2w9)

ϑ2�v(υ + ϑ2 + α2)
, w8 =

α2w7

υ + ϑ2
,

w9 =
β1w3 + β2w4 + β3w8

ξ2 + ξ3
, w10 =

ξ3w9

ξ2
.

JE0
=











































−ϑ1 0 0 0 0 0 0 0 0 0

0 − (ϑ1 + α1) µα1 (1− µ)α1 0 0 0 0 0 0

−γ ∗
h
ρ2 γ ∗

h
ρ2 − (ϑ1 + φ1) 0 φ1 0 0 0 β1 0

−γ ∗
h
ρ1 γ ∗

h
ρ1 0 − (ϑ1 + φ2 + δ) φ2 0 0 0 β2 0

0 0 0 0 − ϑ1 0 0 0 0 0

0 0 0 0 0 − (υ + ϑ2) 0 0 0 0

0 0 0 0 0 0 − (ϑ2 + υ + α2) α2 0 0

−
γ ∗
h
ϑ2�1

ϑ1�2

γ ∗
h
ϑ2�1

ϑ1�2
0 0 0 − τγ ∗

h
τγ ∗

h
− (υ + ϑ2) β3 0

−
γ ∗
h
ρ3�1

ϑ1�v

γ ∗
h
ρ3�1

ϑ1�v
0 0 0 −

τγ ∗
h
φ1�2

ϑ2�v

τγ ∗
h
φ1�2

ϑ2�v
0 − (ξ2 + ξ3) ξ3

−
�1ρ4γ

∗
h

ϑ1�v

�1ρ4γ
∗
h

ϑ1�v
0 0 0 0 0 0 0 − ξ2











































(17)

ℑ1 = 0, ℑ2 = ℑ2 > 0, ℑ3 =
γ ∗
h ρ2ℑ2 + β1ℑ9

ϑ1 + φ1
, ℑ4 =

γ ∗
h ρ1ℑ2 + β2ℑ9

ϑ1 + δ + φ2
, ℑ5 = 0, ℑ6 = 0,

ℑ7 =
α2ℑ8

ϑ2 + υ + α2
, ℑ8 =

τγ ∗
h ℑ7

υ + ϑ2
+

γ ∗
h ϑ2�1ℑ2

ϑ1�2(υ + ϑ2)
+

β3ℑ9

ϑ2 + υ
,

ℑ9 =
γ ∗
h ρ3�1ℑ2

ϑ1�v(ξ2 + ξ3)
+

τγ ∗
h φ1�2ℑ7

ϑ2�v(ξ2 + ξ3)
+

ξ3ℑ10

ξ2 + ξ3
, ℑ10 =

γ ∗
h ρ4�1ℑ2

ϑ1ξ2�v
.
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The specified formula is satisfied by this valuation of ℑ2 and w2 . To obtain the second order partial derivatives 
of gm at the steady state E0, we determine

Now, we calculates ā and b̄ parameters to obtain

and

where

  �

Bifurcations are important in dynamics investigations. As a result, in this part, bifurcation analysis is used to 
investigate the rich dynamical behaviour of the Lassa fever model (3) as follows:

Theorem 2.3 The fractional-order Lassa fever model (7) possess:

(ai) If ā < 0 if and only if ℜ0 > 1 , then we get a unique endemic equilibria.

(aii)  If b̄ < 0 and ā = 0 , then we get a unique endemic equilibria.

(aiii)  If ā > 0, b̄ < 0 and b̄2 − 4āγ ¯aω > 0 , two endemic equilibria exists.

(18)

H1 =
γh

ϑ1 + φ1

{

ρ2 +
�1ϑ2β1(τγhξ2φ1α2 + (ρ3ξ2 + ρ4ξ3)(υ

2 + ϑ2
2 + (υ − τγh)α2 + ϑ2(2υ + α2))

ξ2ϑ1ϑ2(−τ�2γhφ1β3α2 +�vϑ2(ξ2 + ξ3)(υ2 + ϑ2
2 + (υ − τγh)α2 + ϑ2(α2 + 2υ)))

}

,

H2 =
γh

ϑ1 + φ2 + δ

{

ρ2 +
�1ϑ2β1(τγhξ2φ1α2 + (ρ3ξ2 + ρ4ξ3)(υ

2 + ϑ2
2 + (υ − τγh)α2 + ϑ2(2υ + α2))

ξ2ϑ1ϑ2(−τ�2γhφ1β3α2 +�vϑ2(ξ2 + ξ3)(υ2 + ϑ2
2 + (υ − τγh)α2 + ϑ2(α2 + 2υ)))

}

,

H3 = −
�1γhϑ2α2

(

�vξ2ϑ2(ξ2 + ξ3)+�2β3(ρ3ξ2 + ρ4ξ3)
)

�2ξ2ϑ1(τ�2γhφ1β3α2 − ϑ1�v(ξ2 + ξ3))(υ2 + ϑ2
2 + (υ − τγh)α2 + ϑ2(2υ + α2))

, H4 =
γhρ4�1

ϑ1ξ2�v
,

H5 =
�1γhϑ2

(

τγhξ2φ1α2 + (ρ3ξ2 + ρ4ξ3)(υ
2 + ϑ2

2 + (υ − τγh)α2 + ϑ2(2υ + α2))
)

ϑ1ξ2(−τ�2γhφ1β3α2 +�vϑ2(ξ2 + ξ3)(υ2 + ϑ2
2 + (υ − τγh)α2 + ϑ2(2υ + α2)))

.

(19)

∂2g2

∂y1∂y8
=

γhϑ2

�2
,

∂2g2

∂y1∂y9
=

γhρ3

�v
,

∂2g2

∂y1∂y10
=

γhρ4

�v
,

∂2g2

∂y2∂y3
=

−γhρ2ϑ1

�1
,

∂2g2

∂y2∂y4
=

−γhϑ1ρ1

�1
,

∂2g2

∂y3∂y4
=

−γhϑ1(ρ1 + ρ2)

�1
,

∂2g2

∂y3∂y5
=

−γhρ2ϑ1

�1
,

∂2g2

∂y3∂y3
=

−2γhρ2ϑ1

�1
,

∂2g2

∂y4∂y4
=

−2γhρ1ϑ1

�1
,

∂2g2

∂y4∂y5
=

−γhρ1ϑ1

�1
,

∂2g2

∂y6∂y8
=

−γh�1ϑ
2
2

ϑ1�
2
2

,
∂2g2

∂y7∂y8
=

−γh�1ϑ
2
2

�2
2ϑ1

,

∂2g2

∂y8∂y8
=

−2γhϑ
2
2�1

�2
2ϑ1

,
∂2g7

∂y7∂y8
=

−γhϑ2

�2
,

∂2g7

∂y8∂y8
=

−2γhϑ2

�2
,

∂2g7

∂y6∂y9
=

γhφ1

�v
.

ā =

10
∑

κ ,ι,k=1

uκwιwk
∂2gκ (0, 0)

∂yι∂yk

=
γhϑ2

�2
ℑ2w

2
1 −

γh�1ϑ
2
2

�2
2�1

ℑ2w6w8 − (w7 + 2w8)w8ℑ2 −
γhρ1ϑ1

�1
ℑ2w4(w2 + w3+2w4+w5)

−
γhϑ2

�2
ℑ7w8(w7 + 2w8)−

γhϑ1ρ2

�1
ℑ2w3(w2 + w5 + 2w3 + w4)+

γhφ1

�v
ℑ7w6w9

+
γh(ρ3w9 + ρ4w10)ℑ2w1

�v

b̄ =

10
∑

κ ,ι,k=1

uκwι

∂2gκ (0, 0)

∂yι∂γh

=
�1ϑ2

ϑ1�v
ℑ2w8 +

�1ρ3

ϑ1�v
ℑ2w9 +

�1ρ4

ϑ1�v
ℑ2w10 +

�2φ1

ϑ2�v
ℑ7w9 + ℑ7w8 + ℑ2w3ρ2 + ℑ2w4ρ1,

(20)
γw̄ū =

γhφ1

�v
ℑ7w6w9 +

γh(ρ3w9 + ρ4w10)ℑ2w1

�v
−

γhρ1ϑ1

�1
ℑ2w4(w2 + w3+2w4+w5)

−
γhϑ2

�2
ℑ7w8(w7 + 2w8)−

γhϑ1ρ2

�1
ℑ2w3(w2 + w5 + 2w3 + w4)− ℑ2w8(w7 + 2w8).
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Theorem 3, Case (ai), clearly shows the existence of a unique endemic equilibrium of the fractional-order Lassa fever 
model (7). when ℜ0 > 1 . From Case (aiii), we can see existence of bifurcation possibly, in which the local asymptoti-
cally stability of disease-free equilibrium coexists with local asymptotically stability of endemic equilibrium, when 
ℜ0 < 1. To determine the occurrence of bifurcation in the Lassa fever model (7), we set b̄2 − 4āγ ¯aω = 0 , and then 

evaluating for their critical values of ℜ0 , shown by ℜc , given by ℜc =

√

1− b̄2

4γh�2ξ2ϑ1φ2δγ ¯aω
 . Bifurcation would 

occur for values of ℜ0 such that ℜc < ℜ0 < 1. Considering the parameter values shown in Table 2, except for 
ζ1 = 0.167 . With these parameters and the rest from Table 2, we have ℜ0 = 0.5321 < 1 , indicating that the frac-
tional-order Lassa fever model (7) exhibits bifurcation.

The occurrence of bifurcation in the fractional-order Lassa fever transmission model (7) has important epidemiologi-
cal implications. It implies that the conventional criterion of ℜ0 < 1 is no longer sufficient for disease eradication, 
although it is still necessary. In this case, disease eradication would be determined by the initial sizes of the sub 
population in the model (i.e., state variables). Therefore, the practicality of controlling Lassa fever when ℜ0 < 1 may 
depend on the starting sizes of the sub population.

Stochastic analysis
Before providing insights into the system dynamics of an Lassa fever model (5), we must guarantee that the 
solution is both global and non-negative. The existence and uniqueness of the global non-negative solution of 
system (5) with a certain non-negative initial value are guaranteed by the following formula.

Theorem 3.1 Assume that there is an initial value �̃(0) =
(

Xh(0),Ph(0),Qha(0),Qhs(0),Rh(0),Xr(0),Pr(0),

Qr(0),Gs(0),Ga(0)

)

∈ ℜ10
+ , there is a non-negative solution �̃(t) =

(

Xh(t),Ph(t),Qha(t),Qhs(t),Rh(t),Xr(t),

Pr(t),Qr(t),Gs(t),Ga(t)

)

 of the stochastic system (5) for t ≥ 0 and the solution will stay in ℜ10
+  almost surely (a.s).

Proof Because the parameters in the mathematical formulas are locally Lipschitz continuous for the speci-
fied preliminary community composition �̃(0) ∈ ℜ10

+  , there exists a distinctive local solution �̃(t) ∈ ℜ10
+  when 

t ∈ [0, τǫ) (for information,  see50). To demonstrate that this finding is global in nature, we must demonstrate that 
τǫ = ∞ a.s. Suppose T ≥ 0 be large enough that �̃(0) all fall inside that interval 

[

1
T0

,T0

]

 . Determine the stopping 
time for every integer T ≥ T0 . Introducing the stopping time

In this investigation, we designated inf ∅ = ∞ so when ∅ signifies the empty set. By interpretation, τT increases 
as T  → ∞ . Select τ∞ = lim

T�→∞
τT having τ∞ ∈ [0, τǫ] a.s. By asserting τ∞ = ∞ a.s., we can show that τǫ = ∞ 

and �̃(t) a.s for all t ≥ 0 . To put it another way, we have to demonstrate that τǫ = ∞ a.s. If the assertion is false, 
a couple of parameters T̃ > 0 and ε ∈ (0, 1) exist such that

Since Nh(t) = Xh(t),Ph(t),Qha(t),Qhs(t),Rh(t), then for t ≤ τT, as is evident,

By attempting to solve (23), we obtain

Analogously, we assume Nr(t) = Xr(t),Pr(t),Qr(t),Gs(t),Ga(t), then for t ≤ τT, we have

Again, solving (25), we have

Furthermore, we introduce a C̄2 mapping h : ℜ10
+ �→ ℜ+ such that

(21)τT = inf
{

t ∈ (0, τǫ) : min{�̃(t)} ≤
1

T
or max{�̃(t)} ≥ T

}

.

(22)P{τ∞ ≤ T̃} > ε.

(23)dN(t) ≤ (�1 − ϑ1Nh(t))dt.

(24)Nh(t) ≤

{

�1
ϑ1

if Nh(0) ≤
�1
ϑ1

Nh(0), if Nh(0) >
�1
ϑ1

,
:= Ũ

(25)dNr(t) ≤
(

�2 − (υ + ϑ2)NR1

)

dt.

(26)Nr(t) ≤

{

�2
ϑ2

if Nr(0) ≤
�2
ϑ2

Nr(0), if Nr(0) >
�1
µ0

,
:= M2.

(27)

h(�̃(t)) = Xh(t),Ph(t),Qha(t),Qhs(t),Rh(t)+ Xr(t),Pr(t),Qr(t),Gs(t),Ga(t)

− 10−
(

lnXh(t)+ lnPh(t)+ lnQha(t)+ lnQhs(t)+ lnRh(t)+ lnXr(t)

+ lnPr(t)+ lnQr(t)+ lnGs(t)+ lnGa(t)
)

.
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Obviously, the function h is positive, as demonstrated by the reality that y1 − ln(ey1) ≥ 0 for all y1 ≥ 0 . Assume 
that T ≥ T0 and T̃ > 0 be arbitrary, and the Itô methodology applied to (27) generates

In view of (28), Lh : ℜ10
+ �→ ℜ+ the continuity formula defines as

Here, K is a positive fixed number that is free of �̃(t) and t . Accordingly,

Performing integration over 0 to τT ∧ T̃ , we have

(28)

dh(�̃) =
(

1−
1

Xh

)

+ σ1(Xh − 1)dB1(t)+
(

1−
1

Ph

)

+ σ2(Ph − 1)dB2(t)

+
(

1−
1

Qha

)

+ σ3(Qha − 1)dB3(t)+
(

1−
1

Qhs

)

+ σ4(Qhs − 1)dB4(t)

+
(

1−
1

Rh

)

+ σ5(Rh − 1)dB5(t)+
(

1−
1

Xr

)

+ σ6(Xr − 1)dB6(t)

+
(

1−
1

Pr

)

+ σ7(Pr − 1)dB7(t)+
(

1−
1

Qr

)

+ σ8(Qr − 1)dB8(t)

+
(

1−
1

Gs

)

+ σ9(Gs − 1)dB9(t)+
(

1−
1

Ga

)

+ σ10(Ga − 1)dB10(t)

= Lh(�̃)dt + σ1(Xh − 1)dB1(t)+ σ2(Ph − 1)dB2(t)+ σ3(Qha − 1)dB3(t)

+ σ4(Qhs − 1)dB4(t)+ σ5(Rh − 1)dB5(t)+ σ6(Xr − 1)dB6(t)+ σ7(Pr − 1)dB7(t)

+ σ8(Qr − 1)dB8(t)+ σ9(Gs − 1)dB9(t)+ σ10(Ga − 1)dB10(t).

(29)

Lh(�̃) =
(

1−
1

Xh

){

�1 −ϒhXh − ϑ1Xh

}

+
σ 2
1

2

+
(

1−
1

Ph

){

ϒhXh − (α1 + ϑ1)Ph

}

+
σ 2
2

2

+
(

1−
1

Qha

){

µα1Ph − (φ1 + ϑ1)Qha

}

+
σ 2
3

2

+
(

1−
1

Qhs

){

(1− µ)α1Ph − (δ + φ2 + ϑ1)Qhs

}

+
σ 2
4

2

+
(

1−
1

Rh

){

φ1Ph + φ2Qhs − ϑ1Rh

}

+
σ 2
5

2

+
(

1−
1

Xr

){

�2 −ϒrXr − (ϑ2 + υ)Rh

}

+
σ 2
6

2

+
(

1−
1

Pr

){

ϒrXr − (α2 + ϑ2 + υ)Ph

}

+
σ 2
7

2

+
(

1−
1

Qr

){

α2Pr − (υ + ϑ2)Qr

}

+
σ 2
8

2

+
(

1−
1

Gs

){

β1Qha + β2Qhs + β3Qr − (ξ2 + ξ3)Gs

}

+
σ 2
9

2

+
(

1−
1

Ga

){

ξ3Gs − ξ2Ga

}

+
σ 2
10

2

≤ �1 +�2 +ϒh+5ϑ1 + α1 + φ1 + δ + φ2 +ϒr + α2 + 2υ + 3ϑ2 + 2ξ2 + ξ3

+
σ 2
1 + σ 2

2 + σ 2
3 + σ 2

4 + σ 2
5 + σ 2

6 + σ 2
7 + σ 2

8 + σ 2
9 + σ 2

10

2
:= K.

(30)
dh(�̃) ≤ Kdt + σ1(Xh − 1)dB1(t)+ σ2(Ph − 1)dB2(t)+ σ3(Qha − 1)dB3(t)

+ σ4(Qhs − 1)dB4(t)+ σ5(Rh − 1)dB5(t)+ σ6(Xr − 1)dB6(t)+ σ7(Pr − 1)dB7(t)

+ σ8(Qr − 1)dB8(t)+ σ9(Gs − 1)dB9(t)+ σ10(Ga − 1)dB10(t).
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Inserting �T = τT ≤ T̃ for T ≥ T1 and utilizing (32), P(�T) ≥ ε. Additionally, it is important to keep in mind 
that for every ω ∈ �T, ∃ at least one �̃(τT,ω) that are identical to T or 1/T, and therefore

is not less than T− 1− logT or 1
T
− 1+ logT. As a result,

As a result of (22) and (31), it describes that

where 1�(ω) denotes the indicator mapping of �. Choosing T  → ∞ shows the contradiction 
∞ = T̃(Ũ +M2)+ h(�̃(0)) < ∞, which implies that τ∞ = ∞ a.s and this is the immediate consequence. �

Extinction and ergodic stationary distribution of Lassa fever model
We are interested in establishing adequate prerequisites for the extinction and existence-uniqueness of an ergodic 
stationary distribution of non-negative solutions to the dynamical model (5) in this segment. We begin by dis-
cussing a few explanations about stationary distribution (see;  Khasminskii59). Allow for the sake of simplicity

Our next result is the strong law of large numbers, which is mainly due  to60.

Lemma 3.2 (60) Suppose there be a continuous and real-valued martingale, Ũ = {Ũ}t≥0, which will be disappeared 
at t  → 0, then

Lemma 3.3 (61,62) Suppose there is a function � ∈ C̄([0,∞)×�(0,∞)) and H1 ∈ C̄([0,∞)×�,ℜ). Suppose 
there are positive constants ϒ0,ϒ1 and T̃ such that

Let us identify some other threshold parameter for our immediate plans.

(31)

E
[

h
(

�̃(τT ∧ T̃)
)]

≤ h
(

�̃(0)
)

+K(τT ∧ T̃)

+ E

{

τT∧T̃
∫

0

σ1(Xh − 1)dB1(t)+ σ2(Ph − 1)dB2(t)+ σ3(Qha − 1)dB3(t)

+ σ4(Qhs − 1)dB4(t)+ σ5(Rh − 1)dB5(t)+ σ6(Xr − 1)dB6(t)

+ σ7(Pr − 1)dB7(t)+ σ8(Qr − 1)dB8(t)+ σ9(Gs − 1)dB9(t)

+ σ10(Ga − 1)dB10(t)

}

≤ h(�̃(0))+KT̃ .

h(�̃(τT))

h(�̃(τT)) ≥ E
(

T− 1− logT
)

∧
( 1

T
− 1+ logT

)

.

h(�̃(0))+KT̃ ≥ E
[

1�(ω)h(�̃(τT))
]

ε
{

(

T− 1− logT
)

∧
( 1

T
− 1+ logT

)}

,

(32)�Z1(t)� =
1

t

t
∫

0

z1(r1)dr1.

(33)
lim
t  →∞

�Ũ, Ũ�t = ∞, a.s, =⇒ lim
t  →∞

Ũ

�Ũ, Ũ�t
= 0, a.s, and furthermore,

lim
t  →∞

sup
�Ũ, Ũ�t

t
< 0, a.s., =⇒ lim

t  →∞

Ũt

t
= 0, a.s.

(34)

log �(t) ≤ −ϒ0

t
∫

0

�(s1)ds1 +ϒ1t +H1(t) a.s., ∀ t ≥ T̃ and lim
t �→∞

H1(t)

t
= 0, a.s,

then lim
t �→∞

1

t

t
∫

0

�(s1)ds1 ≤
ϒ1

ϒ0
, a.s.

(35)ℜ
p
0 =

µ1(1− µ1)α
2
1α2

(φ1 + ϑ1 +
σ 2
3
2 )(δ + φ2 + ϑ2 +

σ 2
4
2 )(υ + ϑ2 +

σ 2
8
2 )

.
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We will discover the prerequisites that will cause the ailment to become extirpated in the population. The afore-
mentioned assumption is made for this reason and must be proven.

Theorem 3.4 If ℜp
0 < 1, then the disease Qha ,Qhs and Qr will wipe out exponentially with unit probability, that is.,

and

Also,

Proof Performing the integration on both sides of the proposed model (5) yields the following formulas

We utilize the conception φ(t) in (39) for simplicity, and with several algebraic estimation, we emerge at the 
accompanying

where the value of φ(t) is described as

Clearly, we have

Similarly, we integrate both sides of the last three cohorts of the developed framework (5), yielding the formula 
given

(36)
lim
t  →∞

sup
logQha

t
≤

(

φ1 + ϑ1 +
σ 2
3

2

)[

ℜ
p
0 − 1

]

< 0 a.s,

lim
t  →∞

sup
logQhs

t
≤

(

δ + φ2 + ϑ1 +
σ 2
4

2

)[

ℜ
p
0 − 1

]

< 0 a.s,

(37)lim
t  →∞

sup
logQr

t
≤

(

υ + ϑ2 +
σ 2
8

2

)[

ℜ
p
0 − 1

]

< 0 a.s.

(38)

lim
t  →∞

Xh(t) =
�1

ϑ1
, lim

t  →∞
Ph(t) = 0, lim

t  →∞
Qha(t) = 0, lim

t  →∞
Qhs(t) = 0,

lim
t  →∞

Rh(t) = 0, lim
t  →∞

Xr(t) =
�2

υ + ϑ2
, lim

t  →∞
Pr(t) = 0, lim

t  →∞
Qr(t) = 0,

lim
t  →∞

Gs(t) = 0, lim
t  →∞

Ga(t) = 0

(39)

Xh(t)− Xh(0)

t
+

Ph(t)− Ph(0)

t
+

Qha(t)−Qha(0)

t
+

Qhs(t)−Qhs(0)

t

+
Rh(t)− Rh(0)

t
+

Gs(t)− Ga(0)

t
+

Ga(t)− Ga(0)

t

= �1 − ϑ1�Xh(t)� − ϑ1�Ph(t)� − ϑ1�Qha(t)� − (δ + ϑ1)�Qhs(t)� − ϑ1�Rh(t)�

+ β1�Qha� + β2�Qhs� + β3�Qr� − ξ2�Gs� − ξ2�Ga� +
σ1

t

t
∫

0

XhdB1(t)+
σ2

t

t
∫

0

PhdB2(t)

+
σ3

t

t
∫

0

QhadB3(t)+
σ4

t

t
∫

0

QhsdB4(t)+
σ5

t

t
∫

0

XhdB1(t)+
σ9

t

t
∫

0

GsdB9(t)+
σ10

t

t
∫

0

GadB10(t).

�Xh(t)� =
�1

ϑ1
−

δ + ϑ1

ϑ1
�Qhs(t)� − �Ph(t)� − �Qha(t)� − �Rh(t)�

−
1

ϑ1

{

β1�Qha� + β2�Qhs� + β3�Qr� − ξ2�Gs� − ξ2�Ga�
}

+ φ(t),

φ(t) = −
1

ϑ1

{

Xh(t)− Xh(0)

t
+

Ph(t)− Ph(0)

t
+

Qha(t)−Qha(0)

t
+

Qhs(t)−Qhs(0)

t

+
Rh(t)− Rh(0)

t
+

Gs(t)− Gs(0)

t
+

Ga(t)− Ga(0)

t

−

(

σ2

t

t
∫

0

PhdB2(t)+
σ3

t

t
∫

0

QhadB3(t)+
σ4

t

t
∫

0

QhsdB4(t)+
σ5

t

t
∫

0

XhdB1(t)

+
σ9

t

t
∫

0

GsdB9(t)+
σ10

t

t
∫

0

GadB10(t)

)}

.

lim
t  →∞

φ(t) = 0 a.s.
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We are able to determine the following expression by employing certain representations in (40) and performing 
several algebraic calculations

The significance of �(t) is characterized as

Evidently, lim
t  →∞

�(t) = 0, a.s.

Implementing the Itô strategy to framework (5) third cohort, integrating over [0, t] , and then dividing by t 
produces

By integrating (41) over [0, t] and dividing it by t leads to

Employing the Lemma 3.2 for local martingales, we acquire

In view of limit superior of both sides

Therefore, whenever ℜs
0 < 1 occurs, lim

t  →∞
Qha(t) = 0, a.s and lim

t  →∞
�Qha(t)� = 0, a.s.

Similarly, by employing the Itô technique to the fourth cohort of model (5), employing the limits [0, t] , and 
then dividing by t , we have

By integrating (43) over [0, t] and dividing it by t leads to

(40)

Xr(t)− Xr(0)

t
+

Pr(t)− Pr(0)

t
+

Qr(t)−Qr(0)

t

= �2 − (υ + ϑ2)
{

�Xr� + �Pr� + �Qr�
}

+
σ6

t

t
∫

0

XrdB6(t)+
σ7

t

t
∫

0

PrdB7(t)+
σ8

t

t
∫

0

QrdB8(t).

�Xr� =
�2

υ + ϑ2
− �Pr� − �Qr� +�(t).

�(t) = −
1

υ + ϑ2

(

Xr(t)− Xr(0)

t
+

Pr(t)− Pr(0)

t
+

Qr(t)−Qr(0)

t
−

σ6

t

t
∫

0

XrdB6(t)

−
σ7

t

t
∫

0

PrdB7(t)−
σ8

t

t
∫

0

QrdB8(t)

)

.

(41)d logQha(t) =

(

µα1
Ph

Qha
− (φ1 + ϑ1)−

σ 2
3

2

)

dt +
σ3

t

t
∫

0

dB3(t)

(42)

logQha(t)− logQha(0) ≤

t
∫

0

(

µα1 − (φ1 + ϑ1)−
σ 2
3

2

)

ds1 + σ3B3(t)

≤

(

µα1 − (φ1 + ϑ1)−
σ 2
3

2

)

t + σ3B3(t)

=
(

φ1 + ϑ1 +
σ 2
3

2

)

[

µ1α1

φ1 + ϑ1 +
σ 2
3
2

− 1

]

t2 + σ3B3(t)

≤
(

φ1 + ϑ1 +
σ 2
3

2

)[

ℜ
p
0 − 1

]

t + σ3B3(t).

lim
t  →∞

B3(t)

t
= 0 a.s.

lim
t  →∞

sup
logQha

t
≤

(

φ1 + ϑ1 +
σ 2
3

2

)[

ℜ
p
0 − 1

]

< 0 a.s.

(43)d logQhs(t) =

(

(1− µ)α1
Ph

Qha
− (δ + φ2 + ϑ1)−

σ 2
4

2

)

dt +
σ4

t

t
∫

0

dB4(t)
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Again, employing the Lemma 3.2 for local martingales, we acquire

In view of limit superior of both sides

Therefore, whenever ℜs
0 < 1 occurs, lim

t  →∞
Qhs(t) = 0, a.s and lim

t  →∞
�Qhs(t)� = 0, a.s.

in a similar manner, we can prove that

Therefore, whenever ℜs
0 < 1 occurs, lim

t  →∞
Qr(t) = 0, a.s and lim

t  →∞
�Qr(t)� = 0, a.s.

As a result, we noticed that illness extermination is determined by the setting of the parameter ℜp
0 , i.e., for 

ℜ
p
0 < 1 , the illness will eventually disappear.   �

Regardless of the omission of an EEP in the random perturbation model (5), we aim to explore the existence 
of an ergodic stationary distribution, which could prove disease perseverance more clearly. First, we shall discuss 
some of the results of Has’minskii’s notion. Additional data is available  at59.

Suppose there is a homogeneous Markov process in d1 (the d1-dimensional Euclidean space) Y(t) that effi-
ciently deals with the stochastic differential equation below

The diffusion matrix a(y) = (aιk(y)) and aιk(y) =
n1
∑

κ=1
g (ι)κ (y)g (k)κ (y).

Lemma 3.5 (50) Assume a bounded domain U ⊂ χd1 with regular boundary Ŵ such that

(Z1 ) Suppose a positive number M such that 
d1
∑

ι,k=1

aιk(y)φιφk ≥ M|φ|2, y ∈ U , φ ∈ ℜd1 .

(Z2) ∃ a non-negative C̄2-mapping H such that LH is negative ∀ y ∈ χd1 \ U(particularly LH ≤ −1, ∀ y ∈ χd1 \ U ), 
then the Markov technique Y(t) has a unique ergodic stationary distribution π(.), and

satisfies ∀ y ∈ χd1 , where �(.) is an integrable function in relation to the measure π .

In addition, based on Has’minskii’s  theory59, we will demonstrate essentials that guarantees the presence of 
an ergodic stationary distribution.

Theorem 3.6 If

then the system (5) has a unique stationary distribution π(.) and has the ergodic condition.

(44)

logQha(t)− logQha(0) ≤

t
∫

0

(

(1− µ)α1 − (δ + φ2 + ϑ1)−
σ 2
4

2

)

ds1 + σ4B4(t)

≤

(

(1− µ)α1 − (δ + φ2 + ϑ1)−
σ 2
4

2

)

t + σ4B4(t)

=
(

δ + φ2 + ϑ1 +
σ 2
4

2

)

[

(1− µ1)α1

δ + φ2 + ϑ1 +
σ 2
4
2

− 1

]

t2 + σ4B4(t)

≤
(

δ + φ2 + ϑ1 +
σ 2
4

2

)[

ℜ
p
0 − 1

]

t + σ4B4(t).

lim
t  →∞

B4(t)

t
= 0 a.s.

lim
t  →∞

sup
logQhs

t
≤

(

δ + φ2 + ϑ1 +
σ 2
4

2

)[

ℜ
p
0 − 1

]

< 0 a.s.

lim
t  →∞

sup
logQr

t
≤

(

υ + ϑ2 +
σ 2
8

2

)[

ℜ
p
0 − 1

]

< 0 a.s.

(45)dY(t) = h1(y)dt +

n1
∑

ι=1

gι(Y)dBι(t).

(46)P

{

lim
T̃ �→∞

1

T̃

T̃
∫

0

�(Y(t))dt =

∫

ϒd1

�(y)π(dy) = 1
}

,

(47)ℜs
0 =

�1γhµα1ϒh

(α1 + ϑ1 +
σ 2
2
2 )(ϑ1 + φ1 +

σ 2
3
2 )(ϑ1 +

σ 2
1
2 )

+
�1γh(1− µ)α1ϒh

(α1 + ϑ1 +
σ 2
2
2 )(ϑ1 + φ2 +

σ 2
4
2 )(ϑ1 +

σ 2
1
2 )

> 1,
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Proof The argument is separated into two phases: the initial one is to demonstrate that the uniform elliptic 
scenario is fulfilled, and the subsequent step is to generate a positive Lyapunov function that meets the criteria 
(Z2) of Lemma 3.5.

Phase I: The diffusion matrix of model (5) is presented as

Selecting M = min
�̃∈UT⊂ℜ+

10

{

̟ 2
1X

2
h,̟

2
2 P

2
h,̟

2
3Q

2
ha ,̟

2
4Q

2
hs,̟

2
5R

2
h,̟

2
6X

2
r ,̟

2
7 P

2
r ,̟

2
8Q

2
r ,̟

2
9G

2
s ,̟

2
10G

2
a

}

, we have

∀ �̃T̃ ∈ UT and ̺ = (̺ι)
T̃ ∈ ℜ10

+ , ι = 1, ..., 10, where UT =
[

1/T,T
]

×
[

1/T,T
]

×
[

1/T,T
]

×
[

1/T,T
]

×
[

1/T,T
]

×
[

1/T,T
]

×
[

1/T,T
]

×
[

1/T,T
]

×
[

1/T,T
]

×
[

1/T,T
]

. Finally, the criteria (Z1) in Lemma 3.5 
satisfies.

Phase II: Assume that

Using the fact of model (5), we have

utilizing the fact of ln x1 − x1 + 1 ≤ 0 ∀ x1 > 0. Analogously, we have we have

A =

































̟ 2
1X

2
h 0 0 0 0 0 0 0 0 0

0 ̟ 2
2 P

2
h 0 0 0 0 0 0 0 0

0 0 ̟ 2
3Q

2
ha 0 0 0 0 0 0 0

0 0 0 ̟ 2
4Q

2
hs 0 0 0 0 0 0

0 0 0 0 ̟ 2
5R

2
h 0 0 0 0 0

0 0 0 0 0 ̟ 2
6X

2
r 0 0 0 0

0 0 0 0 0 0 ̟ 2
7 P

2
r 0 0 0

0 0 0 0 0 0 0 ̟ 2
8Q

2
r 0 0

0 0 0 0 0 0 0 0 ̟ 2
9G

2
s 0

0 0 0 0 0 0 0 0 0 ̟ 2
10G

2
a

































.

10
∑

ι,k=1

āι,k(�̃)̺ι,k = ̟ 2
1X

2
h̺

2
1 +̟ 2

2 P
2
h̺

2
2 +̟ 2

3Q
2
ha̺

2
3 +̟ 2

4Q
2
hs̺

2
4 +̟ 2

5R
2
h̺

2
5 +̟ 2

6X
2
r̺

2
6 +̟ 2

7 P
2
r̺

2
7

+̟ 2
8Q

2
r̺

2
8 +̟ 2

9G
2
s̺

2
9 +̟ 2

10G
2
a̺

2
10 ≥ M�̺�2,

(48)

X̄h =
�1

ϒh +
σ 2
1
2

, P̄h = 1, Q̄ha =
µα1Ph

(ϑ1 + φ1 +
σ 2
3
2 )

, Q̄hs =
(1− µ)α1Ph

(δ + ϑ1 + φ2 +
σ 2
4
2 )

, R̄h =
1

ϑ1 +
σ 2
5
2

,

X̄r =
�2

ϒr + υ + ϑ2 +
σ 2
6
2

, P̄r =
1

α2 + υ + ϑ2 +
σ 2
7
2

, Q̄r =
α2Pr

υ + ϑ2 +
σ 2
8
2

, Ḡs =
1

ξ2 + ξ3 +
σ 2
9
2

,

Ḡa =
ξ3

ξ2
+

σ 2
10

2
, X̃h =

Xh

X̄h

, P̃h =
Ph

P̄h
, Q̃ha =

Qha

Q̄ha

, Q̃hs =
Qhs

Q̄hs

, R̃h =
Rh

R̄h

,

X̃r =
Xr

X̄r
, P̃r =

Pr

P̄r
, Q̃r =

Qr

Q̄r
, G̃s =

Gs

Ḡs
, G̃a =

Ga

Ḡa
.

(49)

L(− lnXh) = −
�1

Xh
+ϒh + ϑ1 +

σ 2
1

2

= −
�1

X̃hX̄h

+ϒh + ϑ1 +
σ 2
1

2

≤ −
�1

X̄h

(

ln
1

X̃h

+ 1
)

+ϒh + ϑ1 +
σ 2
1

2

=
�1

X̄h

ln X̃h + γh

(Qr

Nr
+

ρ1Qhs

Nh
+

ρ2Qha

Nh
+ 1+

ρ3Gs

�v
+

ρ4Ga

�v

)

,

(50)

L(− lnPh) = −
ϒh

Ph
+ (ϑ1 + α1)+

σ 2
2

2

= −
ϒh

P̃hP̄h
+ (ϑ1 + α1)+

σ 2
2

2

≤ −
ϒh

P̄h

(

ln
1

P̃h

)

+ α1 + ϑ1 +
σ 2
2

2

= γh

(Qr

Nr
+

ρ1Qhs

Nh
+

ρ2Qha

Nh
+

ρ3Gs

�v
+

ρ4Ga

�v

) 1

P̄h
ln P̃h,
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(51)

L(− lnQha) = −
µα1Ph

Qha
+ (ϑ1 + φ1)+

σ 2
3

2

= −
µα1P̃hP̄h

Q̃haQ̄ha

+ (ϑ1 + φ1)+
σ 2
3

2

≤ −
µα1P̄h

Q̄ha

(

ln
P̄hQ̄ha

P̃hQ̃ha

+ 1
)

+ φ1 + ϑ1 +
σ 2
3

2

= −
µα1

P̄hQ̄ha

(

ln
P̄hQ̄ha

P̃hQ̃ha

+ 1
)

,

(52)

L(− lnQhs) = −
(1− µ)α1Ph

Qhs
+ (δ + ϑ1 + φ2)+

σ 2
4

2

= −
(1− µ)α1P̄hP̃h

P̃hQ̃hsQ̄hs

+ (ϑ1 + φ1)+
σ 2
4

2

≤ −
(1− µ)α1

P̄hQ̄hs

(

ln
Q̄hsP̄h

Q̃hsP̃h
+ 1

)

+ φ2 + ϑ1 + δ +
σ 2
4

2

= −
(1− µ)α1

Q̄hsP̄h

(

ln
Q̄hsP̄h

P̃hQ̃hs

+ 1
)

,

(53)

L(− lnRh) = −
φ1Qha

Rh
−

φ2Qhs

Rh
+ ϑ1 +

σ 2
5

2

= −
φ1Q̄haQ̃ha

Q̃haR̃hR̄h

−
φ2Q̄hsQ̃hs

Q̃hsR̃hR̄h

− ϑ1 +
σ 2
5

2

≤ −
φ1

Q̄haR̄h

(

ln
Q̄haR̄h

Q̃haP̃h
+ 1

)

−
φ2

Q̄hsR̄h

(

ln
Q̄hsR̄h

Q̃hsP̃h
+ 1

)

+ ϑ1 +
σ 2
5

2

= −
φ1

Q̄haR̄h

(

ln
Q̄haR̄h

Q̃haP̃h
+ 1

)

−
φ2

Q̄hsR̄h

(

ln
Q̄hsR̄h

Q̃hsP̃h
+ 1

)

,

(54)

L(− lnXr) = −
�2

Xr
+ϒr + ϑ2 + υ +

σ 2
6

2

= −
�2X̄r

X̃r

+ ϑ2 + υ +ϒr +
σ 2
6

2

≤ −
�2

X̄r

(

ln
X̄r

X̃r

+ 1
)

+ ϑ2 + υ +ϒr +
σ 2
6

2

= −
�2

X̄r

(

ln
X̄r

X̃r

+ 1
)

+ γr

(Qr

Nr
+

φ1Gs

�v

)

,

(55)

L(− lnPr) = −
ϒrXr

Pr
+ α2 + υ + ϑ2 +

σ 2
7

2

= −
ϒrX̄rP̄r

X̃rP̃r
+ ϑ2 + υ + α2 +

σ 2
7

2

≤ −
ϒr

X̄rP̄r

(

ln
X̄rP̄r

X̃rP̄r
+ 1

)

+ ϑ2 + υ + α2 +
σ 2
7

2

= −γr

(Qr

Nr
+

φ1Gs

�v

) 1

X̄rP̄r

(

ln
X̄rP̄r

P̃rX̃r

+ 1
)

,
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Introduce

where cι (ι = 1, ..., 9) are non-negative constants estimated afterwards. Then it implies from (49–58) that

Simple computation yields

(56)

L(− lnQr) = −
α2Pr

Qr
+ (υ + ϑ2)+

σ 2
8

2

= −
α2P̄rQ̄r

Q̃rP̄r
+ ϑ2 + υ + α2 +

σ 2
7

2

≤ −
α2

Q̄rP̄r

(

ln
Q̄rP̄r

Q̃rP̄r
+ 1

)

+ ϑ2 + υ + α2 +
σ 2
8

2

= −
α2

Q̄rP̄r

(

ln
Q̄rP̄r

Q̃rP̄r
+ 1

)

,

(57)

L(− lnGs) = −
β1Qha

Gs
−

β2Qhs

Gs
−

β3Qr

Gs
+ ξ2 + ξ3 +

σ 2
9

2

≤ −
β1

Q̄haḠs

(

ln
Q̄haḠs

Q̃haḠs

+ 1
)

−
β2

Q̄hsḠs

(

ln
Q̄hsḠs

Q̃hsḠs

+ 1
)

−
β3

Q̄rḠs

(

ln
Q̄rḠs

Q̃rḠs

+ 1
)

+ ξ2 + ξ3 +
σ 2
9

2

= −
β1

Q̄haḠs

(

ln
Q̄haḠs

Q̃haḠs

+ 1
)

−
β2

Q̄hsḠs

(

ln
Q̄hsḠs

Q̃hsḠs

+ 1
)

−
β3

Q̄rḠs

(

ln
Q̄rḠs

Q̃rḠs

+ 1
)

,

(58)

L(− lnGa) = −
ξ3Gs

Ga
+ ξ2 +

σ 2
10

2

≤ −
ξ3

ḠsḠa

(

ln
ḠsḠa

G̃vḠs

+ 1
)

+ ξ2 +
σ 2
10

2

= −
ξ3

ḠsḠa

(

ln
ḠsḠa

Q̃haḠs

+ 1
)

−
β2

Q̄hsḠs

(

ln
Q̄hsḠs

Q̃hsḠs

+ 1
)

.

(59)
W1(�̃) = − lnPh − c1 lnXh − c2 lnAha − c3 lnQhs − c4 lnRh − c5 lnXr − c6 lnPr

− c7 lnQr − c8 lnGs − c9 lnGa −
c1γh

φ1 + ϑ1
lnAha −

c2γh

δ + φ2 + ϑ1
lnAhs −

c3α2

υ + ϑ2
,

(60)

LW1 ≤ γh

(Qr

Nr
+

ρ1Qhs

Nh
+

ρ2Qha

Nh
+

ρ3Gs

�v
+

ρ4Ga

�v

) 1

P̄h
ln P̃h + c1

{�1

X̄h

(

ln
X̄h

X̃h

+ 1
)

+ϒh + ϑ1

}

+ c2
µα1

P̄hQ̄ha

(

ln
P̄hQ̄ha

P̃hQ̃ha

+ 1
)

+ c3
(1− µ)α1

Q̄hsP̄h

(

ln
Q̄hsP̄h

P̃hQ̃hs

+ 1
)

+ c4

{ φ1

Q̄haR̄h

(

ln
Q̄haR̄h

Q̃haP̃h
+ 1

)

−
φ2

Q̄hsR̄h

(

ln
Q̄hsR̄h

Q̃hsP̃h
+ 1

)}

+ c5

{�2

X̄r

(

ln
X̄r

X̃r

+ 1
)

+ γr

(Qr

Nr
+

φ1Gs

�v

)}

+ c6γr

(Qr

Nr
+

φ1Gs

�v

) 1

X̄rP̄r

(

ln
X̄rP̄r

P̃rX̃r

+ 1
)

+ c7
α2

Q̄rP̄r

(

ln
Q̄rP̄r

Q̃rP̄r
+ 1

)

+ c8

{ β1

Q̄haḠs

(

ln
Q̄haḠs

Q̃haḠs

+ 1
)

−
β2

Q̄hsḠs

(

ln
Q̄hsḠs

Q̃hsḠs

+ 1
)

−
β3

Q̄rḠs

(

ln
Q̄rḠs

Q̃rḠs

+ 1
)}

+ c9

{ ξ3

ḠsḠa

(

ln
ḠsḠa

Q̃haḠs

+ 1
)

−
β2

Q̄hsḠs

(

ln
Q̄hsḠs

Q̃hsḠs

+ 1
)}

+
c1γhµα1

ϑ1 + φ1
Ph − c1γhQha −

c2γh(1− µ)α1

δ + φ2 + ϑ1
Ph − c2γhQhs +

c3α2

υ + ϑ2
Pr − c3α3Qh.
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Thus,

where

Furthermore, we introduce the functions

where � ∈
(

0, 2ϑ1/(σ
2
1 ∨ σ 2

2 ∨ σ 2
3 ∨ σ 2

4 ∨ σ 2
5 ∨ σ 2

6 ∨ σ 2
7 ∨ σ 2

8 ∨ σ 2
9 ∨ σ 2

10)
)

 is sufficiently small constant. Utilizing 
the Itô technique to W2,W3,W4,W5,W6,W7,W8,W9 and W10, respectively, we have

and
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−ϒh = 0,

c2µα1
¯Qha

− φ1R̄h = 0,

c3(1−µ)α1
Q̄hs

− φ2Q̄hs = 0,

c4φ1
R̄h

− (φ2 + β2)ḠsQ̄hs = 0,

c5�2

X̄r
+ γrP̄hX̄r = 0,

c6γr
X̄r

+ γrP̄rX̄r = 0,

c7α2
Q̄r

+ β3ḠsQ̄r = 0,

c8β1
Ḡs

+ β3Q̄haḠs = 0,

c9ξ3
Ḡa

+ β3Q̄hsḠa = 0,
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c1 =
ϒhX̄h

�1
,

c2 =
φ1R̄h

¯Qha

µα1
,

c3 =
φ2Q̄hs

(1−µ)α1
,

c4 =
(φ2+β2)ḠsQ̄hsR̄h

φ1
,

c5 =
γr P̄hX̄

2
r

�2
,

c6 =
�2P̄rX̄

2
r

�2
,

c7 =
β3Ḡs

2Q̄r

α2
,

c8 =
β3Ḡs ¯Qha

β1
,

c9 =
β3

¯Ga
2Q̄hs

ξ2
.

(61)
LW1 ≤ −ϒhX̄h + α1 + ϑ1 +

σ 2
2

2
+

( c1γhµα1

ϑ1 + φ1
+

c2γh(1− µ)α1

ϑ1 + φ2 + δ

)

Ph

= −
(

α1 + ϑ1 +
σ 2
2

2

)

(ℜs
0 − 1)+

( c1γhµα1

ϑ1 + φ1
+

c2γh(1− µ)α1

ϑ1 + φ2 + δ

)

Ph,

(62)

ℜs
0 :=

ϒhX̄h

α1 + ϑ1 +
σ 2
2
2

=
�1γhµα1ϒh

(α1 + ϑ1 +
σ 2
2
2 )(ϑ1 + φ1 +

σ 2
3
2 )(ϑ1 +

σ 2
1
2 )

+
�1γh(1− µ)α1ϒh

(α1 + ϑ1 +
σ 2
2
2 )(ϑ1 + φ2 +

σ 2
4
2 )(ϑ1 +

σ 2
1
2 )

.

(63)

W2(Xh) = − lnXh, W3(Qha) = − lnQha , W3(Qhs) = − lnQhs, W4(Rh) = − lnRh,

W5(Xr) = − lnXr , W6(Pr) = − lnPr , W7(Qr) = − lnQr , W8(Gs) = − lnGs,

W9(Ga) = − lnGa , W10(�̃) =
1

�+ 1

10
∑

ι=1

�̃�+1
ι ,

(64)

LW2 = −
�1

Xh
+ϒh + ϑ1 +

σ 2
1

2
, LW3 = −

µα1P

Qha
+ (ϑ1 + φ1)+

σ 2
3

2
,

LW3 = −
(1− µ)α1Ph

Qhs
+ (ϑ1 + φ2 + δ)+

σ 2
4

2
, LW4 = −

φ1Qha

Rh
−

φ2Qhs
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+ ϑ1 +

σ 2
5

2
,

LW5 = −
�2

Xr
+ϒr + (ϑ2 + υ)+

σ 2
5

2
, LW6 = −

ϒrXr

Pr
+ (α2 + υ + ϑ2)+

σ 2
6

2
,

LW7 = −
α2Pr

Qr
+ (ϑ2 + υ)+

σ 2
7

2
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β1Qha
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−

β2Qhs
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−

β3Qr
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+ (ξ2 + ξ3)+

σ 2
8

2
,
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where X1 := sup

�̃T̃∈ℜ10
+

{

�1(Xh + Ph +Qha +Qhs + Rh + Xr + Pr +Qr + Gs + Ga)
� − X2

2 (Xh + Ph +Qha

+Qhs + Rh + Xr + Pr +Qr + Gs + Ga)
�+1

}

< ∞  a n d  X2 := ϑ1 −
�

2

(

ϑ1 −
�

2
(σ 2

1 ∨ σ 2
2 ∨ σ 2

3 ∨ σ 2
4 ∨ σ 2

5

∨σ 2
6 ∨ σ 2

7 ∨ σ 2
8 ∨ σ 2

9 ∨ σ 2
10

)

.

Introducing a C̄2-function W̄ : ℜ10
+ �→ ℜ in the subsequent form

where Q is a sufficiently large non-negative quantity fulfilling the criteria

and

Furthermore, W̄(�̃) is not only continuous, nevertheless it tends to as (�̃)T̃ arrives at the boundary of ℜ10
+  . As a 

result, it must possess a lower bound that reaches it at a point (�̃0) in the interior of ℜ10
+  . Then we establish a C̄2

-function W̄ : ℜ10
+ �→ ℜ+ as follows

In view of (61–65), we have

(65)

LW10 =
(

Xh + Ph +Qha +Qhs + Rh + Xr + Pr +Qr + Gs + Ga

)�

×
[

�1 − µ(Xh + Ph +Qha +Qhs + Rh + Xr + Pr +Qr + Gs + Ga)− φ1Qha

− (δ + φ1)Qhs − υQr

]

+
�

2
(Xh + Ph +Qha +Qhs + Rh + Xr + Pr +Qr + Gs

+ Ga)
�−1 × (σ 2

1Xh + σ 2
2 Ph + σ 2

3Qha + σ 2
4Qhs + σ 2

5Rh + σ 2
6Xr + σ 2

7 Pr + σ 2
8Qr

+ σ 2
9Gs + σ 2

10Ga)

≤ �1

(

Xh + Ph +Qha +Qhs + Rh + Xr + Pr +Qr + Gs + Ga

)�

− ϑ1
(
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)�+1

+
�

2

(
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)�+1

× (σ 2
1 ∨ σ 2

2 ∨ σ 2
3 ∨ σ 2

4 ∨ σ 2
5 ∨ σ 2

6 ∨ σ 2
7 ∨ σ 2

8 ∨ σ 2
9 ∨ σ 2

10)

= X1 −
1

2

(

ϑ1 −
�

2
(σ 2

1 ∨ σ 2
2 ∨ σ 2

3 ∨ σ 2
4 ∨ σ 2

5 ∨ σ 2
6 ∨ σ 2

7 ∨ σ 2
8 ∨ σ 2

9 ∨ σ 2
10

)

×
(

Xh + Ph +Qha +Qhs + Rh + Xr + Pr +Qr + Gs + Ga

)�+1

≤ X1 −
1

2

(

ϑ1 −
�

2
(σ 2

1 ∨ σ 2
2 ∨ σ 2

3 ∨ σ 2
4 ∨ σ 2

5 ∨ σ 2
6 ∨ σ 2

7 ∨ σ 2
8 ∨ σ 2

9 ∨ σ 2
10

)

×
(

X�+1
h + P�+1

h +Q�+1
ha +Q�+1

hs + R�+1
h + X�+1

r + P�+1
r +Q�+1

r + G�+1
s + G�+1

a

)

= X1 −
X2

2

(

X�+1
h + P�+1

h +Q�+1
ha +Q�+1

hs + R�+1
h + X�+1

r + P�+1
r +Q�+1

r + G�+1
s + G�+1

a

)

,

(66)
W1(�̃) = QW1(�̃)+W2(Xh)+W3(Qha)+W4(Qhs)+W5(Rh)+W6(Xr)+W7(Pr)+W8(Qr)

+W9(Gs)+W10(Ga),

(67)Q

(

ϑ1 + α1 +
σ 2
1

2

)

(ℜs
0 − 1)+ X3 ≤ −2

(68)

X3 := sup
�̃T̃∈ℜ10

+

{

−
X2

4

(

X�+1
h + P�+1

h +Q�+1
ha +Q�+1

hs + R�+1
h + X�+1

r + P�+1
r +Q�+1

r + G�+1
s + G�+1

a

)

+ X1 +�1 + 5ϑ1 + 3ϑ2 +ϒhXh +ϒhPh + φ1 + φ2 + δ + υ + α2 + ξ2 + ξ3 +
1

2
(σ 2

1 ∨ σ 2
3 ∨ σ 2

4

∨ σ 2
5 ∨ σ 2

6 ∨ σ 2
7 ∨ σ 2

8 ∨ σ 2
9 ∨ σ 2

10)

}

< ∞.

(69)

W̃(�̃) = W̄(�̃)− W̄(�̃0)

= QW1(�̃)+W2(Xh)+W3(Qha)+W3(Qhs)+W4(Rh)+W5(Xr)+W6(Pr)+W7(Qr)

+W8(Gs)+W9(Ga)− W̄(�̃0)
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We can now develop a restricted closed domain Vǫ as shown below

where ǫ ∈ (0, 1) denotes a sufficiently small a fixed value. We can select a small sufficient size in the group ℜ10
+ \ Vǫ 

to satisfy the subsequent requirements

where

For simplicity, we are able to split ℜ10
+ \ Vǫ into sixteen separate regions as

Evidently, ℜ10
+ \ Vǫ = V1 ∪ ... ∪ V10. Thus, it is not challenging to demonstrate this LW̃ ≤ −1 ∀ �̃T̃ ∈ Vc

ǫ . For 
reference, (see;42,43).

As a result, the requirement (Z2) in Lemma 3.5 as well possesses. According to Lemma 3.5, mechanism (5) 
has a unique stationary distribution π(.) and the ergodicity applies. This completes the proof.

  �

Numerical simulations
This section devotes itself to implementing the piecewise derivatives whenever the interrelated derivatives are the 
deterministic and fractional differential operators, taking into account local/nonlocal and singular/non-singular 
kernels. Thus, the order of the derivative χ lies in (0,1].

Fractional derivative with power kernel
In this segment, we shall examine the dynamical analysis of Lassa fever models (3) and (5)to ascertain how 
distinctive pathogen advancement mechanisms, which include those that are typically disregarded, like par-
ticulate and environmental interfacial pathways, affect both individuals and rodents using classical, index-law, 
and subsequently stochastic methods. The computational mechanism will be established in the initial process 
utilizing the classical derivative enactment, followed by the power law kernel in the second level, and eventually 

LW̃ ≤ Q

(

ϑ1 + φ1 +
σ 2
1

2

)

(ℜs
0 − 1)+Q

(

c1γhµα1
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+
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−
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−

(1− µ)α1

Qhs

−
X2

2

(

X�+1
h + P�+1

h +Q�+1
ha +Q�+1

hs + R�+1
h + X�+1

r + P�+1
r +Q�+1

r + G�+1
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[
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[
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[
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V1
ǫ =

{

�̃T̃ ∈ ℜ10
+ : Xh < ǫ
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, V2
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�̃T̃ ∈ ℜ10
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the stochastic surroundings in the final stages, if we describe T as the ultimate propagation duration, such that 
the final attempt. The explanation for this hypothesis is then given using the corresponding formulaic framework:

Now, we use the method outlined  in37 to analyze the piecewise configuration (72–74) in the context of Caputo’s 
derivative. We immediately begin the methodology by doing the following:

Consequently, we have

where
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Ẋh = �1 −ϒhXh − ϑ1Xh,
Ṗh = ϒhXh − (α1 + ϑ1)Ph,
Q̇ha = µα1Ph − (φ1 + ϑ1)Qha ,
Q̇hs = (1− µ)α1Ph − (δ + φ2 + ϑ1)Qhs,
Ṙh = φ1Ph + φ2Qhs − ϑ1Rh,
Ẋr = �2 −ϒrXr − (ϑ2 + υ)Rh, if t ∈ [0,T1],
Ṗr = ϒrXr − (α2 + ϑ2 + υ)Ph,
Q̇r = α2Pr − (υ + ϑ2)Qr ,
Ġs = β1Qha + β2Qhs + β3Qr − (ξ2 + ξ3)Gs,
Ġa = ξ3Gs − ξ2Ga ,
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c
0D

χ
t Xh = �1 −ϒhXh − ϑ1Xh,

c
0D

χ
t Ph = ϒhXh − (α1 + ϑ1)Ph,

c
0D

χ
t Qha = µα1Ph − (φ1 + ϑ1)Qha ,

c
0D

χ
t Qhs = (1− µ)α1Ph − (δ + φ2 + ϑ1)Qhs,

c
0D

χ
t Rh = φ1Ph + φ2Qhs − ϑ1Rh,

c
0D

χ
t Xr = �2 −ϒrXr − (ϑ2 + υ)Rh, if t ∈ [T1,T2],

c
0D

χ
t Pr = ϒrXr − (α2 + ϑ2 + υ)Ph,

c
0D

χ
t Qr = α2Pr − (υ + ϑ2)Qr ,

c
0D

χ
t Gs = β1Qha + β2Qhs + β3Qr − (ξ2 + ξ3)Gs,

c
0D

χ
t Ga = ξ3Gs − ξ2Ga ,
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dt = �(t,ℵk). ℵk(0) = ℵk,0, k = 1, 2, ..., n if t ∈ [0,T1],
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(75)�1 := (v −m− 1)χ − (v −m)χ ,

(76)�2 := (v −m+ 1)χ (v −m+ 2χ + 3)− (v −m)χ (v −m+ 3χ + 3)
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and

Fractional derivative with exponential decay kernel
Now, we shall demonstrate the dynamical analysis of Lassa fever models (3) and (5)to ascertain how distinctive 
pathogen advancement mechanisms, which include those that are typically disregarded, like particulate and 
environmental interfacial pathways, affect both individuals and rodents using classical, exponential decay law 
and subsequently stochastic methods. The computational mechanism will be established in the initial process 
utilizing the classical derivative enactment, followed by the exponential decay kernel in the other level, and thus 
the stochastic surroundings in the final stages, if we describe T as the ultimate propagation duration, such that 
the final attempt. The explanation for this hypothesis is then given using the corresponding formulaic framework:

Now, we use the method outlined  in37 to analyze the piecewise configuration (78–80) in the context of Caputo-
Fabrizio derivative. We immediately begin the methodology by doing the following:

It follows that

(77)�3 :=
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.
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Ẋh = �1 −ϒhXh − ϑ1Xh,
Ṗh = ϒhXh − (α1 + ϑ1)Ph,
Q̇ha = µα1Ph − (φ1 + ϑ1)Qha ,
Q̇hs = (1− µ)α1Ph − (δ + φ2 + ϑ1)Qhs,
Ṙh = φ1Ph + φ2Qhs − ϑ1Rh,
Ẋr = �2 −ϒrXr − (ϑ2 + υ)Rh, if t ∈ [0,T1],
Ṗr = ϒrXr − (α2 + ϑ2 + υ)Ph,
Q̇r = α2Pr − (υ + ϑ2)Qr ,
Ġs = β1Qha + β2Qhs + β3Qr − (ξ2 + ξ3)Gs,
Ġa = ξ3Gs − ξ2Ga ,
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Fractional derivative with generalized Mittag‑Leffler kernel
In what follows, we shall illustrate the dynamical analysis of Lassa fever models (3) and (5) to ascertain how dis-
tinctive pathogen advancement mechanisms, which include those that are typically disregarded, like particulate 
and environmental interfacial pathways, affect both individuals and rodents using classical, Mittag-Leffler law and 
subsequently stochastic methods. The computational mechanism will be established in the initial process utilizing 
the classical derivative enactment, followed by the generalized Mittag-Leffler kernel in the second level, and thus 
the stochastic surroundings in the final stages, if we describe T as the ultimate propagation duration, such that 
the final attempt. The explanation for this hypothesis is then given using the corresponding formulaic framework:

Now, we use the method outlined  in37 to analyze the piecewise configuration (83–85) in the perspective of 
Atangana-Baleanu-Caputo derivative. We immediately begin the methodology by doing the following:

Simple computation yields
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Ẋh = �1 −ϒhXh − ϑ1Xh,
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where �1,�2 and �3 are stated before in (75–77) (Fig. 3).

Results and discussion
In this section, we will supply numerous practical instances along with numerical experiments to validate our 
above findings from analysis using the well-known piecewise fractional differential equations numerical tech-
nique provided by Seda and  Atangana37. The associated parameter specifications of system (5) are presented in 
Table 2. We displayed the predictions compared to the data using real cases reported in Nigeria and acquired 
the outcomes visually in Figure 4. The cases are for the time frame of from November 28, 2022 to April 13, 2023 
and are the most recently identified instances in the country. When t = 1 and χ = 1 the data in Figure 4(a) has 
been fitted to the model.

Parameter estimation
Currently, the computation of simulation parameters from indicated statistical data is attracting considerable 
interest among scholars and is regarded as a vital part of mathematical epidemiological research. We used 
the widely used nonlinear least squares technique to incorporate this component into the present work. The 
parameters were calculated using the technique mentioned above, and the framework was fitted to real Lassa 
fever cases identified in Nigeria for a selected time period. Particularly, the model’s parameters were estimated 
by using the total number of confirmed infected people and deaths between the period of November 28, 2022 to 
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Table 2.  Explanation of system’s feature.

Symbols Values References

µ 0.8 63

δ 0.0005 64

�1 0.497 Estimated

�2 2.74 Estimated

ϑ1 0.0000497 65

ϑ2 0.00274 66

φ1 0.0000476 Calculated

φ2 0.0000323 Calculated

υ 0.0006 67

ξ2 0.01868 Calculated

ξ3 0.00701 68

α1 0.0094 Estimated

α2 0.048 Estimated

ζ1 0.167 Assumed

β1 0.0667 Estimated

β2 0.0357 Estimated

β3 0.02569 Estimated

ρ1 0.94 Estimated

ρ2 0.95 Estimated

ρ3 0.9 Estimated

ρ4 0.85 Estimated

γr 0.004 Estimated

γh 0.00017 Estimated
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April 13, 2023, Nigeria. The Ordinary Least Square solution was utilized for reducing the error terms with the 
help of (86), and the related relative error is used in the goodness of fit,

Here, the notion Ii is the reported cumulative infected cases and Îi is the cumulative infected cases obtained 
from simulating the model. The simulated values of cumulative infection are calculated by summing up the 
individuals, which moves from the infected compartment to the quarantined class each day. The infected popu-
lation predicted by the proposed system (3). It is clear from the figure that the deterministic curves are in good 
agreement with the real data. All the parameters are estimated except ζ1 = 0.167 , which is assumed. Estimated 
values of parameters are shown in Table 2.

Figure 3 illustrates the bifurcations with respect to susceptible humans and rodents, respectively.
Following that, we intend to concentrate our efforts by examining the following two scenarios. We intend to 

concentrate on the three resulting components:
(i)  If the criterion ℜ0 > 1 entails, there is a unique ergodic stationary distribution.
(ii) The effect of environmental noise on mechanisms (5) illness extermination.
(iii) The effect of transmission rate ρ ∈ [0, 1] on mechanism (5) illness dynamics.

Experimental examples
In what follows, we illustrate two examples in order to support the mathematical outcomes provided in previ-
ous sections.

Example 5.1 Assume that the random perturbations (σ1, σ2, ..., σ10) = (0.001, 0.001, ..., 0.001), we determined 
ℜ0 = 3.1301 > 1 and ℜs

0 = 13.001 > 1, which indicates that the illness will persist over time in a framework that 
is deterministic (3). Furthermore, we can deduce from Theorems 3.1 and 3.6 that model (5) confesses a global 
non-negative stationary outcomes on ℜ10

+  , as shown in the Fig. 5(a,b,c,d,e,f,g,h,i and j). According to the biologi-
cal significance of Fig. 5(i,j), the most efficient interaction given between Xh and Qr causes the greatest harm in 
terms of pathological advancement when power law kernels have been employed. This is accompanied by a low 
transmission rate within Xh and fewer transmissible infectious asymptomatic humans when fractional-order is 
assumed to be χ = 0.95. By interacting with polluted atmospheres, dirty air and spreading indicative individuals, 
one can diminish the virus infection. We find that each means of dissemination contributes to the spread of Lassa 
fever, but certain are more important than others as well. It is clear that there is a huge disparity in the extent of 
dissemination of the pathways in Nr as well as infection individuals. This demonstrates that while certain routes 
prove more lethal than others, every process contributes to a distinctive approach.

Example 5.2 We surmise the random perturbations (σ1, ..., σ10) = (0.001, ..., 0.001), a simple computation yields 
ℜs
0 = 0.05789 < 1 and according to Theorem 3.4 the outcomes of system (5) must satisfies

and
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Figure 3.  Bifurcation plots with respect to Theorem 2.2 with assumptions (i) and (ii).
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shows that model (5) has a stable endemic equilibrium ℜ10
+  . On the contrary, we can derive the condition systemic 

from Theorem (3.4) will become disappearing with a unit probability. Figure 6(a,b,c,d,e,f,g,h,i, and j) indicate 
the appropriate numerical modeling of the solution �̃ ∈ ℜ10

+  to model (5) with the low random intensities and 
piecewise fractional differential equations scheme.

Taking into account the fractional calculus and biophysical approach, Fig. 6(i,j) shows that combining two dis-
semination processes improves the prevalence of diseases compared to an individual process when an exponential 
decay type fractional derivative has been applied with a fractional-order χ = 0.95 . We additionally discover that 
specific blends are more lethal than other people. Any interaction involving the efficient interaction rate among 
Xh and Qr results in a spike of transmission, which is subsequently accompanied by any pairing via the successful 
interaction rate between Xh and Qha and then additional processes.

Example 5.3 Now fixing the random perturbations (σ1, ..., σ10) = (0.001, ..., 0.001), Fig. 7(a,b,c,d,e,f,g,h,i and j),
depicts the accompanying variability developments of ℜ0 and ℜp

0 with varying ρ ∈ (0, 1)× 10−5 are presented. 
ℜ
p
0 > 1 is obviously obtained when ρ > 0.501× 10−6 and ℜ0 > 0.25 when ρ < 0.07536× 10−7 is obtained. 

Utilizing Theorems 233.6, it is shown that the infection model (5) will be widespread when ρ > 0.501× 10−6 , 
but vanish when ρ < 0.07536× 10−7 . We specifically examine the subsequent three cases of: (i) ρ = 5× 10−5, 
(ii) ρ = 5× 10−6 and (iii) ρ = 5× 10−7. Fig. 7(i,j) depict the appropriate computational models for Xh and Ph 
within the framework (5). As the duration at which it propagates declines, the number of Xh increases, the infec-
tious disease Qha , Qhs and Qr are Fig. 7 depicts the appropriate computational models for individuals Xh and Ph 
within the framework (5). As the duration at which it propagates declines, the number of susceptible individuals 
increases, and the infectious disease is wiped out when low perturbations and a generalized Mittag-Leffler kernel 
are utilized with the scheme of piecewise fractional differential equations.
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Figure 4.  Lassa fever fitting outcomes considering the data obtained from Nigeria Centre for Disease  Control19. 
(a) Cumulative cases (b) Weekly cases.
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Furthermore, in Fig. 7, each of the dissemination pathways is shown in addition to the prevailing point 
dissemination route with the ABC fractional derivative operator. The distinction within both charts takes into 
consideration the impact of additional processes as well as the efficient interaction rate within XH1 and Qr . This 
demonstrates that, while the efficient interaction rate in Xh and Qr is prevailing, different processes cannot be 
overlooked since, if they function together, they result in a supplementary rise in the impact of Lassa fever peri-
odically. The design is additionally essential to point out that horizontal transfers between Xr and Qr perform 
a noteworthy function in boosting the prevalence of infection along with interaction rates in Xr and affected 
surroundings.
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Figure 5.  Convoluted two-dimensional view of the Lassa fever model (72–74) by means of a power-law kernel 
with χ = 0.95 and random perturbations.
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According to our fractional and stochastic design exercises, every possible transmission process has an effect 
on the advancement of Lassa fever. Interestingly, certain means of transmission produce substantially higher 
amounts than individuals. Prevention strategies should focus on lowering collision ranks within Xh and Qr 
(particularly in locations that have elevated rodent usage) and interaction ranks between Xh and Qha . While 
confronted by Xh and Qha , a major obstacle emerges as these infections are hard to recognize by means of indi-
cators. This necessitates the use of detection strategies, which include widespread sampling in native regions, 
immunizations and advanced fractional calculus operators.
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Figure 6.  Convoluted two-dimensional view of the Lassa fever model (78–80) by means of a exponential decay 
kernel with χ = 0.95 and random perturbations.
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Bifurcation analysis
Bifurcations play a vital role in dynamics research for fractional-order systems. Therefore, in this section, 
bifurcation analysis is conducted to study the rich dynamical behavior of the fractional-order system (7) in 
the two cases of commensurate-order and incommensurate-order, respectively. Using the parametric values 
in Table 2, the roots of the (11) are −0.6213, −1.3423, −0.1236, 0.1122, −0.2345, −1.2345, −0.3245, −0.5677, 
0.5624±0.3425ι. Thus we obtain ℜc(0.1122) �= 0. The bifurcation diagram is shown in Fig. 8(a) through 
Fig.  8(j). For ϒ∗

h = 32.45 and ϒ∗
r = 0.3456 and E1 =
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Figure 7.  Convoluted two-dimensional view of the Lassa fever model (83–85) by means of a generalized 
Mittag-Leffler kernel with χ = 0.95 and random perturbations.
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E1 =
(

7.8345, 295.6534, 120.2340, 56.7823, 35.6547, 23.4501, 19.2301, 13.456, 11.9002, 10.2090
)

. Now, E1 is locally 
asymptotically stable when χ ∈ (0, 1] confirming our theoretical results in Theorem 2.3 (assertion  (aiii)). The 
system (7) produces a bifurcation when χ = 0.95.

Conclusion
In this manuscript, we construct and verify a deterministic-stochastic scheme for analyzing the Lassa fever infec-
tion, including several modes of transmission, to address their effect on contamination growth in a community. 
To begin, we illustrate that the framework (5) has a single global positive findings for any particular initial 

Figure 8.  Bifurcation plots for the Caputo fractional derivative operator for (73) when χ = 0.95.
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conditions. Following that, we employ the stochastic Lyapunov candidate technique to identify sufficient require-
ments for determining the presence and distinctive characteristics of an ergodic stationary distribution, known as 
a distribution of chances exhibiting certain inflexible features. In view of the distinct features of ℜs

0, we succeeded 
in demonstrating the way including multiple dissemination processes influences illness incidence. We employed 
stochastic tools to determine the extinction. We obtained mathematical formulas from our investigation that 
demonstrate the situations that dictate whether the illness can endure or can be regulated in the framework, as 
well as the manner in which the response of setting modifications results in system operation improvements. 
According to our system modeling, every single propagation route has an effect on the advancement of Lassa 
fever. But certain pathways of transmission are contributing substantially greater amounts than others as well. 
Our findings indicate that measures in these fields ought to be avoided and overlooked when developing health 
strategies. Additional research can be conducted: 

 (i) an amalgam of various methods for propagation that takes into account the unpredictable nature of 
disease,

 (ii) Effectively sanitary conditions, approaches to intervention, and multifaceted prevention initiatives that 
incorporate such several dissemination processes can aid in the reduction of illness incidence in the 
overall health sector,

 (iii) Employing the technique of cost-effective assessment, optimize the expense of multiple intervention 
strategies to ensure people in regions struggling with impoverishment challenges can be adequately 
aided.

Being able to get to actual information and involving Lévy noise, Poisson noise and telegraph noise may addition-
ally enhance the model’s anticipatory capability. Vertical propagation of Lassa fever in rodents may addition-
ally be included in future research. Other approaches, such as system scaling, may be employed to assist in the 
evaluation when the settings are without dimensions and convey proportions of tangible repercussions instead 
of capacities of specific implications.

Data availability
The datasets used and/or analyzed during the current study available from the corresponding author on reason-
able request.
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