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Formation of multiple complex 
light structures simultaneously 
in 3D volume using a single binary 
phase mask
Amit Kumar , Sarvesh Thakur  & S. K. Biswas *

Complex structure formation inside or through turbid media is a challenging task due to refractive 
index inhomogeneity, random light scattering, and speckle noise formation. In this article, we have 
coupled the data regression model in the R-squared metric and used its advantages as a fitness 
function in the genetic algorithm to advance the resolution and structural uniformity. As a compatible 
system with the binary genetic algorithm, we have presented a cost-effective iterative wavefront 
shaping system-design with binary phase modulation using an affordable ferroelectric liquid crystal 
(FLC) based binary-phase spatial light modulator (SLM). R-squared metric in the genetic algorithm 
is analyzed to optimize the binary phase mask, and the prototype system based on iterative binary 
phase modulation has been validated with a 120-grit ground glass diffuser and fresh chicken tissues of 
thickness 307 µm and 812 µm . The detailed results show that the proposed cost-effective wavefront 
shaping system with data regression model assisted R-squared fitness function can construct high-
resolution multiple complex hetero-structures simultaneously in 3D volume using an optimized single 
phase-mask.

Scattering of light in living or non-living tissue and other disordered media is one of the primary challenges in 
biomedical imaging, deep tissue imaging, biomedical engineering, and is an active research area in the adaptive 
optics and bio-engineering  community1–9. Focusing light through scattering media such as tissue has many 
applications in structural light illumination  microscopy10, fluorescence  imaging7,11, live cell imaging, neuron 
excitation/imaging12,13,  optical  trapping14, and holographyic display. Scientists worldwide are currently engaged 
in addressing the challenges arising from scattering in various types of optical and radiation-based biomedi-
cal  imaging1,4–13. Inhomogeneity of refractive index in the medium, repeated random scattering, and speckle 
noise due to local interference of light cause an unavoidable distortion of the  wavefront1,4,15. Modulation of the 
incident wavefront using spatial light modulator (SLM)1,4–6 enables the focusing of light inside or through scat-
tering media, and it has been initially demonstrated experimentally by Vellekoop and Mosk in  200716. Wavefront 
shaping is mostly performed using an iterative, transmission matrix (TM), and digital optical phase conju-
gation (DOPC)  approach1,4,16–24. Recently, it has been observed that evolution-inspired iterative optimization 
algorithms like genetic algorithm (GA) are well suited for the  problem25–28. Relevant studies have shown that 
genetic algorithms perform better in terms of enhancement compared to previously introduced iterative and 
TM approaches, even in highly noisy  environments25–27. Feedback-based wavefront shaping techniques have 
been explored using various iterative computational algorithms and adaptive  optics16,25–27,29–34. It is also reported 
in the literature that derivative-free  GA35,36 based feed back technique is quite effective in neutralizing phase 
aberration and coping with dynamic noisy environments. A fitness function is used for optimization in iterative 
feedback-based algorithms to get the desired output. Recently, fitness functions such as target pixels  intensity16,32, 
peak-to-background ratio (PBR)31,37, Pearson’s correlation  coefficient38,39, and standard  deviation28, etc have been 
reported. The selection of fitness functions to optimize solutions within specific segments involves a trade-off 
between the advantages and disadvantages of each approach. For example,  intensity16,32 and  PBR31,37 based fitness 
functions are common and have been used widely for focusing light through scattering media. Target intensity 
based fitness function enhances the intensity at the target spot but shows a noisy background, whereas the PBR 
based fitness function shows better target intensity and suppressed background  intensity31. However, both fitness 
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functions are unable to form desired patterns with sufficiently high resolution and structural  uniformity15,39. 
A couple of fitness functions have been reported to form different types of light structure in the  literature28,39.

The formation of structured light through and inside scattering media has several potential applications 
in the real world problems, such as, in the field of holographic  displays40, structured light illumination based 
 microscopy10, and photolithography. Recently, sequential or temporal 3D holography through scattering media 
using multiple phase masks has been  reported40–43. In 2016, Zhuang et al.41 demonstrated color imaging through 
turbid media by considering the memory effect and the point spread function of the optical system. In 2017, 
Yu et al.40 demonstrated the plane-wise projection of dotted patterns in 3D space sequentially at different time 
frames, which have been acquired by translating a three-axis motorized stage. In 2018, Zhao et al.42 used the 
computer-generated holography based point-spread-function (PSF) technique for wavefront shaping where 
the axial scanning of the focus was realized digitally using a digital micromirror device. In 2019, Tran et al.43 
proposed a technique to implement feedback-based wavefront shaping with optical memory effect, where they 
have shown a lateral distance of 200 µm between focus spots in 3D. However, it is well known that the opti-
cal memory effect is limited in its angular range and tilt  direction43,44. In 2022, Lee et al.45 proposed a gradient 
descent algorithm based 3D color holography in the open air by projecting multiple independent holograms 
using temporal multiplexing technique. In our work, we have demonstrated simultaneous multiple complex 
hetero-structures formation through tissue like scattering media in 3D volume using a single binary phase mask 
optimized with R-squared fitness function.

On the experimental side, demonstrations have been conducted using either a nematic liquid crystal SLM 
(NLC-SLM)46–49 or a digital micro-mirror device (DMD)27,51. Despite the introduction of different types of algo-
rithms, advanced hardware such as fast cameras, high-resolution NLC-SLMs, or digital micro-mirror devices 
(DMDs) are still out of reach for most of the research groups due to their high cost. The DMDs have a faster 
refresh rate ( ∼ 23 kHz)46,47 and low latency. On the other hand, NLC-SLMs have high latency and low frame rate 
( ∼ 60Hz)27,51. However, DMDs can only achieve binary amplitude modulation, which reduces the enhancement 
factor compared to the phase modulation achieved by either binary FLC-SLMs (two discrete phase levels) or 
NLC-SLMs (256 discrete phase levels)51. The theoretical enhancement factor ( η ) of binary phase modulation 
with FLC-SLM is double compared to  DMD15,51. Furthermore, the alignment of DMD is difficult due to its 
sensitivity to oblique reflection, and it is limited to low-intensity pulsed lasers  only48,49. For an NLC-SLM, phase 
calibration is mandatory, whereas an FLC-SLM does not require any phase calibration. FLC-SLM is faster than 
NLC-SLM since it operates in binary mode. FLC-SLM offers a cost-effective alternative with rapid binary phase 
modulation (up to 4.5 kHz ), and exhibits increased enhancement compared to DMDs. The use of FLC-SLM 
for focusing light in scattering media has been shown using the DOPC-based wavefront shaping  technique51. 
However, DOPC techniques have some unavoidable drawbacks, such as camera pixels and SLM pixels must be 
in a near-perfect match which makes alignments far more  challenging23,52. Furthermore, the most challenging 
task is that the SLM and camera have to be at the exact mirror conjugate  plane23,52.

In this article, a cost-effective iterative wavefront shaping system has been designed using binary phase 
capabilities of FLC-SLM and dual cameras to construct multiple non-similar complex structures at different 
depths simultaneously in 3D volume using a single binary phase-mask. To achieve multiple complex structures 
simultaneously, we have utilized the advantages of the R-squared metric as a fitness function in the genetic 
algorithm. The FLC-SLM has a pixel switching response time of 40 µs with a refresh rate of up to 4.5 kHz at 
 present53. The high refresh rate, high-speed pixel switching time, and binary phase features of FLC-SLM can be 
utilized to advance the resolution in lesser time. We have validated the prototype system using a 120 grit ground 
glass (GG) diffuser along with 307 µm and 812 µm thick fresh ex-vivo chicken tissues. Multiple complex light 
structures and gradient contrast light formation with R-squared fitness function will find new applications in 3D 
holographic  display40,43, photo-thermal imaging and therapy, fluorescence  imaging7,11, light sheet  microscopy54,55, 
photoacoustic  microscopy56, and structure illumination  microscopy10.

Results and discussion
The fitness function in iterative optimization algorithms is essential to reach the optimum solution. It has been 
observed that the data regression assisted R-squared fitness function, and the most commonly used peak-to-
background ratio (PBR) fitness function perform differently based on the complexity of the structure at the region 
of interest (ROI). Figure 1 shows that the PBR-based fitness function has not been able to resolve the structure 
and did not achieve uniform intensity at the target pixels for complex structures such as alphabet letters A and O. 
A uniform intensity distribution over all pixels at the target location is essential to resolve complex structures. In 
the experiment, the PBR-based fitness function is not able to construct a complex structure such as the alphabet 
letter A and O (see Fig. 2). However, the R-squared metric-based fitness function outperforms PBR in terms of 
constructing the structures by enhancing the resolution and structural uniformity. The insets of Figs. 1 and 2 
show the images of the constructed structures A, O and histograms of the intensity distribution in the target area 
for both the R-squared metric and the PBR fitness functions, respectively. The R-squared metric is a measure of 
variance between two data  sets57,58, and it has been used frequently in machine  learning59.

R-Squared metric and regression model analysis
Regression analysis is a statistical method that estimates the relationship between dependent (reference image 
(I)) and independent (obtained image (S))  variables58, where S =

{

Sj | j = 1, 2, . . . n
}

 represents the intensity of 
pixels of the obtained image and I =

{

Ij | j = 1, 2, . . . n
}

 represents the intensity of pixels of the reference image 
(I). A non-linear regression model f =

{

fj | j = 1, 2, . . . n
}

 is formulated with the pixels of the obtained camera 
image and the pixels of the reference image as;
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Figure 1.  Reconstructed light structures using R-squared and PBR fitness functions. (a) Simulation results for 
reconstructed structures A and O using PBR (left column) and R-squared (right column) fitness functions. (b) 
Experimental results for reconstructed structures A and O using PBR (left column) and R-squared (left column) 
fitness functions. All the experimental results have a scale bar of 10 µm.

Figure 2.  Histogram comparison between R-squared and PBR fitness functions. Simulation and experimental 
results show reconstructed light structures A and O using PBR and R-squared fitness function and their 
intensity histogram. The green bars and pink bars represent the target pixels and background pixels, respectively. 
The histograms clearly show that the intensity of target pixels (green bars) and background pixels (pink bars) has 
been overlapped and distributed over larger intensity values span while using the PBR fitness function. However, 
while using the R-squared fitness function, the intensity of target pixels (green bars) and background pixels 
(pink bars) has been separated or resolved clearly with a narrower intensity distribution.
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where b0 , b1 represent the linear parameters and b2 , b3 represent the higher order parameters in the regression 
model. However, for simplicity, we have restricted it within the linear regression. The linear regression model 
is expressed as follows;

Figure 3 shows the linear regression for the R-squared fitness function. Figure 3a represents the initial linear 
fit of the reference image (I) and obtained image (S) before starting optimization. Whereas, Fig. 3b shows the 
optimized linear fit of the reference image (I) and obtained image (S) after 700 iterations. Similarly, higher-order 
regression can also be analyzed further with a suitable non-linear regression model.

Further, the linear regression model described above is used to formulate the R-squared fitness function as 
follows;

This R-squared coefficient value lies between 0 and 1. It quantifies the relationship between the movement of 
a dependent variable and an independent variable. Its coefficient value 1 refers to a perfect match between the 
two sets of data, and the value close to 0 represents no linear relationship between the two data  sets57. Detailed 
analyses of structural uniformity, resolution enhancement, and background noise suppression in the presence of 
varying noise percentages for the PBR and R-squared fitness function are shown in Figs. S3–S4 (Supplementary 
material).

Cross-correlation metric to quantify structural light
A mathematical function or metric is essential to quantify the uniformity of the constructed light structure and 
its similarity test with respect to a reference image. For this, the cross-power spectrum has been implemented to 
estimate the cross-correlation metric (CCM) using the obtained image (S) and the reference image (I).

Cross-power spectrum analysis is a technique commonly used in signal processing to quantify the similarity 
between two signals or  images60. It compares the power spectra of two signals or images to identify common 
frequency components to measure the similarity. The cross-power spectrum is calculated by multiplying the 
complex conjugate of the Fourier transform S(u, v) of the obtained image S(x, y) by the Fourier transform I(u, v) 
of the reference image I(x, y). This gives a complex-valued cross-power spectrum, which is further normalized 
by dividing it by the magnitude of the cross-power spectrum. The normalized cross-power spectrum CP(u, v) of 
the obtained image S(x, y) and the reference image I(x, y) is calculated as follows;

(1)fj = b0 + b1Sj + b2Sj
2 + b3Sj

3 + · · · + · · ·
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Figure 3.  Progression of R-squared linear fit in the simulation after 700 generations. (a) Linear fit (f) of 
obtained image (S) vs. reference image (I) before optimization, which clearly shows a poor linear fit (orange 
line). (b) Linear fit (f) of the obtained image (S) vs. reference image (I) after optimization. For reference image 
(I) on Y-axis, the intensity values 0 and 1 represent the background and target pixel intensities, respectively.
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Similarly, for normalization, the power spectrum RP(u, v) of the reference image (I) is calculated by multiply-
ing its Fourier transform with its complex conjugate and, then normalizing it as;

The CP(u, v) and RP(u, v) are in the frequency domain. To visualize and interpret the results in the spatial 
domain, the inverse Fourier transform converts the spectra back into the spatial domain CP(x, y) and RP(x, y) . 
Finally, a cross-correlation metric (CCM) is calculated by dividing the maximum value of 

∣

∣Cp(x, y)
∣

∣)  with the 
maximum value of 

∣

∣Rp(x, y)
∣

∣ . The final cross-correlation metric (CCM) is written as follows;

The cross-correlation metric measures the similarity of two images. If the metric variable is close to 1, the 
images are similar, while if it is close to 0, they are significantly  different61. Figure 4 shows the analysis of the 
metric value using simulation and experimental data over 700 generations for both the PBR and R-squared fit-
ness functions.

Characterization of experimental setup and formation of 2D/3D complex structures through 
biological tissue media
The detailed schematic of the experimental system-design with various hardware building blocks, tissue sam-
ples for the experiment, and the constructed 3D volume image is shown in Fig. 5. The system design consists 
of a master controller, i.e., the FLC-SLM hardware driver. This hardware driver is connected further with the 
responders, i.e., the FLC-SLM’s microdisplay unit and the arbitrary function generator, which triggers both the 
cameras. The light from a He–Ne laser of wavelength 633 nm passes through a spatial filter and falls on the SLM. 
Subsequently, the wavefront modulated by the FLC-SLM propagates through a series of optical components and 
falls on the scattering media. To facilitate the formation of multiple complex hetero-structures simultaneously at 
different depths in the 3D volume, a beam splitter is used to split the speckle field into two parts. These two parts 
are imaged by cameras placed at two different depths. Camera-1 is placed at distance D1 , which has the option 
of moving back and forth. Camera-2 is placed at distance D2 to visualize the 3D volume. Furthermore, a set of 

(4)CP(u, v) =
I∗(u, v) · S(u, v)
|I∗(u, v) · S(u, v)|

(5)RP(u, v) =
I∗(u, v) · I(u, v)
|I∗(u, v) · I(u, v)|

(6)Cross-correlation metric = max(
∣

∣Cp(x, y)
∣

∣)

max(
∣

∣Rp(x, y)
∣

∣)

Figure 4.  Cross-correlation matric plots for the construction of structures A and O. Evolution of cross-
correlation matric with generations for R-squared and PBR fitness functions, (a) simulation and (b) experiment.
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sequential hardware operation instructions are sent from the personal computer to the FLC-SLM display head 
and the cameras for acquiring the output speckle field generated by the tissue sample. The working principle 
of the FLC-SLM is shown briefly in Fig. 5a and a more detailed overview is shown in Fig. S14 (Supplementary 
material).

The experiment has been performed with the developed system, where both the PBR and the R-squared 
fitness function have been tested to focus the complex 2D as well as 3D structures. A commercial 120-grit GG 
diffuser has been used as the scattering medium. Chicken tissue samples of thickness 307 µm and 812 µm have 
been used for demonstration.

Formation of the complex patterns through the GG diffuser is shown in Fig. 1. It has been observed that 
standard PBR is not able to focus complex structures such as the alphabet letters A and O clearly, while the 
R-squared fitness function is able to form well-resolved A and O through a highly scattering 120-grit GG diffuser. 
The word ‘IISER’ has also been constructed through the 120-grit GG diffuser to demonstrate a more complex 2D 

Figure 5.  Schematic of the experimental setup. Where, M1 and M2 : mirrors 1 and 2. L1 , L2 , L3 and L4 : lenses 1, 
2, 3 and 4. PBS: polarising beamsplitter, BS:50:50 beamsplitter. Cam-1 and Cam-2: Camera-1 and Camera-2, 
placed at distances D1 and D2 from the 50:50 BS respectively. Furthermore, (a) Working principle of the binary 
phase based FLC-SLM, (b) Illustration for multiple complex hetero-structures formation simultaneously in 3D 
space using a single optimized phase mask, (c) Experimental results for 3D complex hetero-structure formation 
through chicken tissue with an optimized single phase-mask.
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structure formation. The result is shown in Fig. S1 (Supplementary material), where it has been observed that the 
R-squared fitness function efficiently forms the structure IISER, while PBR is not able to form it. Furthermore, 
a plus sign structure consisting four gradient grayscale based target pixels along each arm and one grayscale 
based background pixels has also been constructed through 120-grit GG diffuser. The results for plus structure 
are shown in Fig. 6, where it has been observed that the R-squared fitness function is able to construct gradient 
contrast along each arm of plus sign structure in both simulation and experiment, while PBR is not able to form 
it. It has also been observed that the lower value contrast, which is near the background intensity, spreads all 
around the structure while PBR fitness function is considered.

The stability of the experimental setup has been demonstrated with chicken tissue samples of thickness 
307 µm and 812 µm . Figure 7 shows the formation of complex structures through chicken tissues for the standard 

Figure 6.  Formation of the ‘plus’ sign structure consisting of gradient grayscale values. (a) Reference ‘plus’ 
sign structure image consisting of four different grayscale based target pixels and one grayscale level based 
background pixel. (b) Simulation results for the ‘plus’ sign structure reconstructed using PBR and R-squared 
fitness functions. (c) Experimental results for the ‘plus’ sign structure reconstructed using PBR and R-squared 
fitness functions.

Figure 7.  Experimental results for complex structure formation in 2D space using chicken tissues of different 
thicknesses. Comparison between reconstructed alphabet structures A and O using the PBR and R-squared 
fitness functions with chicken tissue of thickness 307 µm and 812 µm . All images in this figure have the same 
scale bar (10 µm).
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PBR and the R-squared fitness function. Similar to the GG diffuser results, the R-squared fitness function out-
performs the standard PBR in terms of advancing the resolution, structural uniformity, and background sup-
pression for complex structure formation through chicken tissue. As the thickness of the tissue sample has been 
increased to 815 µm , still R-squared fitness function has shown well-resolved structure formation compared to 
the standard PBR.

Simultaneous formation of multiple complex hetero-structures in 3D space through tissue
In this work, an experimental system with dual cameras has been proposed (Figs. 5, 10), which simultaneously 
facilitates the construction of multiple complex structures in a 3D space (Fig. 8). The proposed setup is able to 
construct structures in a much larger 3D volume compared to the volume covered with angular range and tilt 
direction of the optical memory effect. With the R-squared fitness function and the experimental setup, mul-
tiple complex structures have been constructed simultaneously at different planes of 3D volume by displaying 
an optimized single phase-mask on the FLC-SLM. A fresh chicken tissue of thickness 565 µm has been used 
as a scattering medium. A phase mask has been optimized using the R-squared fitness function in the genetic 
 algorithm35 and displayed on the FLC-SLM to form complex structures in multiple planes in 3D space. Figure 8 
shows the 3D volume slice images of the formation of A and O structures through chicken tissue using a single 
optimized phase mask. The axial and lateral distances between the two complex objects have been kept at 1.62 mm 
and 266 µm , respectively. The resolution of the system has been estimated with the objective lens (10× , 0.25 NA) 
at wavelength 633 nm and found to be 88.15 ± 2µm . The detailed system resolution and more complex volume 
imaging with multiple images in 3D volume are shown in the Supporting information (Section S4.3, Fig. S16).

Conclusion and perspectives
In the field of wavefront shaping, it is crucial to pursue objectives such as increasing the efficiency of light trans-
mission through turbid media, enhancing resolution, developing structural light uniformly, forming gradient 
contrast in light structures, and achieving a precise focus that allows 2D or 3D light structure formation through 
scattering media. Our experimental setup demonstrates notable advancements in resolution and structural uni-
formity, which facilitates the formation of multiple light structures within a 3D volume through the scattering 
media (Fig. 8).

A data regression model based R-squared fitness function has been introduced into the algorithm and imple-
mented in the FLC-SLM based iterative binary phase modulation system (Fig. 3). The prototype system with 
R-Squared fitness function has shown remarkable performance in improving structural uniformity and resolution 
(Figs. 1, 2, 6, 7,  8). The developed cost-effective and calibration-free (wavelength independent phase calibration) 
iterative wavefront shaping system along with R-squared fitness function has been validated with a 120-grit GG 
diffuser along with fresh ex-vivo chicken tissue samples of thickness 307 µm and 812 µm (Figs. 7, 8). A cross-
correlation based metric (CCM) has also been analyzed to quantify the structural similarity of the constructed 
light structures. Simulation results show that R-squared fitness function has achieved up to 81.4% CCM value 
where PBR has achieved below 30.1% CCM value for light structure A (Fig. 4). Similarly, experimental results 
show that R-squared has been able to achieve up to 33% CCM value whereas PBR has achieved only 11% for 
light structure A (Fig. 4). The standard deviation analysis shows that R-squared fitness function has achieved 
substantial improvement in the uniformity of intensity at target and background pixels compared to the PBR 
fitness function (Figs. S10, S11, Supplementary material). The fitness value for PBR has shown progression 
with the generation, but it failed to construct the structure, whereas R-squared fitness function has shown 
well-resolved structure (Fig. 9). The proposed method has demonstrated robust noise tolerance while varying 

Figure 8.  Experimental results for the simultaneous formation of multiple hetero-structures in 3D space. Figure 
shows the slices of 3D volume for constructed complex structures through chicken tissue, where alphabets A 
and O structures are formed in different planes. The axial distance between highly resolved structures O ( 3rd 
plane) and A ( 9th plane) is 1.62 mm , and the lateral distance is 266 µm.



9

Vol.:(0123456789)

Scientific Reports |        (2023) 13:16951  | https://doi.org/10.1038/s41598-023-42087-0

www.nature.com/scientificreports/

Figure 9.  R-squared and PBR fitness plots for the construction of structures O. (a) Simulation results for the 
progression of fitness values over generations for both R-squared and PBR fitness functions, (b) experimental 
results for the progression of fitness values over generations for both R-squared and PBR fitness functions.

Figure 10.  3D schematic of experimental setup. Components: 1. He–Ne laser, 2. Mirrors M1 and M2 , 3. Spatial 
filter, 4. Polarizing beam splitter (PBS), 5. FLC-SLM, 6a–6b. 4F setup, 7. 1st objective, 8. Scattering media, 9. 2nd 
objective, 10. Lens ( f = 50mm ), 11. 50:50 Beam splitter, 12. CMOS camera-1, 13. CMOS camera-2, 14. PC, and 
15. Arbitrary function generator.
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the noise percentage from 10 to 100%, and the results are shown in Figs. S2, S3 (Supplementary material). The 
impact of  input modes (N) variation has also been  analyzed for the PBR and R-squared fitness functions in 
both the simulation and experiment. Detailed results for the input modes analysis are shown in Figs. S4–S9. The 
designed system with the dual cameras and R-squared fitness function has constructed high-resolution, non-
similar multiple complex structures (A/O shapes) simultaneously at different depths in 3D using an optimized 
single phase-mask. This work may find potential applications in 3D confocal microscopy, 3D photoacoustic 
microscopy, photolithography, structured light illumination microscopy, 3D holography, and photothermal 
therapy. However, the efficiency of the SLM decreases with increasing the number of complex structures as a 
result of the limited availability of optimized input modes.

The other advanced functionalities of the FLC-SLM, including RGB data transfer using three color channels 
and its wavelength-independent phase calibration, provide an advantage in designing new experiments. The fast 
pixel-switching time ( 40µs ) and a high refresh rate of 4.5 kHz53 make the FLC-SLM suitable for applications 
such as tissue imaging, live cell imaging, and photoacoustic microscopy. Despite advancements in algorithms and 
SLM refresh rate, the operating speed of the entire system is bottlenecked by the slow data transfer rate between 
the camera and the PC. However, the delay in data transfer from the camera to the PC can be reduced drastically 
using a multichannel data transfer protocol like CoaXPress. A faster acquisition speed will further reduce the 
number of iterations required to reach convergence, as it will reduce the noises generated due to beam shifts, 
temperature fluctuations, and the camera sensor’s response. These advantages and cost-effectiveness make the 
system more suitable for designing various complex wavefront shaping experiments.

Methods
Computational model
The output complex field E(d′

) obtained through a scattering media of transmission function T(d, d′
) , can be 

written as E(d′
)=
∑

d T(d, d
′
)E(d) . Where the incoming light field is denoted by E(d). A transmission matrix 

(T) of dimensions M × N  models wavefront scattering through disordered media. Here, T is generated by a 
complex Gaussian random matrix. The equation for the calculation of the output modes M can be written  as16,25;

where An and φn are the amplitude and phase of an input mode (n), respectively, and tmn is a particular element of 
the transmission matrix T. The amplitude of the complex field is chosen as An = 1/

√
N  . Therefore, the intensity 

( Im ) at a particular output mode at the camera with added noise can be written as;

Here, a noise ( δ ) is added to mimic the experimental environment. Ŵ represents the percentage of added noise 
with respect to the initial average intensity < Io > . N(µT , σT ) represents a random number generated from a 
normal distribution with mean ( µT ) and standard deviation ( σT ). The parameters for GA are set according to 
the optimized values described in the  literature15,37. In feedback algorithms, especially for GA, intensity based 
fitness function is considered as ITi /I

B̄
initial , where ITi  is the intensity at target pixels for ith generation and IB̄initial 

is the initial average intensity at the background  pixels16,32. Whereas, PBR based fitness function is considered as 
ITi /I

B̄
i  , where ITi  is the intensity at target pixels for ith generation and IB̄i  is the average intensity at the background 

pixels for ith  generation31,37. However, this article has considered the R-squared metric as a fitness function, which 
has been discussed thoroughly in the first part of the results and discussion section.

The simulation model has been designed in the Python 3 programming language and NumPy has been 
used to process the matrices. As per the input mode analysis, an optimized matrix of dimensions 250× 250 has 
been considered as the input modes matrix that corresponds to total N = 62, 500 input modes in the simula-
tion (Figs. S4–S7). On the output side, a matrix of dimensions 50×50 has been considered as the output mode 
matrix that provides M = 2500 output modes ( �Eout ). The transmission matrix (T) of dimensions M × N has been 
generated using a complex Gaussian random distribution ( µT = 0 and σT = 0.1 ) to mimic light scattering. In 
addition, a 30% noise δ has been added to the output mode intensity to simulate the experimental conditions. In 
the experiment, an optimized input modes matrix of dimensions 320× 256 has been considered (Figs. S8, S9). 
Furthermore, a matrix of dimensions 50×50 has been considered as the output mode matrix in the experiment.

In the beginning of the algorithm, a population (P) of random binary phase masks has been generated using a 
discrete uniform distribution of values 0 and 255, which correspond to the 0 and π phase, respectively. A popula-
tion size of 200 has been chosen as it provides a good trade-off between speed and enhancement. Two parents 
�Pi and �Pj have been selected with a biased probability toward a higher fitness value. The descending order of the 
phase masks has been ranked according to their fitness value, which was later used for the selection of parents. 
The crossover rate ( rc ) has been kept at the standard value of 50%. The initial mutation rate has been fixed at 1%, 
which decays exponentially with a constant decay rate ( �)15,37.

Experimental system design with FLC-SLM
A detailed schematic of experimental setup is shown in Figs. 5 and 10. A 12 mW He–Ne laser (633 nm, Newport), 
consisting of vertical linearly polarized light with a polarization ratio of 500:1, is used in the built system. The 
alignment of the laser beam has been done with the help of two flat mirrors M1 and M2 . Along the path, a spatial 
filter system (Thorlabs, KT311/M) is placed consisting of a pinhole ( φ = 10µm) and objective (20× , Numerical 

(7)Em =
N
∑

n

tmnAne
iφn

(8)Im = 1

N

∣

∣

∣

∣

N
∑

n

tmne
iφn

∣

∣

∣

∣

2

+ δ where, δ = Ŵ%

100
×N(µT , σT ) < Io >
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Aperture (NA) = 0.40) for eliminating the higher-order noise from the beam. Thereafter, the spatially filtered 
diverging beam is collimated by a lens L1 (f = 250mm) to get a pure flat beam profile on the surface of FLC-SLM. 
A polarising beam splitter (PBS) and FLC-SLM (ForthDD, SXGA-R5) are used for the wavefront modulation. 
The modulated wavefront is passed through a 4F setup and enters into an objective (10× , NA = 0.25 ) which 
transmits the wavefront through the scattering media. The power of the incident beam before entering into the 
tissue sample has been measured and found to be 0.74 mW. A second objective (10× , NA = 0.25 ) is placed 
behind the scattering media. For the simultaneous construction of multiple complex structures in 3D volume, 
the CMOS camera-1 (Thorlabs, DCC3260C) and CMOS camera-2 (Basler acA800-510uc) are placed at distance 
D1 and D2 , respectively, to acquire images at different depths in 3D space and make the feedback signals for the 
algorithm. The CMOS camera-1 has the option to move back and forth to construct multiple complex structures 
at more than two different depths.

The signal from the PC to the SLM driver module is sent via a video card. Each image is a combination of 24 
bit-planes, i.e., 24-bit information per pixel and 8-bit per channel (RGB). The hardware module of the SLM splits 
the RGB signal into 24 single-bit black-and-white images. These 24 single-bit images are sent and displayed on the 
SLM screen sequentially. In conclusion, a total of 24× 60 = 1440 binary images are displayed on the SLM screen 
in 1s with these setting parameters. Each bit plane is displayed on the SLM screen for a duration of 219.02 µs . 
The hardware driver module of the SLM is programmed to generate an output electrical signal which becomes 
high or low in synchronization with the display of each bit plane. This signal is passed to the function genera-
tor to generate a new signal with +3V to trigger the two CMOS cameras. The other advanced features of the 
FLC-SLM, such as three color channels, can be utilized either collectively or individually. The two cameras have 
been triggered using the function generator to construct multiple simultaneous complex structures in 3D space.

Preparation of chicken tissue samples for the experiment
The experiment was conducted without the use of live animals. A part of fresh skinless chicken (weight = 2.62 kg , 
age = 10 weeks, measured density = 0.92 g/cm3 ) was procured from the local market. The chicken thigh was 
kept in the freezer for 4 hours at a constant temperature of −14 ◦C to facilitate the slicing. A sterilized surgical 
scalpel was used to section the chicken tissue into multiple slices. The measured thickness of the sliced chicken 
tissues has been found to be 307 and 812 µm for 2D structure formation, and 565 µm for 3D multiple structures 
formation. The sliced chicken muscle was sandwiched between two microscope glass cover-slips. A drop of 
Glycerol was used to preserve the sample and prevent it from dehydration.

Data availability
The original contributions presented in the study are included in the article and the Supplementary Material; 
further inquiries can be directed to the corresponding author.

Received: 1 June 2023; Accepted: 5 September 2023

References
 1. Vellekoop, I. M., Lagendijk, A. & Mosk, A. P. Exploiting disorder for perfect focusing. Nat. Photon. 4, 320–322. https:// doi. org/ 10. 

1038/ nphot on. 2010.3 (2010).
 2. Berto, P. et al. Tunable and free-form planar optics. Nat. Photon. 13, 649–656. https:// doi. org/ 10. 1038/ s41566- 019- 0486-3 (2019).
 3. Wang, D., Sahoo, S. K., Zhu, X., Adamo, G. & Dang, C. Non-invasive super-resolution imaging through dynamic scattering media. 

Nat. Commun. 12, 3150. https:// doi. org/ 10. 1038/ s41467- 021- 23421-4 (2021).
 4. Mosk, A. P., Lagendijk, A., Lerosey, G. & Fink, M. Controlling waves in space and time for imaging and focusing in complex media. 

Nat. Photon. 6, 283–292. https:// doi. org/ 10. 1038/ nphot on. 2012. 88 (2012).
 5. Ojambati, O. S. Optical energy on demand. Nat. Phys. 18, 227–228. https:// doi. org/ 10. 1038/ s41567- 022- 01509-y (2022).
 6. Luo, Y., Yan, S., Li, H., Lai, P. & Zheng, Y. Focusing light through scattering media by reinforced hybrid algorithms. APL Photon. 

5, 016109. https:// doi. org/ 10. 1063/1. 51311 81 (2020).
 7. Boniface, A., Dong, J. & Gigan, S. Non-invasive focusing and imaging in scattering media with a fluorescence-based transmission 

matrix. Nat. Commun. 11, 6154. https:// doi. org/ 10. 1038/ s41467- 020- 19696-8 (2020).
 8. Conkey, D. B. et al. Super-resolution photoacoustic imaging through a scattering wall. Nat. Commun. 6, 7902. https:// doi. org/ 10. 

1038/ ncomm s8902 (2015).
 9. Arias, A. & Artal, P. Wavefront-shaping-based correction of optically simulated cataracts. Optica 7, 22–27. https:// doi. org/ 10. 1364/ 

OPTICA. 7. 000022 (2020).
 10. Liu, G. et al. Combination of structured illumination microscopy with hyperspectral imaging for cell analysis. Anal. Chem. 93, 

10056–10064. https:// doi. org/ 10. 1021/ acs. analc hem. 1c006 60 (2021).
 11. Vellekoop, I. M. & Aegerter, C. M. Scattered light fluorescence microscopy: Imaging through turbid layers. Opt. Lett. 35, 1245–1247. 

https:// doi. org/ 10. 1364/ OL. 35. 001245 (2010).
 12. Wilt, B. A. et al. Advances in light microscopy for neuroscience. Annu. Rev. Neurosci. 32, 435–506. https:// doi. org/ 10. 1146/ annur 

ev. neuro. 051508. 135540 (2009).
 13. Dougherty, T. J. et al. Photodynamic Therapy. J. Natl Cancer Inst. 90, 889–905. https:// doi. org/ 10. 1093/ jnci/ 90. 12. 889 (1998).
 14. Čižmár, T., Mazilu, M. & Dholakia, K. In situ wavefront correction and its application to micromanipulation. Nat. Photon. 4, 

388–394. https:// doi. org/ 10. 1038/ nphot on. 2010. 85 (2010).
 15. Vellekoop, I. M. Feedback-based wavefront shaping. Opt. Express 23, 12189–12206. https:// doi. org/ 10. 1364/ OE. 23. 012189 (2015).
 16. Vellekoop, I. M. & Mosk, A. P. Focusing coherent light through opaque strongly scattering media. Opt. Lett. 32, 2309–2311. https:// 

doi. org/ 10. 1364/ OL. 32. 002309 (2007).
 17. Vellekoop, I. M. & Mosk, A. P. Phase control algorithms for focusing light through turbid media. Opt. Commun. 281, 3071–3080 

(2008).
 18. Popoff, S. M. et al. Measuring the transmission matrix in optics: An approach to the study and control of light propagation in 

disordered media. Phys. Rev. Lett. 104, 100601. https:// doi. org/ 10. 1103/ PhysR evLett. 104. 100601 (2010).
 19. Popoff, S., Lerosey, G., Fink, M., Boccara, A. C. & Gigan, S. Image transmission through an opaque material. Nat. Commun. 1, 81. 

https:// doi. org/ 10. 1038/ ncomm s1078 (2010).

https://doi.org/10.1038/nphoton.2010.3
https://doi.org/10.1038/nphoton.2010.3
https://doi.org/10.1038/s41566-019-0486-3
https://doi.org/10.1038/s41467-021-23421-4
https://doi.org/10.1038/nphoton.2012.88
https://doi.org/10.1038/s41567-022-01509-y
https://doi.org/10.1063/1.5131181
https://doi.org/10.1038/s41467-020-19696-8
https://doi.org/10.1038/ncomms8902
https://doi.org/10.1038/ncomms8902
https://doi.org/10.1364/OPTICA.7.000022
https://doi.org/10.1364/OPTICA.7.000022
https://doi.org/10.1021/acs.analchem.1c00660
https://doi.org/10.1364/OL.35.001245
https://doi.org/10.1146/annurev.neuro.051508.135540
https://doi.org/10.1146/annurev.neuro.051508.135540
https://doi.org/10.1093/jnci/90.12.889
https://doi.org/10.1038/nphoton.2010.85
https://doi.org/10.1364/OE.23.012189
https://doi.org/10.1364/OL.32.002309
https://doi.org/10.1364/OL.32.002309
https://doi.org/10.1103/PhysRevLett.104.100601
https://doi.org/10.1038/ncomms1078


12

Vol:.(1234567890)

Scientific Reports |        (2023) 13:16951  | https://doi.org/10.1038/s41598-023-42087-0

www.nature.com/scientificreports/

 20. Cui, M. Parallel wavefront optimization method for focusing light through random scattering media. Opt. Lett. 36, 870–872. 
https:// doi. org/ 10. 1364/ OL. 36. 000870 (2011).

 21. Stockbridge, C. et al. Focusing through dynamic scattering media. Opt. Express 20, 15086–15092. https:// doi. org/ 10. 1364/ OE. 20. 
015086 (2012).

 22. Yaqoob, Z., Psaltis, D., Feld, M. S. & Yang, C. Optical phase conjugation for turbidity suppression in biological samples. Nat. Photon. 
2, 110–115. https:// doi. org/ 10. 1038/ nphot on. 2007. 297 (2008).

 23. Cui, M. & Yang, C. Implementation of a digital optical phase conjugation system and its application to study the robustness of 
turbidity suppression by phase conjugation. Opt. Express 18, 3444–3455. https:// doi. org/ 10. 1364/ OE. 18. 003444 (2010).

 24. Hsieh, C.-L., Pu, Y., Grange, R. & Psaltis, D. Digital phase conjugation of second harmonic radiation emitted by nanoparticles in 
turbid media. Opt. Express 18, 12283–12290. https:// doi. org/ 10. 1364/ OE. 18. 012283 (2010).

 25. Conkey, D. B., Brown, A. N., Caravaca-Aguirre, A. M. & Piestun, R. Genetic algorithm optimization for focusing through turbid 
media in noisy environments. Opt. Express 20, 4840–4849. https:// doi. org/ 10. 1364/ OE. 20. 004840 (2012).

 26. Anderson, B. R., Price, P., Gunawidjaja, R. & Eilers, H. Microgenetic optimization algorithm for optimal wavefront shaping. Appl. 
Opt. 54, 1485–1491. https:// doi. org/ 10. 1364/ AO. 54. 001485 (2015).

 27. Fang, L., Zhang, X., Zuo, H. & Pang, L. Focusing light through random scattering media by four-element division algorithm. Opt. 
Commun. 407, 301–310. https:// doi. org/ 10. 1016/j. optcom. 2017. 08. 062 (2018).

 28. Conkey, D. B. & Piestun, R. Color image projection through a strongly scattering wall. Opt. Express 20, 27312–27318. https:// doi. 
org/ 10. 1364/ OE. 20. 027312 (2012).

 29. Zhang, B. et al. Focusing light through strongly scattering media using genetic algorithm with SBR discriminant. J. Opt. 20, 025601. 
https:// doi. org/ 10. 1088/ 2040- 8986/ aa9f91 (2017).

 30. Li, R. et al. Interleaved segment correction achieves higher improvement factors in using genetic algorithm to optimize light 
focusing through scattering media. J. Opt. 19, 105602. https:// doi. org/ 10. 1088/ 2040- 8986/ aa84dc (2017).

 31. Zhang, X. & Kner, P. Binary wavefront optimization using a genetic algorithm. J. Opt. 16, 125704. https:// doi. org/ 10. 1088/ 2040- 
8978/ 16/ 12/ 125704 (2014).

 32. Wu, D., Luo, J., Li, Z. & Shen, Y. A thorough study on genetic algorithms in feedback-based wavefront shaping. J. Innov. Opt. Health 
Sci. 12, 1942004. https:// doi. org/ 10. 1142/ S1793 54581 94200 45 (2019).

 33. Kumar, A., Thakur, S. & Biswas, S. Weighted mutation assisted genetic algorithm focuses light tightly through scattering media. 
In 2022 Workshop on Recent Advances in Photonics (WRAP), 1–2, https:// doi. org/ 10. 1109/ WRAP5 4064. 2022. 97582 38 (2022).

 34. Kumar, A., Thakur, S. & Biswas, S. K. Simultaneous control of 3D volume speckle field and 3D holography through biological tis-
sue. In Adaptive Optics and Wavefront Control for Biological Systems IX Vol. 12388 (eds Bifano, T. G. et al.) 1238806 (International 
Society for Optics and Photonics (SPIE), 2023). https:// doi. org/ 10. 1117/ 12. 26506 00.

 35. Tehrani, K. F., Xu, J., Zhang, Y., Shen, P. & Kner, P. Adaptive optics stochastic optical reconstruction microscopy (ao-storm) using 
a genetic algorithm. Opt. Express 23, 13677–13692. https:// doi. org/ 10. 1364/ OE. 23. 013677 (2015).

 36. Yang, P., Xu, B., Jiang, W. & Chen, S. A genetic algorithm used in a 61-element adaptive optical system. Front. Optoelectron. China 
1, 263–267. https:// doi. org/ 10. 1007/ s12200- 008- 0068-3 (2008).

 37. Feng, Q., Zhang, B., Liu, Z., Lin, C. & Ding, Y. Research on intelligent algorithms for amplitude optimization of wavefront shaping. 
Appl. Opt. 56, 3240–3244. https:// doi. org/ 10. 1364/ AO. 56. 003240 (2017).

 38. He, H., Guan, Y. & Zhou, J. Image restoration through thin turbid layers by correlation with a known object. Opt. Express 21, 
12539–12545. https:// doi. org/ 10. 1364/ OE. 21. 012539 (2013).

 39. Wan, L., Chen, Z., Huang, H. & Pu, J. Focusing light into desired patterns through turbid media by feedback-based wavefront 
shaping. Appl. Phys. B 122, 204. https:// doi. org/ 10. 1007/ s00340- 016- 6466-0 (2016).

 40. Yu, H., Lee, K., Park, J. & Park, Y. Ultrahigh-definition dynamic 3d holographic display by active control of volume speckle fields. 
Nat. Photon. 11, 186–192. https:// doi. org/ 10. 1038/ nphot on. 2016. 272 (2017).

 41. Zhuang, H., He, H., Xie, X. & Zhou, J. High speed color imaging through scattering media with a large field of view. Sci. Rep. 6, 
32696. https:// doi. org/ 10. 1038/ srep3 2696 (2016).

 42. Zhao, Q. et al. 3d focusing through highly scattering media using psf modulation. Appl. Phys. Lett. 113, 191104. https:// doi. org/ 
10. 1063/1. 50607 10 (2018).

 43. Tran, V., Sahoo, S. K. & Dang, C. Fast 3d movement of a laser focusing spot behind scattering media by utilizing optical memory 
effect and optical conjugate planes. Sci. Rep. 9, 19507. https:// doi. org/ 10. 1038/ s41598- 019- 56214-3 (2019).

 44. Cao, H. W. Customizing optical memory effect of scattering media for imaging applications. In Optical and Quantum Sensing and 
Precision Metrology II Vol. PC12016 (eds Scheuer, J. & Shahriar, S. M.) PC1201624 (International Society for Optics and Photonics 
(SPIE), 2022). https:// doi. org/ 10. 1117/ 12. 26154 35.

 45. Lee, B., Kim, D., Lee, S., Chen, C. & Lee, B. High-contrast, speckle-free, true 3d holography via binary cgh optimization. Sci. Rep. 
12, 2811. https:// doi. org/ 10. 1038/ s41598- 022- 06405-2 (2022).

 46. Conkey, D. B., Caravaca-Aguirre, A. M. & Piestun, R. High-speed scattering medium characterization with application to focusing 
light through turbid media. Opt. Express 20, 1733–1740. https:// doi. org/ 10. 1364/ OE. 20. 001733 (2012).

 47. Akbulut, D., Huisman, T. J., van Putten, E. G., Vos, W. L. & Mosk, A. P. Focusing light through random photonic media by binary 
amplitude modulation. Opt. Express 19, 4017–4029. https:// doi. org/ 10. 1364/ OE. 19. 004017 (2011).

 48. Wang, D. et al. Focusing through dynamic tissue with millisecond digital optical phase conjugation. Optica 2, 728–735. https:// 
doi. org/ 10. 1364/ OPTICA. 2. 000728 (2015).

 49. Tay, J. W., Liang, J. & Wang, L. V. Amplitude-masked photoacoustic wavefront shaping and application in flowmetry. Opt. Lett. 39, 
5499–5502. https:// doi. org/ 10. 1364/ OL. 39. 005499 (2014).

 50. Zhao, Y., He, Q., Li, S. & Yang, J. Gradient-assisted focusing light through scattering media. Opt. Lett. 46, 1518–1521. https:// doi. 
org/ 10. 1364/ OL. 417606 (2021).

 51. Liu, Y., Ma, C., Shen, Y., Shi, J. & Wang, L. V. Focusing light inside dynamic scattering media with millisecond digital optical phase 
conjugation. Optica 4, 280–288. https:// doi. org/ 10. 1364/ OPTICA. 4. 000280 (2017).

 52. Vellekoop, I. M., Cui, M. & Yang, C. Digital optical phase conjugation of fluorescence in turbid tissue. Appl. Phys. Lett. 101, 081108. 
https:// doi. org/ 10. 1063/1. 47457 75 (2012).

 53. Park, C., Lee, K., Baek, Y. & Park, Y. Low-coherence optical diffraction tomography using a ferroelectric liquid crystal spatial light 
modulator. Opt. Express 28, 39649–39659. https:// doi. org/ 10. 1364/ OE. 405418 (2020).

 54. Yang, Z. et al. Light sheet microscopy with acoustic sample confinement. Nat. Commun. 10, 669. https:// doi. org/ 10. 1038/ s41467- 
019- 08514-5 (2019).

 55. Shi, Y., Daugird, T. A. & Legant, W. R. A quantitative analysis of various patterns applied in lattice light sheet microscopy. Nat. 
Commun. 13, 4607. https:// doi. org/ 10. 1038/ s41467- 022- 32341-w (2022).

 56. Hazan, Y., Levi, A., Nagli, M. & Rosenthal, A. Silicon-photonics acoustic detector for optoacoustic micro-tomography. Nat. Com-
mun. 13, 1488. https:// doi. org/ 10. 1038/ s41467- 022- 29179-7 (2022).

 57. Devore, J. L. Probability and Statistics for Engineering and the Sciences 8th edn. (Richard Stratton, 2012).
 58. Steel, R. G. & Torrie, J. H. Principles and Procedures of Statistics: With Special Reference to the Biological Sciences (McGraw-Hill, 

1960).
 59. Coelho, L. B. et al. Reviewing machine learning of corrosion prediction in a data-oriented perspective. NPJ Mater. Degrad. 6, 8. 

https:// doi. org/ 10. 1038/ s41529- 022- 00218-4 (2022).

https://doi.org/10.1364/OL.36.000870
https://doi.org/10.1364/OE.20.015086
https://doi.org/10.1364/OE.20.015086
https://doi.org/10.1038/nphoton.2007.297
https://doi.org/10.1364/OE.18.003444
https://doi.org/10.1364/OE.18.012283
https://doi.org/10.1364/OE.20.004840
https://doi.org/10.1364/AO.54.001485
https://doi.org/10.1016/j.optcom.2017.08.062
https://doi.org/10.1364/OE.20.027312
https://doi.org/10.1364/OE.20.027312
https://doi.org/10.1088/2040-8986/aa9f91
https://doi.org/10.1088/2040-8986/aa84dc
https://doi.org/10.1088/2040-8978/16/12/125704
https://doi.org/10.1088/2040-8978/16/12/125704
https://doi.org/10.1142/S1793545819420045
https://doi.org/10.1109/WRAP54064.2022.9758238
https://doi.org/10.1117/12.2650600
https://doi.org/10.1364/OE.23.013677
https://doi.org/10.1007/s12200-008-0068-3
https://doi.org/10.1364/AO.56.003240
https://doi.org/10.1364/OE.21.012539
https://doi.org/10.1007/s00340-016-6466-0
https://doi.org/10.1038/nphoton.2016.272
https://doi.org/10.1038/srep32696
https://doi.org/10.1063/1.5060710
https://doi.org/10.1063/1.5060710
https://doi.org/10.1038/s41598-019-56214-3
https://doi.org/10.1117/12.2615435
https://doi.org/10.1038/s41598-022-06405-2
https://doi.org/10.1364/OE.20.001733
https://doi.org/10.1364/OE.19.004017
https://doi.org/10.1364/OPTICA.2.000728
https://doi.org/10.1364/OPTICA.2.000728
https://doi.org/10.1364/OL.39.005499
https://doi.org/10.1364/OL.417606
https://doi.org/10.1364/OL.417606
https://doi.org/10.1364/OPTICA.4.000280
https://doi.org/10.1063/1.4745775
https://doi.org/10.1364/OE.405418
https://doi.org/10.1038/s41467-019-08514-5
https://doi.org/10.1038/s41467-019-08514-5
https://doi.org/10.1038/s41467-022-32341-w
https://doi.org/10.1038/s41467-022-29179-7
https://doi.org/10.1038/s41529-022-00218-4


13

Vol.:(0123456789)

Scientific Reports |        (2023) 13:16951  | https://doi.org/10.1038/s41598-023-42087-0

www.nature.com/scientificreports/

 60. Shynk, J. J. Probability, Random Variables, and Random Processes (Wiley, 2013).
 61. Alan, V. & Oppenheim, R. W. S. Digital Signal Processing (Pearson Education, 2017).

Acknowledgements
The authors are thankful to IISER Mohali startup fund and IMPRINT funding agency for their support.

Author contributions
A.K. designed the experimental setup. A.K. and S.T. performed the experiment and the simulation analysis. S.K.B. 
defined the problem and monitored the progress. All authors wrote and reviewed the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 023- 42087-0.

Correspondence and requests for materials should be addressed to S.K.B.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2023

https://doi.org/10.1038/s41598-023-42087-0
https://doi.org/10.1038/s41598-023-42087-0
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Formation of multiple complex light structures simultaneously in 3D volume using a single binary phase mask
	Results and discussion
	R-Squared metric and regression model analysis
	Cross-correlation metric to quantify structural light
	Characterization of experimental setup and formation of 2D3D complex structures through biological tissue media
	Simultaneous formation of multiple complex hetero-structures in 3D space through tissue

	Conclusion and perspectives
	Methods
	Computational model
	Experimental system design with FLC-SLM
	Preparation of chicken tissue samples for the experiment

	References
	Acknowledgements


