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Predicting sepsis using 
a combination of clinical 
information and molecular immune 
markers sampled in the ambulance
Kedeye Tuerxun 1,2*, Daniel Eklund 1,2, Ulrika Wallgren 3, Katharina Dannenberg 1, 
Dirk Repsilber 1, Robert Kruse 1,2,4, Eva Särndahl 1,2,6 & Lisa Kurland 1,2,5,6

Sepsis is a time dependent condition. Screening tools based on clinical parameters have been shown 
to increase the identification of sepsis. The aim of current study was to evaluate the additional 
predictive value of immunological molecular markers to our previously developed prehospital 
screening tools. This is a prospective cohort study of 551 adult patients with suspected infection in 
the ambulance setting of Stockholm, Sweden between 2017 and 2018. Initially, 74 molecules and 
15 genes related to inflammation were evaluated in a screening cohort of 46 patients with outcome 
sepsis and 50 patients with outcome infection no sepsis. Next, 12 selected molecules, as potentially 
synergistic predictors, were evaluated in combination with our previously developed screening tools 
based on clinical parameters in a prediction cohort (n = 455). Seven different algorithms with nested 
cross-validation were used in the machine learning of the prediction models. Model performances 
were compared using posterior distributions of average area under the receiver operating 
characteristic (ROC) curve (AUC) and difference in AUCs. Model variable importance was assessed by 
permutation of variable values, scoring loss of classification as metric and with model-specific weights 
when applicable. When comparing the screening tools with and without added molecular variables, 
and their interactions, the molecules per se did not increase the predictive values. Prediction models 
based on the molecular variables alone showed a performance in terms of AUCs between 0.65 and 
0.70. Among the molecular variables, IL-1Ra, IL-17A, CCL19, CX3CL1 and TNF were significantly 
higher in septic patients compared to the infection non-sepsis group. Combing immunological 
molecular markers with clinical parameters did not increase the predictive values of the screening 
tools, most likely due to the high multicollinearity of temperature and some of the markers. A group 
of sepsis patients was consistently miss-classified in our prediction models, due to milder symptoms 
as well as lower expression levels of the investigated immune mediators. This indicates a need of 
stratifying septic patients with a priori knowledge of certain clinical and molecular parameters in order 
to improve prediction for early sepsis diagnosis.

Trial registration: NCT03249597. Registered 15 August 2017.

Abbreviations
AUC   Area under the receiver operating characteristic (ROC) curve
CASP1  Caspase 1
CCL  C–C motif chemokine ligand
CT  Cycle threshold
CV  Coefficient of variation
CX3CL  C-X3-C motif ligand
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CXCL  C-X-C motif chemokine ligand
ED  Emergency department
EPAS1  Endothelial PAS domain protein 1
FC  Fold-changes
FDR  False discovery rate (FDR)
GCS  Glasgow Coma Scale
GUSB  Beta-glucuronidase
HGF  Hepatocyte growth factor
HIF1A  Hypoxia-inducible factor 1-alpha
HLA-DRA  Major histocompatibility complex, class II, DR alpha
HPRT1  Hypoxanthine–guanine phosphoribosyltransferase
HR  Heart rate
IL  Interleukin
IQR  Interquartile range
LGBM  LightGBM
LR  Penalized regularized logistic regressions (Lasso)
LOD  Limit of detection
NB  Naïve Bayes
NFKBIA  NF-kappa-B inhibitor alpha
NLRP3  NLR family pyrin domain containing 3
NN  Neural network
PCA  Principal component analysis
PLS  Partial least squares
PPIA  Peptidyl-propyl isomerase A, CyclophilinA
PYCARD  PYD and CARD domain containing
RF  Random forests
RIN  RNA integrity number
RR  Respiratory rate
SBP  Systolic blood pressure
SIRT1  Sirtuin 1
SPI1  Spi-1 proto-oncogene
ST  Stacked model of LR, XG and NN
Temp  Temperature
TGF-α  Transforming growth factor-alpha
TNF  Tumor necrosis factor
UBC  Ubiquitin C
XG  XGBoosted trees

Sepsis is defined as a life-threatening organ dysfunction due to a dysregulated host response to  infection1. Despite 
advances in medical care, the mortality of sepsis ranges from 10 to 40%1–3. In Sweden, sepsis affects approxi-
mately 70,000–80,000 people  annually4,5, while the corresponding number globally is almost 50  million6. For 
this reason, WHO has called for a global action on  sepsis7 and early diagnosis is one crucial aspect to consider 
for improved care of the septic patient.

Timely treatment is shown to reduce mortality and improve outcomes in patients with sepsis and septic 
 shock8–10; early treatment requires early identification. Since more than half the patients with severe sepsis are 
transported to hospital by  ambulance11,12, identification during this first physical contact with health care should 
improve patient outcome. This is supported by studies demonstrating that the time to treatment is reduced when 
the septic patient is identified in the prehospital  setting11,13.

Identification of sepsis in the prehospital setting is currently based on clinical judgment, which is proven 
 inadequate14. Identification can be increased when using screening tools, however, to date, there are few screening 
tools  available15,16,17, and few have been developed for use in the ambulance. We have previously, in the prospec-
tive study Predict Sepsis, developed a set of three Predict Sepsis screening tools based on symptoms and/or vital 
signs in the prehospital  setting18. However, as one third of the patients with severe infection exhibit normal vital 
signs, screening tools based mainly on vital signs present a  problem19. Furthermore, parameters reflecting the 
underlying pathophysiology are not included in this type of screening tools.

Immune dysregulation in sepsis is currently a field of intense research including both excessive inflammation 
and immunosuppressive reactions to the underlying  infection20. A large number of markers for diagnostic and 
prognostic purposes have been studied, including immune, vascular, organ, coagulation, and cellular markers 
but few have been found to increase sepsis  identification21,22. One likely reason is that these biomarkers have 
typically been studied as single markers in isolation, i.e., not taking complex pathophysiological interactions into 
 consideration23,24. In the current study, the aim was to evaluate the additional predictive values of immunological 
molecular markers to our previously developed Predict Sepsis screening tools.

Materials and methods
Study design. This current study is part of the Predict Sepsis study, which is a prospective cohort study in 
the ambulance setting, with patient inclusion between 2017 and 2018, in Stockholm County, Sweden (for details 
see Wallgren et al.18). The study received approval from the Stockholm Regional Ethical Review Board (reference 
number 2016/2001–31/2 and 2018/2202). Written informed consent was obtained from all participants. The 
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study was registered at ClinicalTrials.gov, identifier: NCT03249597. The outline of the current study is illustrated 
in Fig. 1.

Study population. The study included a total of 551 adult, non-trauma patients assessed to have a new onset 
infection according to clinical judgment made by the ambulance personnel. The inclusion and exclusion criteria 
have been published  elsewhere18. A selection of candidate molecular markers reflecting immune responses were 
performed in a smaller group of consecutively included patients, i.e., the screening cohort (n = 96). The selected 
candidate molecular markers from the screening cohort were analyzed in the remaining patients (n = 455), i.e., 
the prediction cohort, and used as predictors in combination with the available clinical variables measured in the 
ambulance in the final prediction modeling (details of cohorts, see Table 2).

Blood sampling. Blood was drawn in EDTA-tubes in the ambulance, and at arrival to the hospital bound 
emergency departments (EDs), tubes were centrifuged, aliquoted, and frozen in − 70 °C in biobank. Further-
more, blood was drawn directly into PAXgene tubes (PreAnalytix, GmbH, Hombrechtikon, Switzerland), with 
immediate stabilization of intracellular RNA, before being frozen in − 70 °C at arrival to the ED.

Quantification of circulating inflammatory mediators. Initially, a total of 71 circulating proteins 
were analyzed within the screening cohort using U-PLEX Biomarker Group 1 kits (Meso Scale Discovery, Rock-
ville, MD) detected by electrochemiluminescence in Meso QuickPlex SQ 120 (Meso Scale Discovery), accord-
ing to the manufacturer’s instructions. Three additional proteins, CXCL6, HGF, and TGF-α were measured 
by Human Magnetic Luminex Assay (R&D systems, Inc. Minneapolis, MN), according to the manufacturer’s 
instructions. The samples were analyzed on a  Luminex®200™ instrument (Invitrogen, Merelbeke, Belgium), and 
the data were collected using the xPONENT 3.1™ software (Luminex Corporation, Austin, TX). Later in the pre-
diction cohort, nine selected mediators, i.e., CCL24, CX3CL1, CCL27, CCL11, IL-17AF, IL-17A, IL-1Ra, TNF, 
and CCL19, were analyzed using customized U-PLEX kits (Meso Scale Discovery, Rockville, MD).

All values were expressed as pg/mL deduced from the standard curve, using a 5-parameter logistic algorithm. 
Values below the detection limit were given half the value of the detection limit. All samples were run in dupli-
cates and a coefficient of variation (CV) below 20% was considered acceptable. In Supplementary Table 1, the 
average CVs and detection limits of the nine proteins analyzed in the prediction cohort are listed.

RNA extraction and cDNA extraction. All samples were arranged in random order prior to RNA extrac-
tion. For the screening cohort, RNA extraction was done using PAXgene Blood RNA Kit (Cat. No. 172021754, 
Qiagen, GmbH, Hilden, Germany), according to the manufacturer’s instructions. RNA quality and concentra-
tion was measured with NanoDrop 2000 (Thermo Fisher Scientific, MA, USA) and 2100 Bionalyzer (Agilent, 

Figure 1.  Schematic illustration of the outline of current study.
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CA, USA). The A260/A280 ratios were above 1.7 and the RNA integrity number (RIN) values were above 7. 
cDNA was synthesized using the High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems, CA, 
USA) in a LifePro Thermal Cycler (Bioer, Hangzhou, P.R. China), using 200 ng RNA per 20 μL reaction. Gene 
expression was performed in a Quantstudio 7 Flex Real-Time PCR system (Applied Biosystems, CA, USA), 
using TaqMan Gene Expression Assays and TaqMan Fast Universal PCR Master Mix (Applied Biosystems, CA, 
USA) in a 20 μL reaction, according to the manufacturer’s instructions.

For the prediction cohort, the samples together with a negative extraction control (consisting of RNase-free 
water) were extracted using the QIAsymphony extraction robot (Qiagen GmbH, Hilden, Germany). RNA was 
eluted in a total volume of 80 μL and immediately denatured at 65 °C for 10 min using a thermal cycler (T-100, 
BioRad, CA, UAS). Sample concentration and purity were determined by spectrophotometry on the Lunatic 
instrument (Unchained Labs, CA, USA) and RNA integrity was analyzed on capillary gel electrophoresis, Frag-
ment Analyzer (Agilent, CA, USA) using RNA Standard Sensitivity Fragment Analyzer kit (Cat. No. DNF-471, 
Agilent, CA, USA). The A260/A280 ratios were above 1.5 except for 21 samples. These samples did not turn out 
as outliers in neither univariate nor multivariate analyses, thus were not excluded. None of the negative control 
samples (ENTCs) showed cross-contamination. All samples were reversed transcribed into cDNA using the 
TATAA GrandScript cDNA Synthesis Kit (Cat. No. A103, TATAA Biocenter AB, Gothenburg, Sweden). The 
reverse transcription was performed using 450 ng RNA per 20 μL reaction.

Real-time PCR. In the screening cohort, a total of 15 genes encoding inflammatory mediators, inflamma-
some components, and transcription factors  (PYCARD, CASP1, NLRP3, IL1B, IL18, TNF, IL6, IL10, IL1RN, 
HLA-DRA, HIF1A, SPI1, EPAS1, SIRT1, NFKBIA) were analyzed using qPCR. Gene expression was performed 
in a Quantstudio 7 Flex Real-Time PCR system (Applied Biosystems, CA, USA), using TaqMan Gene Expression 
Assays and TaqMan Fast Universal PCR Master Mix (Applied Biosystems, CA, USA), according to the manu-
facturer’s instructions (TaqMan assay IDs are listed in Supplementary Table 2). HPRT1 was used as a reference 
gene, determined by NormFinder R package (MOMA, Aarhus University Hospital, Denmark) for normaliza-
tion among a total of three candidate reference genes. All samples of the study were analyzed in duplicates, and 
the mean quantity values were used in further data analysis. The accepted CV of technical sample replicates 
was ≤ 15%. Samples with a CV > 15% for each specific assay were re-analyzed. Cycle threshold (CT) cut-off value 
was set to 35 and all reactions had an efficiency between 90 and 110%. In all cases, gene expression levels were 
obtained from a six-point serially four-fold diluted calibration curve. The calibration curve was developed from 
cDNA of PBMCs stimulated by 1 μg/mL LPS.

In the prediction cohort, three genes, EPAS1, HIF1A, and NLRP3 were analyzed using assays designed and 
validated by TATAA Biocenter AB. qPCR was performed with TATAA SYBR®GrandMaster Mix Low Rox (Cat. 
No. TA01, TATAA Biocenter AB, Gothenburg, Sweden) in 10 μL reaction volume. Human ValidPrimeTM (Cat. 
No. A105P10, TATAA Biocenter AB, Gothenburg, Sweden) was used to monitor and correct for contaminating 
 gDNA25. An inter-plate calibrator (Cat. No. IPC250S, TATAA Biocenter, Gothenburg, Sweden) was run on each 
plate to be able to correct for inter-run differences.

All samples were run in duplicates in 384-well plate format using QuantStudio™ 7 Pro Real-Time PCR sys-
tem (384-well, ThermoFisher Scientific). The pipetting was performed by a pipetting robot OT-2 (Opentrons, 
NY, USA). qPCR raw data were pre-processed and analyzed with GenEx software v.7 (MultiD Analyses AB, 
Gothenburg, Sweden). The limit of quantification of the assays were determined using standard dilution series 
for which the relative standard deviation of a replicate was < 35%. The accepted standard deviation of technical 
sample replicates was ≤ 0.5, whereas the accepted standard deviation of the IPC (Inter Plate Calibrator) repli-
cates was ≤ 0.2. Samples with a standard deviation > 0.5 for each specific assay were re-analyzed. Three reference 
genes, beta-glucuronidase (GUSB), peptidyl-propyl isomerase A, cyclophilinA (PPIA), and ubiquitin C (UBC) 
were selected from a list of 12 reference gene candidates using the geNorm and NormFinder functions in GenEx 
software v.7 (MultiD Analyses AB). The relative gene expression was calculated using the delta CT method.

Statistical modeling and data analysis. In the data analysis pipeline, clinical and molecular variables 
were assessed with regard to their differences between sepsis and non-sepsis cases and regarding their quality as 
predictors, using univariate and multi-variable models. For all models, prediction performance was measured in 
a nested cross-validation approach as AUCs for the hold-out testing set. Finally, variable importance measures, 
as eligible for the different analysis methods, were applied.

This data analysis pipeline was first run on data from the screening cohort, followed by a consensus variable 
selection for further analysis in the prediction cohort. Then, the pipeline was run again, this time only involv-
ing the selected molecular variables, on the data from the prediction cohort, with prediction performances and 
variables importance reported as before.

Selection of molecular variables in the screening cohort. Based on screening cohort data, molecular 
variables as synergistic predictors with the clinical parameters were selected through a stepwise process of (i) 
univariate analyses, (ii) multivariate analyses and (iii) literature review. From this process, a weighted curation 
was performed for the final selection of molecular variables, which were used for further analysis in the predic-
tion cohort.

The univariate variable selection of the most relevant molecular variables was performed by fitting individual 
mixed effect models (lmerTest package in R; mixed effects model with the sepsis/non-sepsis as fixed effect and 
sex as random effect) of the 74 inflammatory mediators as well as the expression levels of 15 genes, to differenti-
ate between non-septic and septic patients, followed by the false discovery rate (FDR) estimation for multiple 
comparisons. Molecular variables with fold-changes (FC) above the thresholds, set to FC ˃ 1.2 for proteins and 
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FC > 2.0 for mRNAs, and a Benjamini–Hochberg FDR ˂ 0.05, were selected as candidates for analysis in the 
prediction cohort.

The multivariate variable selection of the most relevant molecular variables was performed by machine 
learning implemented with a nested cross-validation workflow assessing variables as classifiers of non-septic 
and septic patients. A set of seven different machine learning algorithms were trained in parallel and tested to 
evaluate different algorithms with regards to classification performance on 7 different variable sets. The variable 
sets were; (a) all molecular variables, (b–d) previously reported Predict Sepsis screening tools 1, 2 and 3 (using 
un-categorized original values of the clinical parameters presented by previous  study18, summary of param-
eters in the screening tools see Table 1), and (e–g) combining Predict Sepsis screening tools 1, 2 and 3 with the 
molecular variables. In addition, two-way interaction between all variables were created by multiplying variables 
for evaluation of interaction effects.

Briefly, all variables included had missing values below 20%. Data were partitioned into training (75%) and 
testing (25%) sets. Each set of data was standardized, and knn-imputation of missing values and class balanced 
with Synthetic minority over-sampling technique (SMOTE; themis package in R) was performed on the training 
set. Thereafter, penalized regularized logistic Lasso regressions (Lasso; glmnet package in R), Random forests 
(ranger package in R), XGBoosted trees (xgboost package in R), Neural network (nnet package in R), Naïve Bayes 
(klaR package in R) and lightGBM (bonsai package in R), were in parallel trained with hyperparameter tuning. 
Hyperparameters for Lasso (penalty); Random Forest (number of variables included in each random tree and 
minimum n for split); XGBoosted trees (number of variables included in each tree, tree depth, loss reduction, 
learning rate, and minimum n for split), Neural network (number of hidden layers and penalty), Naïve Bayes 
(smoothness and laplace), and lightGBM (number of variables included in each tree, tree depth, loss reduction 
and learn rate) were tuned with a Latin Hypercube search approach with internal validation on 25 bootstraps 
of the training data with classification performance evaluation scored as AUC. Optimal hyperparameters were 
used in the final models and performance was assessed on the hold-out testing data. To estimate the robustness 
of predictions with regards to random effects of partitioning, this workflow procedure was repeated iteratively 
20 times as randomized nested cross-validation with random partitioning of samples to training and testing 
set at each iteration. The variability of model performances from the nested cross-validations was estimated 
by fitting Bayesian models and Markov Chain Monte  Carlo26 via the tidyposterior and rstanarm packages in 
R, with 5000 iterations, four chains and a prior normal distribution for the random (nest) intercepts. Posterior 
probability distributions of mean AUC and their contrasted differences between all models were evaluated for 
practical equivalence. Model variable importance was assessed with permutation of variable values (iml package 
in R) with loss of classification error as metric, and with model specific weights when applicable (vip package 
in R). Molecular variables with the highest permuted importance and model specific weights were selected as 
candidates for analysis in the prediction cohort.

Finally, an evaluation of the literature of the molecular variables with the highest permuted importance and 
model specific weights was performed in PubMed by using the search terms: cytokine/gene name (both official 
and alternative); "Sepsis [title]"; “Prediction”. The inclusion criteria for the search were: maximum of 10 years 
old; species “Human”; language: English; original papers. No exclusion criteria were employed. This evaluation 
aimed to select molecular variables that had been both previously studied in association with sepsis and novel 
predictive markers of sepsis.

All candidate molecular variables with especially high importance from either univariate, multivariate in 
combination with literature mining approaches were selected for further analysis in the prediction cohort, as 
well as variables that were selected by multiple approaches.

The selected molecular variables from the screening cohort were evaluated in the prediction cohort with 
respect to their univariate and multivariate discrimination of sepsis and non-sepsis patients. Both the univari-
ate and multivariate analyzes were performed according to the workflows described above. A summary of the 
workflow is shown in Fig. 1.

Ethics approval and consent to participate. The study received approval from the Stockholm Regional 
Ethical Review Board (reference number 2016/2001–31/2 and 2018/2202). Written informed consent was 
obtained from all participants. This study was conducted in accordance with the Declaration of  Helsinki27.

Table 1.  Parameters of the predict sepsis screening  tools18. SBP systolic blood pressure, GCS Glasgow coma 
scale, Temp temperature, HR heart rate, RR respiratory rate.

Predict sepsis screening tool 1 Predict sepsis screening tool 2 Predict sepsis screening tool 3

Acute altered mental status Acute altered mental status and/or GCS RR

Gastrointestinal symptoms Gastrointestinal symptoms SpO2

GCS SBP HR

SBP Temp GCS

Temp SBP

Lactate Temp
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Results
Patient characteristics. A total of 551 patients with suspected infection in the ambulance and with suf-
ficient documentation were assessed for one of two possible outcomes, sepsis (n = 230) or non-sepsis (n = 321), 
within the first 36 h after arrival at the ED, in accordance with the Sepsis-3  criteria1. Patients who did not fulfill 
sepsis criteria were classified as non-sepsis. Initially, a screening cohort, consisting of 46 sepsis patients and, 50 
non-sepsis patients were selected chronologically from the abovementioned 551 patients, and used for evalua-
tion and selection of candidate molecular markers. The remaining 455 patients, as a prediction cohort, were used 
for the final prediction modeling (patient characteristics see Table 2). There were no statistical differences of the 
biological sex, age, comorbidity, or in-hospital mortality between the screening and prediction cohort.

Identification of molecular candidates for sepsis prediction in the screening cohort. An 
inflammatory/immune panel of 74 proteins and 15 genes was analyzed in the screening cohort. Elevated lev-
els of IL-17AF and IL-17A were observed in the septic patients group compared to the non-sepsis group in 
univariate comparisons (Fig. 2). In the multivariate analysis of the molecular markers, no separation between 
sepsis and non-sepsis patients was revealed using the unsupervised analyses with principal component analysis 
(PCA) (Supplementary Fig. 1A). However, with a supervised dimensional reduction approach using partial least 
squares (PLS), partial separation was observed (Supplementary Fig. 1B) between sepsis and non-sepsis patients, 
and this separation was further evaluated with supervised machine learning for sepsis prediction and molecular 
marker candidate selection. The results from machine learning demonstrated a moderate power of the molecular 
markers to separate sepsis from non-sepsis with averaged AUCs of nests between 0.57 and 0.67 for the different 
algorithms (Fig. 3A). The posteriors for mean AUCs showed in general a rather wide distribution for the mol-
ecule models indicating an intra-variability effect of resampling nests in the screening cohort. Evaluation of the 
added value of the molecular variables to the previously reported Predict Sepsis screening  tools18 showed that in 

Table 2.  Characteristics of the screening and prediction cohorts. IQR Interquartile range.

Variables

Screening cohort Prediction cohort

Number (%)
N = 96 Median (IQR)

Number (%)
N = 455 Median (IQR)

Age (year) 80 (73–86) 78 (70–85)

Sex

 Male 58/96 (60.4) 273/455 (60)

Comorbidity

 Charlson comorbidity  score28 2 (1–4) 2 (1–4)

Outcome

 1. Sepsis 46/96 (47.9) 184/455 (40.4)

 2. Non-sepsis 50/96 (52.1) 271/455 (59.6)

Admitted to in-hospital care 86/96 (89.6) 374/455 (82.2)

In-hospital mortality 5/96 (5.2) 26/455 (5.7)

Figure 2.  Levels of molecular markers in the screening cohort. Comparison of the levels of 74 proteins and 
15 genes measured in the screening cohort. (A) Volcano plot of the univariate comparison between sepsis and 
non-sepsis patients; the threshold set to fold-change ˃ 1.2 for proteins and > 2.0 for mRNAs, and a Benjamini–
Hochberg adjusted p-value ˂ 0.05. (B,C) Box-violin plots with individual values of the levels of IL-17A and 
IL-17AF for sepsis and non-sepsis patients, with median and interquartile range (IQR).
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general, the molecular variables did not increase the performance of the screening tools in the screening cohort 
(results from Lasso regression and XGBoosted trees are shown in Fig. 3B).

The variable importance of the molecular variables in the nested cross-validations was evaluated by both 
model-agnostic importance by permutation (Fig. 4A) and by model-specific weights (Fig. 4B,C). None of these 
paired variable interactions showed higher importance than the original variables per se and they are therefore 
omitted from the figures. Thirty-three inflammatory mediators and eight genes, with higher variable importance 
listed in Fig. 4, together with IL-17A and IL-17AF in Fig. 2, were further considered in the selection of molecular 
markers candidates. The literature evaluation gave final weights to the selection of 12 molecular markers (9 pro-
teins and 3 genes) to be evaluated in the prediction cohort; namely CCL24, CX3CL1, CCL27, CCL11, IL-17AF, 
IL-17A, IL-1Ra, TNF, CCL19, and genes, including EPAS1, HIF1A, and NLRP3.

Differential expressions of the selected molecular markers between sepsis and non-sepsis 
patients in the prediction cohort. Among the 12 selected molecular markers, the univariate analysis 
results show that levels of IL-1Ra, IL-17A, CCL19, CX3CL1, and TNF were significantly higher in plasma from 
the sepsis patients compared to non-sepsis patients in the prediction cohort, whereas levels of IL-17AF were 
higher in non-sepsis patients (Fig. 5). The multivariate analysis, similar to the screening cohort, showed that the 
supervised PLS, but not the unsupervised PCA, demonstrated partial separation between sepsis and non-sepsis 
(Supplementary Fig. 2). This separation was further evaluated for prediction of sepsis in the prediction cohort.

Performance of sepsis prediction models with selected variables in the prediction cohort. The 
evaluation of added value of the selected 12 molecular variables to the Predict Sepsis screening  tools18 showed 
that the molecular variables per se did not further contribute to the predictive performance of the screening 
tools (Fig. 6B). Training of models on the 12 selected molecular markers based on the prediction cohort data 
and with the previously employed different machine learning algorithms showed moderate predictive perfor-
mance with averaged AUCs between 0.65 and 0.70 (Fig. 6A). The posteriors for mean AUCs showed a smaller 
distribution for the molecule models in the prediction cohort compared to the screening cohort indicating less 
intra-variability effect of resampling nests.

Figure 3.  Machine learning classification of sepsis and non-sepsis patients in the screening cohort. Upper 
sections show the distributions of posteriors for mean area under the curve (AUC) from the nests in nested 
cross-validation, and lower sections show the averaged ROC curve (AUCs within parenthesis in 6A). (A) 
Distributions of posteriors for mean AUCs and averaged ROC curve from nested cross-validations with seven 
different algorithms trained only on proteins and gene expressions. (B) Distributions of posteriors for mean 
AUCs and averaged ROC curve from nested cross-validations trained on screening tools variables with or 
without added molecular variables and their interactions. LR Penalized regularized logistic regressions (LASSO), 
RF Random forests, XG XGBoosted trees, NN Neural network, NB Naïve Bayes, LGBM lightGBM, ST Stacked 
model of LR, XG and NN.
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The model-agnostic variable importance, as obtained by permutation, indicates that IL-1Ra is the most 
important predictor among the molecular markers (Fig. 7A). Again, no variable interactions had higher impor-
tance than the original variables per se. The evaluation of permuted variable-based importance for models of the 
Predict Sepsis screening tools with molecular variables show higher importance for many of the clinical variables 
than for the selected molecular variables (Fig. 7B). A Pearson correlation matrix showed a high correlation of the 
screening tools variable “temperature” and several of the selected molecular variables, such as IL-1Ra (Fig. 7C), 
capturing much of the informative variation of the molecular markers.

Figure 4.  Variables with highest importance in sepsis classification models of the screening cohort. Molecules 
were ranked by their variable importance values from all classification models based on the molecular 
parameters of the screening cohort. (A) Model agnostic variable importance by permutation from nested cross-
validations of seven different algorithms trained on all proteins and gene expressions. Model specific variable 
importance weights: (B) Coefficients for Lasso regression, and (C) Gini index node impurity for XGBoost. 
Molecules labeled with mRNA in parenthesis refers to the gene expression data. Boxplots presented with median 
and interquartile range (IQR).

Figure 5.  Expression levels of immune mediators and genes in the prediction cohort. Volcano plot of the 
univariate comparison between sepsis and non-sepsis patients. The threshold set to fold-change ˃ 1.2 for 
proteins and > 2.0 for mRNAs, and a Benjamini–Hochberg adjusted p-value ˂ 0.05.
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Figure 6.  Machine learning classification of sepsis and non-sepsis patients in the prediction cohort. Upper 
sections show the distributions of posteriors for mean area under the curve (AUC) from the nests in nested 
cross-validation and lower sections show the averaged ROC curve (AUCs within parenthesis in 6A). (A) 
Distributions of posteriors for mean AUCs and averaged ROC curve from nested cross-validations with seven 
different algorithms trained on molecular variables alone. (B) Distributions of posteriors for mean AUCs 
and averaged ROC curve from nested cross-validations trained on screening tools variables with or without 
molecular variables and their interactions. LR Penalized regularized logistic regressions (LASSO), RF Random 
forests, XG XGBoosted trees, NN Neural network, NB Naïve Bayes, LGBM lightGBM, ST Stacked model of LR, 
XG and NN.

Figure 7.  Importance of molecular and clinical variables from sepsis screening tools in the prediction 
cohort. (A) Molecules with highest model-agnostic variable importance by permutation from nested cross-
validations of seven different algorithms trained on molecular markers alone. (B) Top-20 model-agnostic 
variable importance by permutation from nested cross-validations of seven different algorithms trained on all 
screening tools variables and molecular variables. (C) Pearson correlations between the molecular markers 
and temperature (*, ** and *** denotes a p-value ˂ 0.05, 0.01 and 0.001 respectively, color denotes correlation 
coefficient). Molecules labeled with mRNA in parenthesis refers to the gene expression data. Boxplots presented 
with median and interquartile range (IQR).
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Evaluation of miss-classified subgroups of patients. To explore and understand the underlying 
inability to fully predict septic patients in the current cohort, an evaluation of the miss-classified patients was 
performed. Groups of patients who was consistently miss-classified (with probabilities above 0.6 to be classified 
into the other group in all nested cross-validations) was identified. As demonstrated in Fig. 8, miss-classified 
septic patients (n = 26) presented with milder fever, higher GCS and systolic blood pressure as well as lower 
IL-1Ra and IL-17A levels, while miss-classified non-sepsis patients (n = 33) demonstrated higher temperature, 
lower GCS, lower systolic blood pressure, and higher level of IL-1Ra and IL-17A, when comparing to the rest of 
their group respectively.

Discussion
In the current study, we aimed to evaluate the additional predictive value of immunological molecular markers 
to the Predict Sepsis screening tools previously developed in our  group18. The results demonstrated that when 
comparing the screening tools with and without added molecular markers and their interactions, this addition 
did not increase the predictive value. This result could be due to the high multicollinearity between clinical 
parameters and inflammatory mediators, which was most evident for the parameter temperature that appeared 
to capture most of the model informative variation of several molecular markers, such as IL-1Ra.

Molecular profiles of the host immune response reveal the key pathophysiology of sepsis and have been pro-
posed to be better predictors of the subgroups of sepsis and  outcomes29,30. In the current study, the prediction 
models based on molecular markers alone, showed a performance in terms of AUCs between 0.65 and 0.70. 
IL-1Ra was the most important predictor among the 12 molecular markers, followed by TNF. Additionally, the 
plasma levels of IL-1Ra, IL-17A, CCL19, CX3CL1, and TNF were significantly higher in septic patients compared 
to the non-sepsis group. Increased IL-1Ra levels have previously been observed in septic  patients31,32, and have 
been suggested to be a predictor of sepsis outcome,  severity33,34, and  mortality31. These data were supported by the 
results of the currents study, where IL-Ra was found to be elevated in sepsis patients and has the highest impor-
tance value in the prediction models based on the molecular markers. TNF is another well-studied inflammatory 
cytokine but has not previously been associated extensively with the prediction or prognosis of sepsis. IL-17A 
has been found in several other studies in association to sepsis severity and  mortality35–37 but had a moderate 
contribution in our prediction models. To our knowledge, neither CX3CL1 nor CCL19 have previously been 
evaluated as predictors in sepsis. Our data demonstrate that both these chemokines were increased in sepsis 
patients, with moderate predictive values among other immune mediators. IL-17AF was expressed in low levels 
among both septic and non-septic patients in both cohorts in our study, but IL-17AF was found to increase in 
the septic patients in the screening cohort compared to non-septic patients, whereas a reduced expression of 
this cytokine was found in sepsis patients in the prediction cohort. The discrepancy in the plasma levels of this 
cytokine in the patients of the screening and prediction cohort, respectively, cannot be explained but might be 
due to unforeseen heterogeneity among the patients.

A sub-group of sepsis patients was consistently miss-classified when building the prediction models. Inter-
estingly, several of their clinical measurements and the expression of molecular mediators were distinct when 
compared to the remainder of the septic patient group. For example, miss-classified septic patients presented 
a milder fever, higher GSCs, and reduced IL-1Ra and IL-17A levels, which is similar to the pattern observed 
in the non-sepsis group of patients. This observation may illustrate a general need to stratify sepsis patients 
into several clinical groups or phenotypes for early diagnosis. The concept of sepsis consisting of more distinct 
subtypes or phenotypes, is an area of increased  attention30,38,39. Distinct immunological phenotypes, based on 
transcriptomic data, have previously been associated with sepsis outcome (mortality). Increased innate immune 
activation or dysregulation of coagulation phenotypes was associated with higher mortality while lower mor-
tality was associated with increased adaptive immune  activation40. Similarly, a recent, large retrospective study 
identified four sepsis phenotypes from routinely available clinical data, with highly varying degree of laboratory 
abnormalities and dysregulated host-response  markers39. These studies align well with our findings of consistently 
miss-classified patients and supports the notion that it might be more difficult to accurately predict certain sub-
groups of patients. A priori knowledge about certain molecular markers and clinical variables would be a way to 

Figure 8.  Expression of clinical and molecular parameters for miss-classified patients. Box-violin plots with 
individual values of the expression levels of clinical and immune parameters among miss-classified patients in 
all the prediction models from both sepsis and infection non-sepsis groups, with median and interquartile range 
(IQR). Temp temperature, GSC Glasgow Coma Scale.
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further inform and improve prediction models, for example by introducing stacked modeling approaches which 
first stratify patients, e.g. with regard to temperature, and then fit strata-specific combined clinical-molecular 
models, or by implementing hybrid modeling approaches with inbuilt mechanistic parts, or with distinct ratios 
of decisive variables, to overcome the large heterogeneity in this group of patients.

There are limitations of the study. First, the inclusion criterion was patients with suspected infection judged 
by the ambulance personnel based on clinical experience and presenting symptoms. This might introduce a 
bias that the cohort does not represent the patients that lack symptoms; a limitation due to the fact that there is 
no consensus criterion of infection. However, the outcomes were criteria based, including infection, a defini-
tion which has been used in the prior  study18. Almost one third of the patients included in the current study 
did not have fever, supporting that the entire spectrum of sepsis was included. Second, the rather small size of 
the screening cohort may have limited the possibility of identifying additional molecular markers that could 
improve prediction performances of the models. However, the selection of candidate markers from the screening 
cohort was necessary, due to financing restrictions, which may have limited the selection of potentially relevant 
molecular candidate markers in the larger prediction cohort. While the final selection of molecular markers was 
primarily based on univariate and multivariate analyses in the screening cohort, the literature curation of the 
markers did not specifically target molecular predictors in the ambulance setting, as this is little studied, which 
may have introduced a minor bias. Regarding our modeling approach, we chose to establish and fit separate 
prediction models for the screening and for the prediction cohort, respectively, as the measured molecules were 
partly assessed with different molecular methods in the cohorts. However, the larger prediction cohort makes the 
additional assessment of variable importance in newly fitted models an attractive aim of the study and repeated 
nested cross-validation allowed for good estimation of model performance and evaluation of resampling influ-
ence on posterior AUC distributions. Moreover, a systematic assessment of potential interactions, between 
clinical-clinical, clinical-molecular, and molecular-molecular variables, was not feasible within the framework 
of the current study.

Conclusions
Combing molecular markers with clinical parameters did not increase the predictive values of the screening 
tools, most likely due to the high multicollinearity of temperature and immune mediators. Moreover, we identi-
fied a sub-group of sepsis patients that was consistently miss-classified in our prediction models, due to their 
mild symptoms as well as lower expression levels of the immune mediators comparing to the remainder of the 
septic patients. This observation indicates that being able to initially stratify the septic patients with a priori 
knowledge about certain clinical and molecular parameters, could further inform and improve the prediction 
models for early diagnosis.

Data availability
The data that used in this study are available from the corresponding author upon reasonable request.
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