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Integrated co‑expression analysis 
of regulatory elements (miRNA, 
lncRNA, and TFs) in bovine 
monocytes induced by Str. uberis
Somayeh Sharifi 1*, Abbas Pakdel 1*, Mohammad Hossein Pakdel 2, Raana Tabashiri 3, 
Mohammad Reza Bakhtiarizadeh 4 & Ahmad Tahmasebi 5

Non-coding RNAs, including long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), together 
with transcription factors, are critical pre-, co-, and post-transcriptional regulators. In addition to their 
criteria as ideal biomarkers, they have great potential in disease prognosis, diagnosis, and treatment 
of complex diseases. Investigation of regulatory mechanisms in the context of bovine mastitis, 
as most common and economic disease in the dairy industry, to identify elements influencing the 
expression of candidate genes as key regulators of the mammary immune response is not yet fully 
understood. Transcriptome profiles (50 RNA-Seq and 50 miRNA-Seq samples) of bovine monocytes 
induced by Str. uberis were used for co-expression module detection and preservation analysis 
using the weighted gene co-expression network analysis (WGCNA) approach. Assigned mi-, lnc-, 
and m-modules used to construct the integrated regulatory networks and miRNA-lncRNA-mRNA 
regulatory sub-networks. Remarkably, we have identified 18 miRNAs, five lncRNAs, and seven TFs 
as key regulators of str. uberis-induced mastitis. Most of the genes introduced here, mainly involved 
in immune response, inflammation, and apoptosis, were new to mastitis. These findings may help to 
further elucidate the underlying mechanisms of bovine mastitis, and the discovered genes may serve 
as signatures for early diagnosis and treatment of the disease.

Bovine mastitis is defined as inflammation of the mammary gland caused by a variety of infectious agents, 
including bacteria, mycoplasma, yeasts, and algae1. Mastitis as an endemic disease, leading to the development 
of subclinical/chronic with 25–65% incidence worldwide or clinical (∼5% incidence worldwide) infections2, 
is implicitly associated with a reduction in the quantity and quality of milk production, loss of reproductive 
efficiency, and increased susceptibility of animals to other diseases3.

The immune response to pathogens in the mammary gland is highly complex and involves resident, recruited, 
and inducible immune factors4. Despite the extensive interaction of innate (non-specific) and adaptive (specific) 
immunity factors to provide adequate protection, the magnitude, duration, and efficacy of mammary gland 
immunity against mastitis is significantly influenced by specific aetiological agents5. Streptococcus uberis (Str. 
uberis), a gram-positive bacterial pathogen, is an amazingly versatile mastitis pathogen that can affect multiparous 
cows as well as heifers in all lactation status (milking and dry periods), with clinical or subclinical symptoms 
that can even persistent colonization without elevation in the somatic cell count1,6. The epidemiology of the Str. 
uberis pathogen is not fully understood. The persistence of Str. uberis in the infected bovine udder, due to its 
biochemical capabilities and ability to invade mammary cells, as well as its ability to form biofilm and capsule, 
promotes the development of chronic mammary infections and allows the pathogen to change from an envi-
ronmental to a cow-associated form7,8.

More recently, analysis of the transcriptome profile of the bovine mammary epithelial cells in response 
to infection revealed several genes (e.g., TNF, IL6, IL8, IL10, TP53, TGFB1), gene lists (e.g., IL-10 and IL-6 
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signaling), and miRNAs (e.g., mir-155, mir-204)9, which are responsible for a wide range of inflammatory and 
immunological responses10–12.

Furthermore, the role of key genes in the molecular mechanisms of resistance to bovine mastitis13 and also 
in predicting drug candidates for the control and management of mastitis has been previously investigated14, but 
the regulatory elements, such as miRNAs, lncRNAs, and TFs, involved in the expression of these genes are not 
yet fully understood. A growing number of reports suggest a significant utility of miRNAs15, lncRNAs16,17, and 
TFs16 as biological markers of pathogenic conditions, modulators of drug resistance, and/or drug development 
for medical intervention.

Non-coding RNAs, untranslated RNA molecules that play a regulatory role in gene expression, are involved 
in many biological processes. These functional RNA molecules are divided into several groups such as small 
interfering RNA (siRNA), small nucleolar RNA (snoRNA), circular RNAs (circRNAs), PIWI-interacting RNA 
(piRNA), microRNA (miRNA), and long non-coding RNA (lncRNA)18. Among these, miRNAs and lncRNAs 
have attracted the attention of researchers in the field of immune-related gene expression signatures19.

MiRNAs are short non-coding RNAs of ~ 22 nucleotides in length that bind to the coding region of an mRNA, 
the 3′ and 5′ untranslated region (UTR), repress the translation of mRNA into protein (post-transcription) and 
control biological processes in humans, plants and animals20–22. Research has shown that when cells receive 
exogenous or endogenous signals, the expression of miRNAs inside the cells changes, and during the onset of 
disease symptoms, the expression levels of some miRNAs change to control the development of the disease23–25. 
Therefore, miRNAs can be used as early diagnostic biomarkers at the onset or progression of disease25,26. It has 
been shown that miRNAs of Str. uberis infection are key amplifiers of the inflammatory response networks of 
monocytes27.

LncRNAs with more than 200 nucleotides (nt)28,29, could not encode proteins and harbored a 5′ cap and 3′ 
poly (A)30,31. LncRNAs play roles in the level of gene transcription, epigenetic and post-transcriptional modifica-
tion, and regulate the level of the immune and inflammatory response during the disease process28,29. Genomic 
imprinting, DNA methylation, splicing, and chromatin modification are some of the other roles of lncRNAs32,33. 
The inflammatory response may be promoted by the effect of lncRNAs on the transcription of certain genes34. 
Previous research has suggested that lncRNAs have the potential to become important diagnostic markers for 
mastitis and can be used to control and prevent this disease35. Recently, computational analyses showed that 
miRNA, lncRNA, and TFs could regulate the host immune response to bovine mastitis19.

This is the first report investigating regulatory elements including miRNA, lncRNA and TFs that influence the 
expression of candidate genes in the mammary immune response in the context of Str. uberis bovine mastitis. 
We used mRNA and miRNA sequencing datasets to construct an integrated co-expression network. Given the 
relatively low activity of some highly expressed microRNAs which in some cases correlated with a high target-
to-microRNA ratio or increased nuclear localization of the microRNA, analysis based on module detection is 
more appropriate than making decisions based on differential expression results.

In order to explore the key regulatory elements involved in the onset and development of mastitis, several 
processes including module discovery, preservation analysis, module assignment, functional enrichment analysis, 
regulatory network construction, and network integration were used to extract miRNA-lncRNA-mRNA sub-
networks and identify hub genes. In addition, target prediction for mi and lncRNAs was used to confirm the 
elements in the assigned modules at the sequence level.

Material and methods
Data sources and pre‑processing
Raw RNA and miRNA sequencing data were obtained from NCBI’s Gene Expression Omnibus (GEO) data 
repository under the accession number GSE51856 and GSE51858 respectively. These data contained transcrip-
tome profiles of milk samples related to five Holstein Friesians cows infected with Str. uberis 0140 colonies, as 
well as five control animals, inoculated with saline only, in the middle of first lactation at the time points 0, 12, 24, 
36, and 48. In brief, milk-derived CD14+ monocytes with more than 95% purity were isolated by fluorescence-
activated cell sorting (FACS). Total RNA was extracted using mirVana RNA Isolation Kit (Ambion, Austin, TX) 
and MicroRNA was extracted using mirPremier microRNA Isolation Kits (Sigma-Aldrich, Steinheim, Germany) 
from FACS-isolated cell populations. The Illumina HiSequation 2000 was used for sequencing (50-bp single-end) 
with three or four samples and seven or eight samples multiplexed per lane for mRNAs and miRNAs respectively. 
Finally, 50 RNA-Seq libraries (25 Infected and 25 control samples) containing 50-bp single-end reads and 50 
miRNA-Seq libraries (25 Infected and 25 control samples) containing 50-bp single-end reads were generated. 
In the original paper, more details on preparing data can be found21.

FastQC (version 0.11.9) was used for quality check of raw RNA-Seq and miRNASeq reads36. These data did 
not have any adaptor sequence. Bases/reads for both RNA and miRNA reads with Low-quality were removed 
by Trimmomatic (version 0.32)37. The trimming criteria for RNA-Seq data were MAXINFO: 40:0.9 MINLEN:36 
TRAILING:3 and for miRNA-Seq data was MAXINFO:18:0.9 MINLEN:18 TRAILING:3.

MAXINFO trimmer, performs an adaptive quality trim, balancing the benefits of retaining longer reads 
against the costs of retaining bases with errors. TRAILING, Remove trailing N bases, if below quality 3. In 
RNAseq studies, when the length of the data is less than a normal limit, they should be removed because they 
will cause errors in other steps such as multiple alignments, so we used the MINLEN option to remove reads 
that fall below the specified minimal length. The quality of reads after trimming was monitored again by FastQC.

Hisat2 (version 2.2.1) was used for the alignment of clean reads of RNA data to index bovine reference genome 
using disable spliced alignment option. Indexing of genome constituted by hisat2-build function (Bos_taurus. 
ARS-UCD1.2 version from ENSEMBL database, released Apr2018)38. Then, the mapped RNA reads annotated 
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by the Ensembl bovine GTF file (GCA_002263795.2 genome, release 103) were counted using HTSeq-count 
(version 2.0.1)39.

For miRNA data, Bowtie software (version 1.2.2)40 with “-n 1 -e 80 –best –strata -a” options were used to align 
reads to hairpin bovine miRNA sequences obtained from the miRBase database (v22.1)41. Defined alignment 
options report only those miRNA reads in the best alignment “stratum,” with no more than one mismatch. Reads 
that did not uniquely align with the miRBase were discarded.

Then, quantify the expression of each miRNA and the expression matrix was generated by SAMtools (ver-
sion 1.7)42.

Raw counts of RNA were processed by the voom function in the limma package (R software version 4.1.0) 
to convert them into log2 counts per million (logCPM) and provide mean–variance relationship plot43. The 
calcNormFactors function implemented in edgeR was used for obtaining the TMM normalization factors44.

To gather more reliability of the genes, genes in both expression matrices with expression levels ≥ 1 CPM in 
at least three samples followed by the standard deviation larger than 0.25 were kept for further analysis45. lncR-
NAs in the mRNA matrix were identified and separated using the Ensembl bovine GTF file (GCA_002263795.2 
genome, release 103). To identify bovine transcription factors (TF)s in the mRNA matrix, the AnimalTFDB3.0 
database was used46. Finally, three matrices including miRNA, lncRNA, and mRNA (including TFs) were used 
for module detection separately.

Module construction based on the WGCNA algorithm
A systems biology approach using WGCNA47 was applied to explore the complex relationships between genes 
and phenotypes by constructing scale-free co-expression networks. In this research, 3 weighted co-expression 
networks for healthy samples of mi, lnc, and mRNA expression datasets were constructed separately. Since coex-
pression analysis is very sensitive to outliers, the outlier samples were detected and excluded from the original 
matrices. Detection of outliers was performed by calculation of adjacency matrices of expression matrices. The 
sample network connectivity according to the distances was standardized and samples with standardized con-
nectivity less than − 2.5 were detected as outliers. Then goodSamplesGenes function in the WGCNA package 
was applied to determine whether the sample data were complete as well as exclude the unqualified genes. The 
construction processes of gene co-expression networks were the same in the three construction networks except 
for a number of parameters that are mentioned following. First, the optimal value of soft threshold power β, 
which is a weighted parameter of the adjacent function, was obtained by the pickSoftThreshold. Then, appropriate 
soft-thresholding power was calculated to be confident of the scale-free topology of the constructed network48. 
Second, the blockwiseModules function in the WGCNA package used for module detection, with the major 
parameters: power = 20, corType = “bicor”, networkType = “signed”, TOMType = “signed”, maxBlockSize = 17,000, 
minModuleSize = 30, reassignThreshold = 0, mergeCutHeight = 0.25 for mRNA. The power for miRNA and 
lncRNA changed to 12 and 10 respectively. According to the smaller size of the miRNAs and lncRNAs in com-
parison to the mRNA, the minModuleSize was set to 5 for them. Noticeably, to identify the modules in three 
datasets, first, weighted adjacency matrices were constructed based on the soft-thresholding power, and were 
transformed into the topological matrix (TOM). The TOM, which describes the association strength between 
the genes, was used to convert the adjacency value into a TOM matrix. Then, TOM-based matrices clustered the 
genes into the hierarchy to get the system clustering tree by using average linkage hierarchical clustering analysis 
through a dynamic hybrid tree-cutting algorithm49. Hierarchical clustering is a widely used method for detecting 
clusters with a small degree of dissimilarity for co-expressed elements. The dissimilarity measure based on TOM 
can be used as input in hierarchical clustering, then modules were defined as branches of a cluster tree, and each 
module was labeled by a unique color using the static tree cutting method. Eventually, mi, lnc, and mRNAs with 
similar expression profiles were divided into modules named mi-, lnc-, and m-modules, respectively. Third, the 
correlations between the module eigengenes were used to detect the highly similar modules to further merge.

Preservation analysis
Preservation status (preserved, semi-preserved, and non-preserved) of connectivity patterns of the genes in the 
detected m-modules of healthy samples in comparison with infected samples were detected by modulePreserva-
tion function in the WGCNA package. Two composite module preservation statics, Zsummary, and medianRank, 
were applied to evaluate the preservation status detected based on connectivity and density of genes included in 
each module50. The Zsummary < 5 was considered as the threshold for non-preserved modules, between 5 and 
10 was considered as the semi-preserved modules, and greater than 10 evidence was considered as the preserved 
modules. To evaluate the statistical significance of both module preservation statics, the permutation method 
(N = 200 permutations) was used.

Assign the relationship between modules
Eigengene (MEs) of elements were used to assign the mi- and lnc-modules to non- or semi-conserved m-modules 
and also mi-modules with lnc-modules. Pearson correlations and associated p-values were estimated between 
the module MEs of given modules using corAndPvalue function in the WGCNA package. The MEs, considered 
representative of the expression profiles in a module, refer to the first principal component of a given mod-
ule. Negative or positive correlations greater or less than + 0.70 and -0.7 with a significant statistic (adjusted P 
value < 0.05) respectively, were defined as regulators of interest modules. Negative correlations suggest that mi-
modules might inversely regulate m-modules. Hence, mi-modules only with a significantly negative correlation 
(adjusted P value < 0.05) were considered regulatory relations between mi- and m-modules.
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Target prediction for miRNAs and lncRNAs
To make a stronger biological connection between mi- and lnc-modules with assigned modules as upstream 
regulatory elements, the target prediction was performed for miRNAs and lncRNAs. Therefore, genes in assigned 
modules were confirmed by prediction software considered as targets.

To avoid false positive results, lncRNAs or mRNAs assigned to miRNAs that are confirmed by the predicted 
targets of at least two out of the three applied software including miRanda (version 1.9)51, RNAhybrid (version 
2.2.1)52, and RNA22 (version 2)53 considered as targets of given miRNAs. The minimum free energy threshold 
was set as –15, and other parameters were set as default settings for all used software. In this respect, bovine 
mature miRNA sequences were obtained from the miRBase database (version 22.1), and bovine 3′ and 5′ UTR 
sequences and coding sequence (CDS) of mRNAs were retrieved from the BioMart database (https://​www.​ensem​
bl.​org/​bioma​rt). The sequences of lncRNAs were obtained by using the gget tool (version 0.2.6) which is a UNIX 
base tool for downloading sequences by using their Ensemble IDs.

LncTar tool (version 1.0)54 was used to predict the targets of lncRNAs assigned to CDS regions of mRNAs.

Hub mRNAs verification
It is known that all presented genes in a module were not important to be linked with the subject of interest. 
For more focus on the most important mRNAs in each module, mRNAs with a central role in the co-expression 
network with high connectivity within each module, as hub genes used for enrichment analysis. The MEs value 
in each module and signedKME functions of the WGCNA package were used to identify the hub elements in 
the detection modules.

For each mRNA, eigengene-based connectivity (kME) and a "fuzzy" measure of module membership were 
determined by the correlation between its expression profile with the MEs of a given module. The kME measure 
is highly related to intramodular connectivity (kME). Highly connected intramodular hub elements tend to have 
high module membership values to the respective module. Hubs in modules were determined as the elements 
with kME ≥ 0.8 in mastitis samples and kME ≤ 0.8 in healthy samples47.

Functional enrichment analysis
To assess the putative functions associated with the genes in each m-modules based on preservation status, and 
detected hub genes, GO terms were performed using the EnrichR online analysis tool (https://​maaya​nlab.​cloud/​
Enric​hr/)55. Only significant terms with adjusted p-values < 0.05 were considered.

Construction of the regulatory network

In order to identify and visualize the most important regulatory elements and pathways in assigned modules, 
the following steps were performed:

1.	 All the interactions related to mi, and lnc-modules and their verified targets were used as inputted data to 
Cytoscape software (version 3.9.1)56.

2.	 Maximum click centrality (MCC) topological analysis methods of CytoHubba application57 in Cytoscape 
were used to screen the five highly connected genes in each module-module interaction network separately.

3.	 Integrated network constructed to illustrate regulatory pathways, upstream main regulators, and miRNA–
lncRNA–mRNA interaction sub-networks.

Results
RNA‑Seq and miRNA‑Seq preprocessing
The overall analysis workflow is shown in Fig. 1. After preprocessing, from 1,876,238,611 raw reads belonging 
to 50 RNA-seq samples, 1,601,194,408 clean reads remained with an average of 32,023,888 per sample. After 
alignment with an average of 84.86% to the bovine reference genome, counting, and integration of samples, two 
expression matrices containing 26,127 mRNAs (including 767 TFs), and 1480 lncRNAs obtained.

In miRNA samples (50 miRNA-seq samples), from 702,106,058 raw reads, 650,547,536 clean reads with an 
average of 13,010,950 reads per sample obtained. 43.03% of the clean reads are aligned to the bovine hairpin 
miRNAs. To ensure no genomic contamination, mapping to the bovine reference genome was performed for 
some miRNA samples that have a low mapping rate to bovine hairpin miRNAs (more than 80% of reads mapped 
to the bovine reference genome). Mapped reads counts and integrated to achieve a miRNA expression matrix 
(with 997 miRNAs). The summary tables of the preprocessing and mapping status of mRNA and miRNA samples 
are provided in separate sheets in Supplementary Table S1 online.

Matrices achieved from primary preprocessing lead to further filtration to remove non-expressed genes 
based on the expression values across the majority of samples and non-informative genes based on the varia-
tion of expression between samples. Three expression matrices including 699, 1024, and 11,497, mi, lnc, and 
mRNAs respectively, passed all the aforementioned filters and were used for coexpression analysis. These three 
matrices are prepared in separate sheets available in Supplementary Table S2 online online. The mean–variance 
trend shows how the coefficient of variation of the counts depends on the count size in each database provided 
in Supplementary Fig. S1 online.

https://www.ensembl.org/biomart
https://www.ensembl.org/biomart
https://maayanlab.cloud/Enrichr/
https://maayanlab.cloud/Enrichr/
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Construction of weighted co‑expression network
In this study, a network-based approach was applied to better understand the molecular mechanisms and regula-
tory elements in mastitis with Str. uberis infection. Three samples were defined as an outlier and were excluded 
for further analysis (TC.1.003 in mRNA and TC.2.001 and TC.2.003 in miRNA samples).

Genes are clustered into modules based on their co-expression by WGCNA. After the determination of the 
appropriate soft threshold power beta (Supplementary Fig. S1 online), 31 m-modules, 30 mi-modules, and three 
lnc-modules were detected by hierarchical clustering and dynamic branch cutting (Supplementary Fig. S1 online). 
The average number of genes per module was 360 in the m-modules (ranged from 44 in pale turquoise to 2127 in 
turquoise modules), 23 in mi-modules (ranged from 5 in steel blue to 54 in turquoise), and in lnc-modules size 
of modules were including 14 in brown, 15 in blue, and 586 in turquoise. Additionally, 728, 29, and 408 genes 
were reported as grey modules in m-, mi-, and lnc-modules, respectively, which contained some genes that were 
not assigned to any module (Supplementary Table S3 online).

Figure 1.   The workflow of this study.
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Preservation analysis
The preservation analysis of m-modules was performed to investigate the connectivity patterns between the two 
healthy and mastitis conditions. Connectivity patterns or network properties in the non- and semi-preserved 
modules altered under mastitis compared to healthy conditions, so they could represent a set of genes affected 
or influenced by the disease. Of 31 m-modules, 12, 9, and 10 modules were detected as preserved, semi-, and 
non-preserved modules respectively (Fig. 2 and Supplementary Table S4 online).

Assigning the mi‑ and lnc‑modules to non‑ and semi‑preserved modules as well as mi‑ to 
lnc‑modules
To explore the potential molecular mechanisms and regulatory elements responsible for mastitis disease, MEs of 
mi- and lnc-modules were observed to be correlated together with MEs of non- and semi-preserved m-modules. 

Figure 2.   Preservation analysis based on the Zsummary criteria. The medianRank (y-axis) and Zsummary 
(x-axis) statistics of the module preservation. The red and black vertical lines indicate the thresholds 
Zsummary = 8 and Zsummary = 10 respectively. The modules with Zsummary < 5 were considered as non-
preserved, Zsummary between 5 and 10 as semi-preserved and Zsummary > 10 as preserved. MedianRank of 
the modules close to zero indicates a high degree of preservation.

Table 1.   Summary of relation assigned between modules based on Pearson correlation with adjusted P 
value < 0.05.

(A) Assigned mi- to lnc-modules

Module names Turquoise Blue Brown

Blue −0.7148

Cyan −0.7157

Steelblue 0.7372 0.7273

(B) Assigned mi- to m-modules

Module names Saddlebrown Green Salmon

Lightgreen −0.7191

Royalblue −0.8397

Darkgreen −0.7433

(C) Assigned lnc- to m-modules

Module names Tan Cyan Midnightblue

Turquoise 0.76267 −0.706 0.7903
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Pearson correlation (adjusted P value < 0.05) was used for the illustration of module relations. The assigned 
modules are shown in Table 1 and more details are prepared in Supplementary Tables S6, S7, and S8 online. A 
heatmap was drawn that provides a clear picture of the interactions between mi-, lnc-, and m-modules (Sup-
plementary Fig. S1 online file S10).

Confirmation of assigned regulatory elements (mi and lncRNAs)’s targets by target prediction 
tools
The summary of the targets of mi-modules assigned to m-modules and lnc-modules confirmed by miRanda, 
RNA22, and RNAhybrid software, as well as common confirmation (were detected by at least two out of the three 
applied software) were presented in Tables 2 and 3 respectively. More details were provided in Supplementary 

Table 2.   Summary of target prediction of mi-modules assigned to semi- and non-preserved m-modules by 
different prediction tools.

Software Mi-module (number of miRNAs) m-module (number of genes) Number of the unique predicted targets

MiRanda

Lightgreen (18) Saddlebrown (47) 38 mRNA, 9 TF

Royalblue (16) Green (652) 376 mRNA, 15 TF

Darkgreen (15) Salmon (211) 162 mRNA, 36 TF

RNA22

Lightgreen (18) Saddlebrown (47) 32 mRNA, 9 TF

Royalblue (16) Green (652) 364 mRNA, 48 TF

Darkgreen (15) Salmon (211) 148 mRNA, 32 TF

RNAhybrid

Lightgreen (18) Saddlebrown (47) 16 mRNA, 3 TF

Royalblue (16) Green (652) 269 mRNA, 19 TF

Darkgreen (15) Salmon (211) 111 mRNA, 8 TF

Common results (detected by at least two out of the applied 
software)

Lightgreen (18) Saddlebrown (47) 38 mRNA, 9 TF

Royalblue (16) Green (652) 279 mRNA, 22 TF

Darkgreen (15) Salmon (211) 132 mRNA, 11 TF

Table 3.   Summary of target prediction of mi-modules assigned to lnc-modules by different prediction tools.

Software Mi-module (number of miRNAs) Lnc-module (number of lncRNAs) Number of the unique predicted targets

miRanda

Blue (46) Turquoise (586) 508 lnc

Cyan (22) Brown (14) 7 lnc

Steelblue (5) Brown (14) 4 lnc

Steelblue (5) Blue (15) 1 lnc

RNA22

Blue (46) Turquoise (586) 480 lnc

Cyan (22) Brown (14) 4 lnc

Steelblue (5) Brown (14) 4 lnc

Steelblue (5) Blue (15) 3 lnc

RNAhybrid

Blue (46) Turquoise (586) 245 lnc

Cyan (22) Brown (14) 4 lnc

Steelblue (5) Brown (14) 4 lnc

Steelblue (5) Blue (15) 4 lnc

Common results (detected by at least two out of the applied 
software)

Blue (46) Turquoise (586) 275 lnc

Cyan (22) Brown (14) 2 lnc

Steelblue (5) Brown (14) 2 lnc

Steelblue (5) Blue (15) 0 lnc

Table 4.   Summary of target prediction of lnc-modules assigned to semi- or non-preserved m-modules using 
LncTar tool.

Software lnc-module (number of lncRNAs) m-module (number of genes) Number of the unique predicted targets

LncTar Turquoise (586)

Tan (270) 252

Cyan (209) 199

Midnightblue (192) 190
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Tables S9 and S10 online. Summary information about the target prediction of lnc-modules assigned to m-mod-
ules was presented in Table 4 and is available with more details in Supplementary Table S10 online.

Genes detected as hubs in m‑modules
Between 10,769 genes clustered in m-modules (without considering grey modules), 532 genes were determined 
as intramodular hub elements (107 semi-, 74 non-, and 351 preserved).

The complete list of the hub genes in each m-module was presented in Supplementary Table S11 online.

Functional enrichment analysis
To assess the putative functions associated with the modules, all the identified semi- and non-preserved m-mod-
ules and their hubs were subjected to functional enrichment analysis, separately. Functional analysis of 9 non-pre-
served m-modules and 10 semi-preserved modules presented in Supplementary Tables S12 and S13 respectively. 
Hub genes of non-preserved modules enriched biological terms mainly including negative regulation of TORC1 
signaling, positive regulation of macroautophagy, positive regulation of leukocyte mediated immunity, regulation 
of dendritic cell cytokine production, positive regulation of I-kappaB phosphorylation, interleukins production, 
leukocyte differentiation, and dendritic cell cytokine production, p38MAPK cascade, toll-like receptor 2 signaling 
pathway, T cell activation, negative regulation of phospholipase activity, myeloid leukocyte mediated immunity, 
and fatty acid oxidation, positive regulation of immune cell apoptotic and negative regulation of apoptotic sign-
aling pathways (Supplementary Table S14 online). Hub genes in the semi-preserved module generally enriched 
terms related to immune response including B cell, T cell activation, lymphocyte-mediated immunity, adaptive 
immune response, negative regulation of intrinsic and extrinsic apoptotic signaling pathways, positive regulation 
of cell–cell adhesion, and regulation of macrophage cytokine production (Supplementary Table S15 online).

Regulatory networks constructed by WGCNA results
To better illustrate, key regulatory elements and hub genes in each relation between WGCNA-calculated co-
expressed mi, lnc, and mRNAs expression values, visualized by Cytoscape. The architecture of the networks of 
each relation in Table 1 has shown in Figs. 3 and 4. The network constructed for the blue module of miRNA 
and turquoise lncRNA has been illustrated in Fig. 3a. Due to having a small number of genes, other relations of 
miRNA modules with lncRNA did not form a network. All edges are shown by activatory or inhibitory arrows 
based on the sign of the correlation between modules (inhibitory arrow for negative correlation and activatory 
arrow for positive correlation).

The five top genes of each module (hub genes) detected by MCC topological analysis of CytoHubba have been 
highlighted in each network. Integration of all networks helps us to find miRNA–lncRNA–mRNA sub-networks 
to highlight specific molecular functions and mechanisms related to mastitis disease (Fig. 5). The brief statistic 
and hubs of each network were prepared in Supplementary Table S16 online. The name, biological kind, and 
module name of nodes and details of network statistics related to each network and sub-networks are presented 
in Supplementary Table S17 online.

Discussion
Bovine mastitis is an inflammatory disease with clinical and subclinical symptoms, caused by a variety of infec-
tious agents, controlled by a complex network of biological substances, resulting in significant economic losses 
due to negative effects on animal welfare, productive and reproductive performance, poor milk quality, increased 
workload, early culling and high treatment costs. Although transcriptional analysis of the bovine mammary 
gland in response to intramammary infection by Str. uberis reveals many immune-related genes and pathways, 
the regulatory elements, such as miRNAs, lncRNAs and TFs, involved in the expression of these genes are not 
yet fully understood. A growing number of reports suggest a significant utility of miRNAs, lncRNAs, and TFs 
as biomarkers of pathogenic conditions, modulators of drug resistance, and/or drugs for medical intervention.

Here, co-expression analysis and the integrated regulatory network approach were used to better understand 
the functional networks/pathways contributing to mastitis with Str. uberis infection. Through this research, we 
generated a list of miRNAs, lncRNAs and TFs that play critical roles in the response of mammary epithelial cells 
to Str. uberis infection. Functional analysis of intramodular hub genes detected by the WGCNA algorithm for 
semi- and non-preserved modules mostly enriched terms related to immune response, inflammation, cytokine 
and chemokine signalling, acute phase proteins, proteolysis and apoptosis. All networks constructed between 
the module relationships shown in Figs. 3 and 4. A total of, 18 miRNAs including mir-149, mir-6525, mir-669, 
mir-2376, mir-24-1, mir-10162, mir-12027, mir-2300a, mir-6521, mir-1248-1, mir-1248-2, mir-615, mir-133a-1, 
mir-2328-3p, mir-2328-5p, mir-2400, mir-29b-1, and mir-378-1, five lncRNAs including ENSBTAG00000048401, 
ENSBTAG00000049095, ENSBTAG00000050346, ENSBTAG00000051337, and ENSBTAG00000051777, and also 
seven TFs including SOX10, GTF3C1, ETV4, MYCL, MESP1, UBTF, and MAFB were identified as key regulators 
in mastitis caused by Str. uberis (Supplementary file S16).

Between them, mir-6525 and mir-669 were reported in a review on the role of non-coding RNAs in bovine 
mastitis diseases as dysregulated miRNAs during mastitis infection by Staphylococcus aureus and Streptococcus 
agalactiae, respectively18. Mir-149, as shown in our integrated network (Fig. 5a) and as a key regulator in the 
miRNA-lncRNA-mRNA sub-network (Fig. 5b), needs more attention.

It has been reported that suppression of bta-mir-149 promotes cell proliferation, migration and invasion, while 
inhibiting cell apoptosis58 at both transcriptional and post-transcriptional levels59 and may act as an oncogene 
(oncomiR) and tumour suppressor60. Bta-mir-149 has also been shown to inhibit pro-inflammatory cytokine 
production and its down-regulation correlates with increased expression of pro-inflammatory cytokines such 
as TNFα, IL1β and IL661.
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Based on the differential expression analysis results achieved from the original paper of our sequencing 
datasets21, bta-mir-149 was significantly down-regulated (−4 fold change) in mastitis samples compaired to 
control samples.

In Fig. 5a, mir-149 was shown to negatively regulate 40 lncRNAs and indirectly regulate 7 TFs and 572 protein-
coding genes. We illustrated a new sub-network to focus more on TFs as key regulators seen in these m-modules 
(Fig. 5b). As shown in Fiure 5b ENSBTAG00000049801, ENSBTAG00000051777, and ENSBTAG00000055157 

Figure 3.   Regulatory networks of (A) negative relationship between blue mi-module and turquoise lnc-module, 
B) negative relationship between lightgreen mi-module and saddlebrown m-module, (C) negative relationship 
between royalblue mi-module and green m-module, (D) negative relationship between darkgreen mi-module 
and salmon m-module. miRNAs are represented with diamonds, lncRNAs with rectangles, and in m-modules 
ellipses show regular proteins and parallelograms show transcription factors. Edges are indicated by activating 
or inhibiting arrows based on the sign of correlation between modules. Hub genes are highlighted with red 
borders.
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negatively regulate MYCL. Lung-derived MYC (MYCL) is a member of the myelocytomatosis oncogene (MYC) 
family of transcription factors, which recent evidence suggests plays an essential role in the regulation of cell 
growth, cell cycle, cell metabolism and cell death62. The role of MYC in immunosuppression and a significant 

Figure 4.   Regulatory network between turquoise lnc-module and (A) tan, (B) cyan and (C) midnight blue 
m-modules. lncRNAs are represented with rectangle shapes. In m-modules, ellipses show regular proteins and 
parallelograms show transcription factors. Edges are indicated by activating or inhibiting arrows based on the 
sign of correlation between modules. Hub genes are highlighted with red borders.
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Figure 5.   (A) Integrated lncRNA-miRNA-mRNA regulatory network of blue mi-modules, turquoise lnc-
modules and tan, cyan and midnight blue m-modules. (B) Regulatory sub-network of the integrated lncRNA-
miRNA-mRNA network. miRNAs are represented by diamonds, lncRNAs by rectangles, in m-modules ellipses 
show regular proteins and parallelograms show transcription factors. Edges are indicated by activating or 
inhibiting arrows based on the sign of correlation between modules. Nodes with red edges represent hub genes 
in the original networks.
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opportunity in combining MYC inhibitors with immunotherapies has recently been reported63. MYCL has been 
found to be amplified or overexpressed in many tumour types64.

Based on our results down-regulated expression of bta-miR-149 indirectly inhibits MYCL transcription 
factor functions by suppressing its negative effects on ENSBTAG00000049801, ENSBTAG00000051777, and 
ENSBTAG00000055157 lncRNAs.

Furthermore, Fig. 5a has shown that bta-mir-149 indirectly promotes the expression of the transcription 
factors ETV4, GTF3C1, MAFB, MESP1, SOX10 and UBTF. These TFs are stimulated by the lncRNAs ENS-
BTAG00000055157, ENSBTAG00000051777, ENSBTAG00000050989, ENSBTAG00000049801 and ENS-
BTAG00000002749. The down-regulated expression of bta-mir-149 by suppressing its negative regulation on 
these lncRNAs promotes the action of downstream TFs. To explain the role of these TFs, ETV4 is involved in 
proliferation and induction of differentiation-associated genes65 and promotes breast cancer cells66, SOX10 has a 
positive regulation on epithelial cell proliferation67, GTF3C1 has been introduced as an immune-related marker 
for breast cancer68 by modulating cell proliferation, invasion, adhesion, angiogenesis and survival69, MAFB 
regulates dendritic cell maturation, the master regulator of the immune response70, is an inducer of monocytic 
differentiation71, and macrophage development72. Mesoderm posterior 1 (MESP1), which belongs to the family 
of basic helix-loop-helix transcription factors and is a master regulator of mesendoderm development, has also 
been shown to play a critical role in proliferation as a cancer oncogene gene73. The last TF, Upstream Binding 
Transcription Factor (UBTF), is known for transcriptional and chromatin modulation and has been reported 
to act as a transcriptional repressor of viral gene expression74. Regarding the related roles of these transcription 
factors, they can be regulated by the common pathways to manage the expression genes of bovine mastitis.
Mir-615, detected as a hub in the network Fig. 3c constructed by the assigned royalblue mi-module and the 
green semi-preserved m-module, is another interesting miRNA in our results that needs more focus. A bovine 
miR-615 sequence obtained from miRbase (release Mar. 2023) is 92 nucleotides long and represents a highly 
conserved sequence75.

Research has shown conflicting results on the key role of Mir-615 as a tumour suppressor with an inhibitory 
role in cell proliferation, migration, and invasion76,77 or as a tumour promoter, inhibiting apoptosis and thereby 
contributing to tumour growth, proliferation, invasion and migration78,79. Apoptosis, as a highly regulated pro-
cess of cell death required for the development and homeostasis of multicellular organisms, is a key feature of 
mammary gland development and function and is critical for the removal of milk-secreting alveolar epithelial 
cells during lactation and post-lactational involution80. Programmed cell death often accompanies the death of 
the infectious agent and may promote efficient clearance of the pathogen. Activation or prevention of cell death 
may be a critical factor in the outcome of infection81. Conclusive and direct evidence for the involvement of 
apoptosis in Str. uberis-induced mastitis has not been provided. Based on our results, mir-615 with significantly 
16-fold up-regulated in DE analysis of the original paper of our datasets21 may be a mediator of apoptosis for Str. 
uberis infection. Searched results in enrichment analysis output of mir-615’s targets showed positive regulation 
of the apoptotic process has been significantly enriched by targets. Taken together, these findings illustrated 
that up-regulation of mir-615 through negative regulation of downstream targets may have an inhibitory role in 
apoptosis and may be a reason to justify the previous finding that illustrated Str. uberis can persistently colonise 
the mammary gland without elevating somatic cell count82.

Another hub miRNA presented in Fig. 3d, miR-29b, affects the lactation activity of dairy cow mammary epi-
thelial cells by DNA hypermethylation of the promoters of important lactation-related genes83. Previous studies 
have shown that miR-29b is repressed by the NF-κB pathway, a key modulator of the inflammatory response84. 
The association of miR-24-1 (hub in Fig. 3a) with the NF-κB pathway has been previously reported85. Previ-
ous studies have shown that miR-29b is repressed by the NF-κB pathway, a key modulator of the inflammatory 
response84. The association of miR-24-1 (hub in Fig. 3a) with the NF-κB pathway has been reported previously85.

Previous research has shown that miR-133a (hub in Fig. 3c) exacerbates inflammatory responses by targeting 
and inhibiting the expression of sirtuin-186.

Other hub miRNAs (mir-10162, mir-12027, mir-2300a, mir-2328-3p, mir-2376, mir-6521) are new and not 
enough information was found about them.

Our results also identified genes with the highest association with upstream regulators, including ABAT 
(Fig. 3b), ENSBTAG00000050205 (Fig. 4a), NRXN2 (Fig. 4b) and ENSBTAG00000052846 (Fig. 4c), which have 
not been previously reported in mastitis but may play an important role in this disease based on the following 
literature review results. GABA, the major inhibitory neurotransmitter, is reported to be a potent immunomodu-
latory molecule that is metabolised by the action of the enzyme Aminoutyrate aminotransferase (ABTA). Amin-
obutyrate aminotransferase (ABTA) has been detected in macrophages, CD4+ T cells and peripheral human 
monocytes87. The new gene ENSBTAG00000050205, shown in Fig. 4a, showed 99.81% identity to LTBP2 using 
blastn in NCBI88. Latent transforming growth factor-beta (TGF-beta)-binding protein (LTBP) has been shown 
to play a key role in apoptosis89.

NRXN2 as a potential regulator of inflammatory pain90 shown in Fig. 4b. New gene ENSBTAG00000052846 
with 99.3% identity to NT5C3A using blastn software88 presented in Fig. 4c. Previous research suggests that 
NT5C3A mediates feedback inhibition of proinflammatory cytokine production by acting epigenetically to 
block NF-κB signalling output91.

Conclusion
To improve our understanding of systems biology, it is crucial to gain insight into the regulatory components, 
such as miRNAs, lncRNAs and TFs, that have the potential to influence the expression of immune genes in the 
mammary gland upon exposure to a particular pathogen. These findings may provide a promising avenue for 
improving the diagnosis and treatment strategies for mastitis diseases in the dairy industry. Our research using 
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the advanced capabilities of WGCNA, such as module detection and preservation analysis, has identified some 
potential regulatory genes (miRNA, lncRNA and TFs). Interestingly, most of these genes identified as regula-
tors with significant roles in immune response, inflammation and apoptosis are novel in the field of mastitis. 
However, further experimental work is needed to validate our findings and elucidate the importance of these 
networks in bovine mastitis.

Data availability
The datasets analyzed during the current study are available in the NCBI’s Gene Expression Omnibus (GEO) 
under the accession number GSE51856 and GSE51858, https://​www.​ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​cgi?​acc=​
GSE51​856 and https://​www.​ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​cgi?​acc=​GSE51​858 respectively.
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