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Synthetic OCT‑A blood vessel 
maps using fundus images 
and generative adversarial 
networks
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Vessel segmentation in fundus images permits understanding retinal diseases and computing 
image‑based biomarkers. However, manual vessel segmentation is a time‑consuming process. 
Optical coherence tomography angiography (OCT‑A) allows direct, non‑invasive estimation of 
retinal vessels. Unfortunately, compared to fundus images, OCT‑A cameras are more expensive, less 
portable, and have a reduced field of view. We present an automated strategy relying on generative 
adversarial networks to create vascular maps from fundus images without training using manual 
vessel segmentation maps. Further post‑processing used for standard en face OCT‑A allows obtaining 
a vessel segmentation map. We compare our approach to state‑of‑the‑art vessel segmentation 
algorithms trained on manual vessel segmentation maps and vessel segmentations derived from 
OCT‑A. We evaluate them from an automatic vascular segmentation perspective and as vessel density 
estimators, i.e., the most common imaging biomarker for OCT‑A used in studies. Using OCT‑A as a 
training target over manual vessel delineations yields improved vascular maps for the optic disc area 
and compares to the best‑performing vessel segmentation algorithm in the macular region. This 
technique could reduce the cost and effort incurred when training vessel segmentation algorithms. 
To incentivize research in this field, we will make the dataset publicly available to the scientific 
community.

Fundus cameras enable the assessment of the retina in a non-invasive, radiation-free fashion. Both portable and 
inexpensive, they are frequently used in large population screening studies providing the most common retina 
imaging modality to date. While multiple retinal structures (e.g., various retinal lesions, optic disc, fovea, and 
choroidal vessels) are visible in fundus photographs, retinal blood vessels are some of the most studied. Vessels 
are useful in the diagnosis and prognosis of retinal  diseases1 and important in the identification of image-based 
biomarkers associated with conditions like diabetes, glaucoma, and  hypertension2. Most image-based vascular 
biomarkers (e.g., fractal dimension, tortuosity, artery-to-vein ratio) rely crucially on a precise segmentation of 
the retinal vessels. However, manually creating an accurate vessel segmentation is a tedious and time-consuming 
process unfeasible in many applications, such as disease screening, risk factor computation, or imaging biomarker 
research on large datasets. According to the Wisconsin Reading Center, a segmentation map of all vessels in a 45° 
fundus image takes between 30 and 45 min for good quality images and up to an hour for images of poor qual-
ity. Even when segmenting a subset of vessels, limited to the optic nerve, and using a semi-automatic approach 
such as the Integrative Vessel Analysis (IVAN, University of Wisconsin, Madison) software (Wong et al. 2004), 
it takes about 15 min per image.

Automatic vessel segmentation approaches have been an active area of research for at least 20  years3. The 
best results have been achieved by supervised techniques implementing modifications of fully convolutional 
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neural networks (FCNNs)4, 5. When evaluated on publicly available datasets, these approaches have attained 
performance remarkably close to that of manual  readers3, 6, 7. However, due to the difficulty of creating manual 
vessel segmentations, training and validation of these algorithms rely on a limited number of samples represent-
ing only a fraction of the morphological variations of the retinal vasculature, especially for non-healthy retinas. 
Furthermore, manual segmentation of capillary plexi, i.e., small blood vessels, is particularly hard from fundus 
images as they are not always visible.

Optical coherence tomography angiography (OCT-A) is a relatively novel image modality visualizing blood 
flow in retinal vessels and microcapillary plexi not clearly visible on fundus images. Near-infrared light permits 
OCT-A to discriminate static tissues from blood flow, hence allowing blood flow to act as a contrast agent to 
create vascular maps. Contrary to fluorescein angiography, OCT-A does not require the injection of invasive 
contrast and visualizes capillary structures more precisely. En face images visualize individual vascular layers at 
different depths segmented from the OCT-A volume  scans8–10. These images allow for a much better visualization 
of microcapillary plexi than fundus images.

The most common image biomarker computed from en face OCT-A is the local vessel density around the 
macula and the optic  disc8, 11. This computation does not require supervised machine learning relying on manual 
segmentations. However, current commercial OCT-A cameras have limitations: the complex optics of OCT-A 
cameras make them more expensive, less portable, and with a reduced field of view (FOV) compared to fundus 
cameras. Therefore, it is not always feasible to use OCT-A in population-based studies or low-resource settings.

In this work, we propose a novel strategy, synthetic OCT-A, to create improved vessel maps estimated from 
fundus camera images. Instead of training a fully convolutional neural network (FCNN) to map a fundus image 
to a manually segmented vasculature, we train a FCNN to map a fundus image to an en face OCT-A image. We 
use a custom conditional generative adversarial network (cGAN): our model consists of a generator synthesiz-
ing en face OCT-A images from corresponding areas in fundus photographs and a discriminator judging the 
resemblance of the synthesized images with respect to the real en face OCT-A images. We evaluate the resulting 
synthetic OCT-A in two sets of experiments. First, we compute local vessel densities around the macula and 
the optic disc, which are the de facto standard measurements taken from en face OCT-A. Second, we perform 
a pixel-by-pixel analysis to evaluate the vessel segmentation quality of the synthetic OCT-A. We compare our 
approach with two FCNN-based vessel segmentation  algorithms4, 5 currently reporting some of the best vessel 
segmentation performance on public datasets. Unlike our method, which avoids the need for expert manual 
vessel delineation, these approaches were pre-trained using a large number of manual vessel maps. Addition-
ally, we evaluate one of these algorithms on retinal vessel segmentation after training it using binary vessel maps 
captured from OCT-A. Our results demonstrate that it is beneficial to train vessel segmentation methods on 
the vasculature observed in OCT-A, as manual segmentation of vessels might not correctly capture vascular 
morphology. Our method is an alternative to manual vessel segmentation, enabling the creation of datasets of 
fundus images and vascular labels.

Our contributions are as follows:

1. To our best knowledge, we propose the first method to generate synthetic OCT-A en face images from fundus 
images alone without requiring manual vessel segmentation maps.

2. We can generate a full 45° synthetic OCT-A en face image from a 45° fundus photograph, even if trained 
with a smaller FOV.

3. To our best knowledge, we present the first retinal dataset integrating fundus photographs and aligned 
OCT-A images and make it publicly available for the scientific community.

Previous work
Recent retinal vessel segmentation algorithms typically leverage representation learning algorithms, more spe-
cifically fully convolutional neural networks (FCCNs). One such network is U-Net, a FCCN widely used in 
biomedical  imaging12. U-Net is composed of an encoding path and a decoding path. The encoding path has 
convolutional layers with different number of filters to learn complex image features at different scales. The 
decoding path considers deconvolutional layers to reconstruct a segmentation map at its original resolution. 
Skip connections are included between the two paths to facilitate the feature learning process and alleviate the 
vanishing gradient problem. Since its introduction, researchers have improved and modified this standard model 
to address the specific needs of different imaging problems. Recent work in retinal image segmentation considers 
distinct U-Net versions addressing the challenges of automatically delineating retinal blood vessels. Some U-Net 
variations are worth mentioning in this context.

State-of-the-art methodologies to conduct semantic segmentation often consider an attention mechanism 
that directs the model to focus on relevant aspects of data. For example, Guo et al. proposed the Spatial Atten-
tion U-Net (SA-UNet), which integrates  DropBlock13 and batch normalization (BN) to prevent overfitting on 
training  data4. Spatial attention allows the model to enhance important features (i.e., vasculature) and sup-
press unimportant features. The FANet model, proposed by Li et al. uses a dual attention block, which utilizes 
horizontal and vertical pooling operations to produce an attention map for long-range contextual information 
 aggregation14. AG-Net, proposed by Zhang et al. considers a multi-scale, multi-label segmentation network that 
has an attention-guided filter that replaces skip connections and upsampling  layers15. Other relevant approaches 
have investigated the use of multiple networks into a single model to better process image features by creating 
refined feature maps. The IterNet model, proposed by Li et al. joins multiple iterations of a mini U-Net creating 
a deeper model that learns to fix a large number of false vessel patterns through  optimization5. Weight sharing 
and skip connections allow the model to avoid overfitting and produce reliable vessel  segmentations5. GLUE 
by Lian et al.16 combines local and global information by using a Weighted U-Net and a Weighted Residual 
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U-Net in sequence. This approach uses patches from the fundus images, which receive specific global or local 
pre-processing for each sub-network to process global or local features independently. Khanal and  Estrada17 
introduced a segmentation pipeline using two U-Nets, the first creating vessel likelihood maps and the second 
classifying ambiguous pixels in selected patches across the images.

Related studies have explored the synthesis of phantom images from different modalities, including OCT-A 
and fluorescein angiography (FA). A study exploring the synthesis of FA from fundus images demonstrated that 
a cGAN model can capture complex morphological information of the vasculature and produce a synthetic FA 
image with high resemblance to the original  FA18. However, the authors’ intent differs from what is proposed 
in this work as they aimed to generate a fundus-to-FA transformation leading to images that are perceptually 
hard to distinguish from the original images. Instead, our aim is to generate vessel representations equivalent 
or better than those achieved by standard vessel segmentation algorithms without using manually segmented 
vasculature maps. OCT-A images allow for a more precise visualization of small capillaries than FA; therefore, 
fundus-to-en face OCT-A transformations will permit generating improved vessel representations. Additionally, 
acquiring OCT-A images does not require injecting a contrast medium, thus facilitating the creation of relatively 
large datasets to train deep learning approaches. Another recent cGAN model applied to retina images is by Lee 
et al.19 who created retinal blood flow maps by constructing a synthetic OCT-A image from its OCT counterpart 
using a cGAN. Their results showed that an approximation to the retinal blood flow could be estimated from 
OCT structural features, again a different aim from that of our work.

Further work exploring the transformation of fundus images to OCT-A is still needed. Such a transformation 
would be particularly valuable as it could exploit the advantages of each imaging modality. Fundus photography 
is widely available and easily performed. OCT-A reveals precise and quantitative information about vascular 
structures and blood perfusion with much higher precision than standard fundus images.

Methods
Materials
The study was performed in accordance with the guidelines from the Helsinki Declaration and was approved 
by the UTHealth IRB with protocol HSC-MS-19-0352. At the time of writing, the study enrolled a total of 112 
patients. Patient statistics can be observed in Table 1.

Trained graduate research assistants acquired the images after patient stabilization, clinical evaluation, and 
having obtained informed consent. The images were transferred to a HIPAA compliant cloud storage. Image 
acquisition was conducted using the OptoVue iCam fundus camera and OptoVue Avanti OCT camera with 
OCT-A reconstruction software AngioVue. The iCam camera acquires fundus images with a resolution of 
2592 × 1944 pixels and FOV of 45°. The Avanti camera can capture OCT-A volumes with FOV 4.5 × 4.5 mm for 
disc and, 6 × 6 mm and 3 × 3 mm for macula. Both optic disc-centered and macula-centered images were col-
lected. The dataset contains 2D superficial (Inner limiting membrane (ILM) to inner plexiform membrane (IPL)) 
en face projections of the OCT-A images. The original resolution for the en face images was 400 × 400 pixels for 
optic disc and 6 × 6 mm macula; 3 × 3 mm macula images had a resolution of 304 × 304 pixels.

Image alignments were conducted to match local features from OCT-A optic disc and macula with corre-
sponding regions in the fundus images. This process used our custom software visualizing OCT-A as foreground 
and fundus images in the background. An operator conducted Euclidian transformations (resizing, rotation, 
and translation) on the OCT-A images to match the vascular patterns observed in the fundus images. In cases 
where distortion effects limited the operator from conducting an exact alignment, registration of large vessels 
was prioritized.

The Wisconsin Reading Center at University of Wisconsin-Madison, masked to patients’ characteristics, 
graded the fundus and OCT-A images for quality and any abnormalities. Quality control involved checking for 
clarity, focus, lighting, and noise in the images. Additionally, artifacts unique to OCT-A images were evaluated, 
including motion artifacts, projection artifacts, blink lines, and banding. These quality assessments resulted in 
a score for each image based on a 3-point scale, with 0 representing high quality (i.e., grading can be performed 
with high confidence) and 2 poor quality (inadequate for grading). Only fundus images scored 0 or 1 and 
OCT-A images scored 0 were included in the experiments. The final image count was 104 fundus and 185 en 
face OCT-A images.

Table 1.  Patient demographics.

Variable

Number of patients 112

Age: mean, years (SD) 45.3 (17.2)

Gender (% male) 48.20%

Race

20.5% Asian, 22.3% Black,

54.5% White,

2.7% Other

Ethnicity (% Hispanic) 17.80%

Number of patients without retinal pathologies 99 (88.39%)
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Preprocessing
Preprocessing steps were performed on the fundus and OCT-A images to improve model optimization and 
convergence during training, match the morphological information between modalities, and mitigate potential 
errors in the generation of synthetic OCT-A.

First, a background mask from each fundus photo was identified from intensity values to eliminate noisy 
pixels surrounding the fundus and OCT-A areas not observed in the fundus images after alignment. Second, 
signal intensities were normalized to a -1 to 1 range for both modalities. Finally, the optic disc and macular areas 
observable in OCT-A were cropped from the fundus images to obtain crops with similar FOV as the OCT-A. 
No modifications were performed on the modalities’ channels; therefore, retaining the RGB channels from the 
fundus images and the single channel of the OCT-A.

Synthetic OCT‑A generation
Our method to synthesize OCT-A images is based on cGANs, which have been consistently used in image-
to-image transformation  tasks20. Our model includes two sub-networks: a generator and a discriminator. The 
networks are set to compete against each other in a minimax game. The generator is tasked with creating realistic 
en face OCT-A samples from a modeled data distribution conditioned by patches extracted from fundus images; 
the discriminator is set to distinguish between real and synthetic OCT-A patch samples. Our approach follows a 
similar optimization strategy as conducted in the training of the pix2pix model; however, it differs in the design 
of the generator network as we utilize a different architectural  backbone21. Figure 1 shows a depiction of how 
our patch-based model is optimized to transform an input fundus photo into an en face OCT-A image. Red and 
green squares represent the sampled optic disc and macular regions, respectively.

The magenta squares represent patches sampled within the OCT-A disc and macula images and their coun-
terparts extracted from the fundus image. These patches are used as input and target for the GAN model to learn 
mappings between the modalities.

The model’s generator follows the U-Net architecture with encoding and decoding paths mapping features 
between modalities. The network includes skip connections to preserve features that would otherwise be lost 
in a pure encoder-decoder model. The discriminator follows a convolutional neural network architecture with 
convolutional and max-pooling layers encoding image information into a final class vector. Figure 2 shows the 
overall model architecture.

Successive convolutional layers break down an input fundus photo into features maps of lower resolution. 
Corresponding deconvolutional layers transform the feature maps back into the original resolution, creating the 
synthetic version of the OCT-A image. Our deep generator permits localizing large vessels within the images, 
which are complemented with smaller vasculature added in subsequent layers. Regarding the model training, 
optimization was conducted using Adam with equal learning rates (2e−4) for both sub-networks. The loss 

Figure 1.  Overview of the Conditional Generative Adversarial Network (cGAN) Patch-based Training. The 
GAN model represents both the discriminator and generator used in our approach. Red squares represent optic 
disc regions and green squares enclose the macular regions. Magenta squares represent the patches sampled 
from the images to train and evaluate the model.
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function has two components: the mean squared error between synthetic and real OCT-A samples (1) and 
the adversarial loss between sub-networks (2). The generator network (G) minimizes the adversarial loss by 
synthesizing OCT-A images (G(x)) that the discriminator (D) cannot distinguish from real OCT-A samples. 
The discriminator maximizes the adversarial loss by correctly distinguishing synthetic samples coming from 
the generator and real OCT-A samples. In the overall model loss (3), the mean squared error is multiplied by a 
factor λ = 100 to control for artifacts created by the adversarial loss.

where x is the input image, i.e., a local patch in the fundus image, and y is the target image, i.e., the correspond-
ing local patch of the enface OCT-A image. The train/validation/test split was done on a patient basis to avoid 
any data leakage due to having retinas of the same patient in two splits. We used 25 subjects for training, 5 for 
validation and the remaining 82 subjects for testing. Using only 25 subjects for training allowed us to roughly 
match the number of images available in common datasets for vessel segmentation.

At each epoch, 20 patches were randomly sampled from training data. For each OCT-A patch, a complemen-
tary fundus photo crop extracted from the macular or optic disc region was used. The patch resolution was set to 
512 × 512 × 3. Overall, at each epoch, the model was trained with 120 pairs of patches and validated with 9 pairs 
of patches. The model was trained for 1000 epochs to learn representations capturing the information from the 
OCT-A and the fundus images. To avoid overfitting, the weights for the model version that reached the lowest 
GAN loss were retained. Reflections and rotations were used to augment the data.

Creating a test set required generating synthetic OCT-A images of the macula and optic disc that could be 
evaluated against the original OCT-A images. To create the set of synthetic OCT-A images, patches were extracted 
from the 45° FOV fundus photo and processed using the model. A sliding-window approach was followed by 
sampling patches every 8 pixels along the X axis; when completed, a step of 8 pixels was taken along the Y axis. 
The process was repeated until the sliding window reached the end of the image. Values from overlapping patches 
were averaged. Finally, the resulting images were cropped at the macular and optic disc regions matching the 
FOV observed in the 3 mm and 6 mm macular and 4.5 mm optic disc OCT-A in the ground truth. In other 
words, only the areas enclosed in green in Fig. 6 are used to train the algorithm.

SA‑UNet and IterNet
Two vessel segmentation methodologies based on convolutional neural networks, SA-UNet4and  IterNet5, were 
used for comparison. Both methods report some of the best segmentation performance on publicly available 
retinal datasets (CHASE-DB122 and  STARE23).

(1)LL1(G) = Ex,y,z[||y − G(x)||]

(2)LADV (G,D) = Ex,y[logD(x, y)] + Ex,y[log1− D(x,G(x)]

(3)LGAN = argminmaxLADV (G,D)+ �LL1(G)

Figure 2.  cGAN model architecture. The generator network used is shown on the left and the discriminator 
network on the right. Vertically oriented values at the left of each convolutional layer rectangle represent the 
resolution of the feature map, values at the top of each rectangle represent the number of filters/channels for a 
given layer.



6

Vol:.(1234567890)

Scientific Reports |        (2023) 13:15325  | https://doi.org/10.1038/s41598-023-42062-9

www.nature.com/scientificreports/

SA-UNet is a model aimed at alleviating the need for thousands of image samples by means of a spatial atten-
tion module that refines image features adaptively. The model makes use of  DropBlock13 and batch normalization 
to accelerate convergence. Additionally, the architecture has a reduced number of layers compared to the original 
U-Net addressing the possibility of overfitting training data. We employed a version of SA-UNet provided by the 
authors, it was trained using data from CHASE-DB1 for a total of 28 images with full 30°/45° FOV.

IterNet employs iterations of mini U-Nets to process and learn the key features of retinal vessels. This approach 
is advantageous as subsequent networks can learn to fix systematic errors in the vasculature segmentation; addi-
tionally, a deeper model allows learning more vasculature patterns showing in retinal images. We used a version 
of the model provided by the authors; weights were trained using data from DRIVE, CHASE-DB1, and STARE 
for a total of 56 images with full 30°/45° FOV. Note that a 30°/45° FOV in a fundus image leads to significantly 
higher number of patches than a single en face OCT-A image (see Fig. 1).

In addition, we trained a separate instance of IterNet to segment OCT-A vessels from fundus images. We 
trained this model using the fundus images and aligned vessel masks segmented from OCT-A. We refer to this 
method as ‘IterNet w/OCT-A’ for simplicity. The training procedure follows that of the synthetic OCT-A, hav-
ing patches from the macular and optic disc regions in the fundus photos as input and vessel segmentations 
obtained from the OCT-A images as target. The patch sampling strategy and data augmentation is the same as 
for the synthetic OCT-A, given that the images resolution and number of channels remain unchanged. As for 
the loss function, binary cross entropy measuring the error between the model’s outputs and the ground truth 
binary masks was used. The model was optimized using Adam with learning rate equal to 1e−3. The model was 
trained for 1000 epochs; the weights that yielded lowest validation loss were retained.

Evaluation
Among the methods considered in this work, the synthetic OCT-A is the only one trained with the raw OCT-A 
images. Therefore, we computed image synthesis metrics (mean absolute error (MAE) and structural similarity 
index (SSIM)) on the synthetic OCT-A images with respect to the OCT-A ground truth. For the test dataset, the 
MAE was 40.78 (SD = 3.53) and the SSIM was 0.08 (SD = 0.04).

Further experiments evaluated four distinct vessel segmentation methods. Two of them relying on manual 
vessels segmentation from fundus images (IterNet and SA-UNet), and the other two relying on vessels deline-
ated from OCT-A using a vessel segmentation algorithm (Synthetic OCT-A Segmented and IterNet w/ OCT-A).

Estimating the vessel density at the optic disc and macular regions is a standard process in the quantification 
of vascular morphology in OCT-A  data8, 24, 25. We used this assessment to evaluate how well the segmentations 
from the different methods approximated the ground truth OCT-A grade vessels based on a biomarker (den-
sity) computed from them. We computed precision-recall curves and Areas Under the Curve (AUCs) to assess 
segmentation performance at the pixel level.

In our evaluation, we considered versions with vessels segmented from both ground truth and synthetic 
OCT-A to highlight only the pixels belonging to blood vessels. To segment the vessels from OCT-A images, we 
used the OCT-A vessel segmentation methodology proposed by Ma et al.26. The algorithm uses OCTA-Net, a 
model encompassing different stages of neural networks processing coarse and fine features in en face OCT-A 
images to classify pixels into vessel and non-vessel. The model was trained on 229 OCT-A images each with a 
corresponding manual vessel delineation provided by an ophthalmologist. The ROSE dataset is a fully independ-
ent dataset to our own, provided by the  authors26.

We first computed Pearson and Spearman correlations for the vessel density measures; specifically, we 
explored the correlation of vessel density for the optic disc and macula between synthetic and real OCT-A 
images with the quadrants defined by the Early Treatment Diabetic Retinopathy Study (ETDRS) grid. This grid 
breaks down the images into four quadrants corresponding to nasal, temporal, superior, and inferior regions. 
Our experiments used an ETDRS grid with an outer diameter of 3 mm and inner diameter of 1 mm.

Software in commercial cameras employ similar strategies for the extraction of vasculature density measures 
(sometimes without any segmentation) by not relying on manual annotations, given that if the image is correctly 
acquired, any pixel in the en face OCT-A is a representation of blood perfusion. While vascular density can be 
computed from non-binarized, raw OCT-A en face images, we did not conduct this experiment as the synthetic 
OCT-A would have had an unfair advantage over the vessel segmentation approaches trained on the binarized 
vasculature.

In addition, using the target OCT-A pixel-level labels and the probability scores from the different models, 
we computed precision-recall (PR) curves for macular and optic disc regions. We also provide visualizations for 
the segmentations produced by both proposed and established methods considered.

Results
We compare the proposed method using a cGAN and the state-of-the-art vessel segmentation techniques. 
Tables 2 and 3 show Pearson and Spearman correlation results for the vessel density measures from the real 
OCT-A to the corresponding measures in the synthetic OCT-A, the IterNet, the IterNet w/ OCT-A, and the 
SA-UNet vessel segmentations. Significant correlations for the quadrants measured in the macular region are 
observed for both synthetic OCT-A and the IterNet segmentation. IterNet shows slightly better performance. For 
the optic disc, synthetic OCT-A and the IterNet w/ OCT-A models achieve the best performance, with signifi-
cant correlation in all ETDRS quadrants as opposed to the other methods, for which measures do not correlate.

Figures 3 and 4 show the precision-recall curves for the optic disc and macular regions comparing the syn-
thetic OCT-A and the other vessel segmentations methods. The synthetic OCT-A and the IterNet w/OCT-A bet-
ter detect retinal blood vessels in the optic disc and are able to find smaller capillaries given high precision despite 
poor recall. While IterNet is better at capturing macular blood vessels, the overall performance is comparable 



7

Vol.:(0123456789)

Scientific Reports |        (2023) 13:15325  | https://doi.org/10.1038/s41598-023-42062-9

www.nature.com/scientificreports/

across the methods given that the obtained values are similar. Figure 5 shows a comparison of the proposed 
and the other methods for the optic disc and macular regions, including fundus and OCT-A images at the same 
regions. Synthetic OCT-A and IterNet w/ OCT-A provide a better morphological estimate of the retinal blood 
vessels compared to IterNet and SA-UNet, both trained on manually segmented vessel maps. We note that the 
vessels located by the synthetic OCT-A and IterNet w/ OCT-A are tinier and their path more tortuous than those 
of the vessels in the segmentations produced by the other methods. We attribute these differences to the manual 
delineation used for training the other segmentation methods.

Figure 6 shows vessel segmentation maps for an input fundus photograph. Compared to the IterNet and SA-
UNet models that saw manual vessel segmentations for the complete 45° FOV fundus photograph during train-
ing, the synthetic OCT-A and IterNet w/ OCT-A models were trained only on samples from the optic disc and 
macular regions. Nonetheless, both techniques can represent the retinal vasculature outside these areas correctly.

Figure 7 shows detailed comparisons between synthetic OCT-A and the other vessel segmentations methods 
for specific areas of the images. Regions enclosed by red squares depict blood vessels where the synthetic OCT-A 

Table 2.  Optic Disc Vessel Density Correlation between Real OCT-A Images and Vessel Segmentation 
Methods. *denotes significant correlation p < 0.05.

Disc

Synthetic OCT-A IterNet SA-UNet IterNet w/ OCT-A

Pearson Spearman Pearson Spearman Pearson Spearman Pearson Spearman

Superior 0.364* 0.372* − 0.108 − 0.093 − 0.02 − 0.021 0.448* 0.438*

Temporal 0.375* 0.353* 0.175 0.17 0.158 0.168 0.294* 0.333*

Nasal 0.401* 0.371* 0.158 0.159 0.101 0.194 0.583* 0.513*

Fovea 0.334* 0.300* − 0.014 − 0.058 0.025 − 0.002 0.380* 0.417*

Inferior 0.422* 0.476* 0.14 0.111 − 0.003 0.017 0.534* 0.527*

Table 3.  Macula Vessel Density Correlation between Real OCT-A Images and Vessel Segmentation Methods. 
*denotes significant correlation p < 0.05.

Macula

Synthetic OCT-A IterNet SA-UNet IterNet w/ OCT-A

Pearson Spearman Pearson Spearman Pearson Spearman Pearson Spearman

Superior 0.154 0.063 0.074 0.062 0.157 0.212 0.192 0.247*

Temporal 0.310* 0.286* *0.194 0.199* − 0.007 0.071 0.401* 0.381*

Nasal 0.206 0.121 0.253* 0.177* − 0.1 − 0.058 0.383* 0.336*

Fovea − 0.147 0.003 − 0.177 − 0.261 − 0.061 − 0.066 0.258* 0.363*

Inferior 0.331* 0.317* 0.293* 0.285* 0.001 0.088 0.345* 0.347*

Figure 3.  Pixel-wise comparison of our synthetic OCT-A and the two state-of-the-art vessel segmentation 
algorithms against a binarized OCT-A vasculature on the Macula 3 × 3 mm FOV (test set).
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yields better representation of vessels given improved branches with less artificial smoothing as opposed to those 
observed in the IterNet, the IterNet w/OCT-A, and the SA-UNet segmentations.

In addition, regions enclosed by green squares show areas where the synthetic OCT-A was not better or 
performed poorly compared to the state-of-the-art vessel segmentation approaches, for example, by creating 
vessel branches nonexistent in the reference OCT-A and also by creating non-contiguous vessels as opposed to 
the vessels observed in the other methods. All algorithms’ outputs have been made available at https:// doi. org/ 
10. 5281/ zenodo. 64766 39.

Discussion
This study introduced an approach to visualize retinal perfusion from fundus images by employing a generative 
adversarial network to synthesize en face 45 degree OCT-A images from local patches of fundus and OCT-A 
image pairs. OCT-A images provide more precise measures of perfusion, including vessels and other vascular 

Figure 4.  Pixel-wise comparison of our synthetic OCT-A and the two state-of-the-art vessel segmentation 
algorithms against a binarized OCT-A vasculature on the Macula 3 × 3 mm FOV (Test set).

Figure 5.  Examples of the output of Synthetic OCT-A and vessel segmentation for the Optic Disc and Macula. 
Each row represents a set of disc or macula images from subjects belonging to the test set. The “Fundus” 
column shows the image patch used as input; the “OCT-A” column shows the en face OCT-A used to train the 
Synthetic OCT-A; the “Synthetic OCT-A” shows the output of the proposed method that is able to highlight 
vessels and avascular zone; “SA-UNet” and “IterNet” columns show the output of the two state-of-the-art vessel 
segmentation algorithms used for comparison. The IterNet w/ OCT-A Vessels columns shows the output from 
the IterNet model that has been trained on vessels segmented from OCT-A.

https://doi.org/10.5281/zenodo.6476639
https://doi.org/10.5281/zenodo.6476639
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structures, compared to manual segmentation on fundus images, which may face difficulties such as lack of depth 
information and lower resolution when assessing retinal microvasculature. In fact, the pixels in the OCT-A en 
face are a direct measurement of blood perfusion, with the inevitable addition of noise. As such, the role of a 
segmentation algorithm in the context of OCT-A can also be considered as a ‘denoising’ process to extract the 
vascular structures from the accompanying noise found in the raw OCT-A images.

Furthermore, we demonstrated that employing a segmentation network on top of the synthetic OCT-As 
permits segmenting retinal vessels. While our method does not rely on manual delineations to visualize retinal 
perfusion, isolating specific structures from the images will require segmentation techniques like the supervised 
approach by Ma et al.26. However, it should be noted that this is not the only available method to obtain a binary 
vessel mask from OCT-A as other techniques not relying on supervision could be used for post-processing27.

Compared to fluorescein angiography, OCT-A does not require the injection of contrast and permits visual-
izing capillaries more precisely. However, some limitations were observed in the adoption of the OCT-A as a 
vascular ground truth. First, inter-modality registration was necessary for the model to correctly map pixel-level 
features between modalities. Also, noise and perfusion artifacts had to be removed to prevent bias in the vessel 
maps. The former was addressed using a rigid registration algorithm; the latter was performed using an existing 
vessel segmentation  algorithm26.

We conducted vessel density analysis to assess how the proposed and established methods (IterNet and SA-
UNet) captured retinal vasculature from the fundus images using vessels segmented from OCT-A as the ground 
truth. Segmenting retinal vessels from fundus photos with the microvascular precision of OCT-A is a difficult task 
due to the limitations of fundus images compared to OCT-A, such as lacking depth and blood flow information. 
Compared to the methods trained on manual vessel segmentations from fundus imaging, methods using OCT-A 
as a target for training (synthetic OCT-A and IterNet w/OCT-A) better represent blood vessels at the optic disc 
region based on the vessel density and vessel segmentation metrics. IterNet trained on vessel masks delineated 
from OCT-A was also a better estimator of macular vessel density than all other approaches. This indicates that 
training on OCT-A vessel information helps obtain more precise delineations of retinal vasculature.

We noticed three relevant qualitative aspects of the vasculature detected by the synthetic OCT-A. First, it 
tends to detect smaller vessels and non-smooth structures, although it might result in increased false positives at 
times. Second, vessels within the optic disc region are better represented in the synthetic OCT-A than in manual 
segmentations, probably due to difficulties encountered by annotators when segmenting the overexposed area 
of the optic nerve. Finally, when the method is applied beyond the OCT-A’s FOV, it correctly detects vessels in 
areas of the retina never seen in training data. This is indicative of the good generalizability of the approach.

Figure 6.  Example of vessel segmentations and synthetic OCT-A from a full 45° FOV fundus image. The 
synthetic OCT-A is able to generate an estimation of the retinal vasculature and the avascular zone of the full 
45° FOV even if it was trained only on smaller FOV from the fundus images and corresponding OCT-A images.
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The generation of synthetic OCT-A leveraged a vanilla U-Net as a backbone. Despite not implementing any of 
the recent improvements of the basic U-Net, such as attention (SA-UNet)4, multi-stages5, residual  connections16, 
or  transformers28, the model was able to match and, in some cases, outperform the baselines. Implementing a 
more complex backend is likely to result in performance improvements as the results using the IterNet w/ OCT-A 
suggest, yet this would have to be tested in the synthesis of OCT-A.

There are some limitations to our proposed framework. One of them is the Euclidean registration. Due to 
lens-induced distortions, the rigid inter-modality alignment was not perfect near the image borders. As a result, 
the adversarial loss would erroneously penalize synthetic images in these areas. This problem was deemed 
marginal and not worth addressing with nonrigid registration. Another limitation is that our model does not 
create a vessel segmentation but rather an estimation of the en face OCT-A corresponding to a fundus image. 
Further postprocessing is required to extract vessels accurately from the synthetic OCT-A image. However, 
this could also be considered advantageous, as there are other potential uses of synthetic OCT-A beyond vessel 
segmentation. One example is the estimation of the avascular zone, currently only conducted with OCT-A or 
other angiography techniques. Another aspect to consider is that SA-UNet and IterNet were tested using the 
network weights provided by the authors, which were trained using fundus images different from the ones used 
to train our synthetic OCT-A approach. This is likely to disadvantage our approach, as SA-UNet and IterNet 
were trained on much larger image datasets. To conduct a fair evaluation, we trained a version of IterNet on 
vessels segmented from OCT-A. Our results showed that this approach attained improved vessel segmentation 
for both macula and optic disc areas. This further reinforces our hypothesis, suggesting an added benefit in 
training segmentation models using information extracted from OCT-A. Finally, refinement of our algorithm 
will require additional pairs of fundus and OCT-A images, compared to our approach, creating a dataset with 
manually delineated vessel segmentations will be the most cost-effective approach in some settings. This study 
introduced a strategy to map fundus images to an en face OCT-A image, creating precise vascular segmenta-
tions with less effort as manual delineation is unnecessary in our methodology. Being the first effort of its kind, 
it is likely that this synthetic OCT-A algorithm could be further improved. Therefore, as a contribution to the 
ongoing efforts by the scientific community and to motivate interest in this line of research, we make our data 
available for non-commercial research at https:// doi. org/ 10. 5281/ zenodo. 64766 39.

While limited information is observed in fundus images, OCT-A permits visualizing additional vascular 
information; however, due to its limited availability it is not feasible for many applications. As suggested by our 
results, synthetic OCT-A permits extracting detailed vascular information from fundus images alone which has 
important implications for screening pathologies and triaging patients.

Figure 7.  Example of vessel segmentations and synthetic OCT-A for optic disc and macula. The synthetic 
OCT-A produces an estimation of the vasculature that better captures the morphology and ramifications of 
small vessels (red squares) but also creates discontinuities in the vessel path (green squares).

https://doi.org/10.5281/zenodo.6476639
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This paper compared and contrasted methodologies for estimating retinal vasculature using enface OCT-A 
as training target. In addition to standard segmentation trained directly with vessel segmented with OCT-A, 
we proposed a modality transformation model to obtain a synthetic version of the OCT-A modality from a 
corresponding fundus photograph. Quantitative and qualitative evaluations against state-of-the-art vessel seg-
mentation models demonstrated how OCT-A could be used as an alternative to manually delineated vascular 
maps simplifying the creation of vascular labels for retinal datasets.

Future work will focus on experimenting with enhancements of the synthesis model building blocks (e.g., 
attention, multi-staging) and on combining the OCT-A synthesis with a classic vessel segmentation approach to 
obtain an improved version of the synthetic OCT-A. In addition, we will experiment with uses of the synthetic 
OCT-A beyond vessel segmentation, such as the estimation of the avascular zone.

Data availability
Source images and output from the algorithm presented are available for non-commercial research purposes at 
https:// zenodo. org/ record/ 64766 38.

Received: 20 January 2023; Accepted: 5 September 2023

References
 1. You, S., Bas, E., Erdogmus, D. & Kalpathy-Cramer, J. Principal curved based retinal vessel segmentation towards diagnosis of reti-

nal diseases. In 2011 IEEE First International Conference on Healthcare Informatics, Imaging and Systems Biology 331–337 (2011). 
https:// doi. org/ 10. 1109/ HISB. 2011. 39.

 2. Abràmoff, M. D. et al. Automated analysis of retinal images for detection of referable diabetic retinopathy. JAMA Ophthalmol. 131, 
351–357 (2013).

 3. Singh, S. & Tiwari, R. K. A review on retinal vessel segmentation and classification methods. In 2019 3rd International Conference 
on Trends in Electronics and Informatics (ICOEI) 895–900 (2019). https:// doi. org/ 10. 1109/ ICOEI. 2019. 88625 55.

 4. Guo, C. et al. SA-UNet: Spatial attention u-net for retinal vessel segmentation. In 2020 25th International conference on pattern 
recognition (ICPR) 1236–1242 (2021). https:// doi. org/ 10. 1109/ ICPR4 8806. 2021. 94133 46.

 5. Li, L., Verma, M., Nakashima, Y., Nagahara, H. & Kawasaki, R. IterNet: Retinal image segmentation utilizing structural redundancy 
in vessel networks. In 2020 IEEE Winter Conference on Applications of Computer Vision WACV (2020). https:// doi. org/ 10. 1109/ 
WACV4 5572. 2020. 90936 21.

 6. Abdulsahib, A. A. et al. Comprehensive review of retinal blood vessel segmentation and classification techniques: intelligent 
solutions for green computing in medical images, current challenges, open issues, and knowledge gaps in fundus medical images. 
Netw. Model. Anal. Health Inform. Bioinform. 10, 20 (2021).

 7. Chen, C., Chuah, J. H., Ali, R. & Wang, Y. Retinal vessel segmentation using deep learning: A review. IEEE Access 9, 111985–112004 
(2021).

 8. Kleerekooper, I., Houston, S., Dubis, A. M., Trip, S. A. & Petzold, A. Optical coherence tomography angiography (OCTA) in 
multiple sclerosis and neuromyelitis optica spectrum disorder. Front. Neurol. 11, 1665 (2020).

 9. Luisi, J., Liu, W., Zhang, W. & Motamedi, M. En-face optical coherence tomography angiography for longitudinal monitoring of 
retinal injury. Appl. Sci. Basel Switz. 9, 2617 (2019).

 10. Moreira-Neto, C. A., Lima, L. H., Zett, C., Pereira, R. & Moreira, C. En-face OCT and OCT angiography analysis of macular 
choroidal macrovessel. Am. J. Ophthalmol. Case Rep. 21, 101012 (2021).

 11. de Carlo, T. E., Romano, A., Waheed, N. K. & Duker, J. S. A review of optical coherence tomography angiography (OCTA). Int. J. 
Retin. Vitr. 1, 5 (2015).

 12. Ronneberger, O., Fischer, P. & Brox, T. U-Net: Convolutional networks for biomedical image segmentation. In Medical Image Com-
puting and Computer-Assisted Intervention—MICCAI 2015 (eds. Navab, N., Hornegger, J., Wells, W. M. & Frangi, A. F.) 234–241 
(Springer International Publishing, 2015). https:// doi. org/ 10. 1007/ 978-3- 319- 24574-4_ 28

 13. Ghiasi, G., Lin, T.-Y. & Le, Q. V. DropBlock: A regularization method for convolutional networks. In NeurIPS (2018).
 14. Li, K. et al. Accurate retinal vessel segmentation in color fundus images via fully attention-based networks. IEEE J. Biomed. Health 

Inform. 25, 2071–2081 (2021).
 15. Zhang, S. et al. Attention guided network for retinal image segmentation (2019). https:// doi. org/ 10. 48550/ arXiv. 1907. 12930.
 16. Lian, S. et al. A global and local enhanced residual U-net for accurate retinal vessel segmentation. IEEE/ACM Trans. Comput. Biol. 

Bioinform. 18, 852–862 (2021).
 17. Khanal, A. & Estrada, R. Dynamic deep networks for retinal vessel segmentation. Front. Comput. Sci. https:// doi. org/ 10. 3389/ 

fcomp. 2020. 00035 (2020).
 18. Tavakkoli, A., Kamran, S. A., Hossain, K. F. & Zuckerbrod, S. L. A novel deep learning conditional generative adversarial network 

for producing angiography images from retinal fundus photographs. Sci. Rep. 10, 21580 (2020).
 19. Lee, C. S. et al. Generating retinal flow maps from structural optical coherence tomography with artificial intelligence. Sci. Rep. 9, 

5694 (2019).
 20. Goodfellow, I. et al. Generative adversarial nets. In Advances in Neural Information Processing Systems, Vol. 27 (Curran Associates, 

Inc., 2014).
 21. Isola, P., Zhu, J.-Y., Zhou, T. & Efros, A. A. Image-to-image translation with conditional adversarial networks. In 2017 IEEE Confer-

ence on Computer Vision and Pattern Recognition. CVPR 5967–5976 (2017).
 22. Owen, C. G. et al. Measuring retinal vessel tortuosity in 10-year-old children: Validation of the computer-assisted image analysis 

of the retina (CAIAR) program. Investig. Ophthalmol. Vis. Sci. 50, 2004–2010 (2009).
 23. Hoover, A., Kouznetsova, V. & Goldbaum, M. Locating blood vessels in retinal images by piecewise threshold probing of a matched 

filter response. IEEE Trans. Med. Imaging 19, 203–210 (2000).
 24. Robbins, C. B. et al. Characterization of retinal microvascular and choroidal structural changes in Parkinson disease. JAMA 

Ophthalmol. 139, 182–188 (2021).
 25. Santos, T. et al. Swept-source OCTA quantification of capillary closure predicts ETDRS severity staging of NPDR. Br. J. Ophthalmol. 

Bjophthalmol https:// doi. org/ 10. 1136/ bjoph thalm ol- 2020- 317890 (2020).
 26. Ma, Y. et al. ROSE: A retinal OCT-angiography vessel segmentation dataset and new model. IEEE Trans. Med. Imaging 40, 928–939 

(2021).
 27. Breger, A., Goldbach, F., Gerendas, B. S., Schmidt-Erfurth, U. & Ehler, M. Blood vessel segmentation in en-face OCTA images: A 

frequency based method. Preprint at https:// doi. org/ 10. 48550/ arXiv. 2109. 06116 (2022).
 28. Chen, D. et al. PCAT-UNet: UNet-like network fused convolution and transformer for retinal vessel segmentation. PLoS ONE 17, 

e0262689 (2022).

https://zenodo.org/record/6476638
https://doi.org/10.1109/HISB.2011.39
https://doi.org/10.1109/ICOEI.2019.8862555
https://doi.org/10.1109/ICPR48806.2021.9413346
https://doi.org/10.1109/WACV45572.2020.9093621
https://doi.org/10.1109/WACV45572.2020.9093621
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.48550/arXiv.1907.12930
https://doi.org/10.3389/fcomp.2020.00035
https://doi.org/10.3389/fcomp.2020.00035
https://doi.org/10.1136/bjophthalmol-2020-317890
https://doi.org/10.48550/arXiv.2109.06116


12

Vol:.(1234567890)

Scientific Reports |        (2023) 13:15325  | https://doi.org/10.1038/s41598-023-42062-9

www.nature.com/scientificreports/

Acknowledgements
This work is supported by the Translational Research Institute for Space Health through NASA Cooperative 
Agreement NNX16AO69A. RC is supported by the National Eye Institute. Department of Ophthalmology and 
Visual Sciences at UW is funded by an unrestricted grant from Research to Prevent Blindness. IC is supported by 
a training fellowship from the Gulf Coast Consortia, on the NLM Training Program in Biomedical Informatics 
& Data Science (T15LM007093). LG is also supported in part by NIH grants U01AG070112 and R01NS121154, 
and a Cancer Prevention and Research Institute of Texas grant (RP 170668). RC and MB were supported in 
part by an Unrestricted Grant from Research to Prevent Blindness, Inc. to the UW-Madison Department of 
Ophthalmology and Visual Sciences. This work involved human subjects or animals in its research. Approval 
of all ethical and experimental procedures and protocols was granted by the Institutional Review Board (IRB). 
Finally, we would like to thank the Memorial Hermann Health System for enabling the data collection effort.

Author contributions
Conceptualization: L.G and I.C.; methodology, I.C., S.P. and L.G.; software: S.P. and I.C.; investigation: I.C.; 
resources: I.C., R.A. and J.Y.; data curation: S.A.S., S.S.-M., R.A., J.Y., and M.B.; writing—original draft: I.C. and 
L.G.; writing—review and editing: E.T., R.C. and S.S; supervision: L.G., R.C., S.A.S. and A.J.; funding acquisition: 
L.G., R.C. and S.A.S. All authors have read and agreed to the published version of the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to L.G.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2023, corrected publication 2023

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Synthetic OCT-A blood vessel maps using fundus images and generative adversarial networks
	Previous work
	Methods
	Materials
	Preprocessing
	Synthetic OCT-A generation
	SA-UNet and IterNet
	Evaluation
	Results

	Discussion
	References
	Acknowledgements


