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Epigenomic analysis reveals 
a unique DNA methylation 
program of metastasis‑competent 
circulating tumor cells in colorectal 
cancer
Aida Bao‑Caamano 1,2,3, Nicolás Costa‑Fraga 1,2,3,9, Laure Cayrefourcq 4,5, 
María Amalia Jácome 6, Aitor Rodriguez‑Casanova 1,2,3,7,9, Laura Muinelo‑Romay 3,8,9, 
Rafael López‑López 3,7,9,10,13*, Catherine Alix‑Panabières 4,5,11,13* & 
Angel Díaz‑Lagares 1,3,9,12,13*

Circulating tumor cells (CTCs) and epigenetic alterations are involved in the development of metastasis 
from solid tumors, such as colorectal cancer (CRC). The aim of this study was to characterize the 
DNA methylation profile of metastasis‑competent CTCs in CRC. The DNA methylome of the human 
CRC‑derived cell line CTC‑MCC‑41 was analyzed and compared with primary (HT29, Caco2, HCT116, 
RKO) and metastatic (SW620 and COLO205) CRC cells. The association between methylation and 
the transcriptional profile of CTC‑MCC‑41 was also evaluated. Differentially methylated CpGs were 
validated with pyrosequencing and qMSP. Compared to primary and metastatic CRC cells, the 
methylation profile of CTC‑MCC‑41 was globally different and characterized by a slight predominance 
of hypomethylated CpGs mainly distributed in CpG‑poor regions. Promoter CpG islands and 
shore regions of CTC‑MCC‑41 displayed a unique methylation profile that was associated with 
the transcriptional program and relevant cancer pathways, mainly Wnt signaling. The epigenetic 
regulation of relevant genes in CTC‑MCC‑41 was validated. This study provides new insights into the 
epigenomic landscape of metastasis‑competent CTCs, revealing biological information for metastasis 
development, as well as new potential biomarkers and therapeutic targets for CRC patients.
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Abbreviations
AZA  5-Aza-2′-deoxycytidine
DMCpGs  Differentially methylated CpGs
CpG  Cytosine-phosphate-guanine
CpGI  CpG island
CRC   Colorectal cancer
CTC   Circulating tumor cells
TFBS  Transcription factor-binding sites

Colorectal cancer (CRC) is one of the main causes of cancer-related deaths in the  world1, with 0.9 million deaths 
in  20202. The 5‐year survival rate ranges from 90 to 14% depending on whether they are diagnosed at early or 
advanced  stages3. The mortality of this disease is highly associated with the development of the metastasis cas-
cade, in which circulating tumor cells (CTCs) serve a fundamental causal  role4,5. CTCs are tumor cells that spread 
from primary tumors (or metastatic sites) and can colonize distant tissues to form  metastases5,6. The study of 
CTCs in recent years has provided valuable information about cancer metastasis, leading to the development of 
clinical applications. In this sense, the enumeration of CTCs in the peripheral blood of metastatic CRC patients 
provides prognostic information about the outcome of this  disease7. Although relevant advances in understand-
ing of the molecular properties of CTCs have been obtained in recent years, the molecular characterization of 
CTCs continues to be very challenging due to the low presence of these cells in the peripheral blood of cancer 
 patients5. Therefore, it is important to take advantage of CTC-derived cell line models to increase our knowledge 
about the metastatic  process8.

Recently, Cayrefourcq et al. established the first human CTC-derived cell line of CRC, designated CTC-
MCC-41. This cell line was isolated from the peripheral blood of a nonresectable metastatic CRC patient before 
starting first-line chemotherapy. CTC-MCC-41 cells are metastasis-competent cells with a stable intermediate 
epithelial-mesenchymal phenotype and stem cell-like  properties9. This cell line has been characterized at the 
transcriptional level, revealing the differential expression of genes involved in relevant cancer-related pathways, 
such as energy metabolism and DNA  repair10.

DNA methylation is an epigenetic mechanism that regulates gene expression. This epigenetic modification 
consists of the incorporation of a methyl group  (CH3) into the 5′ carbon of cytosines in cytosine-phosphate-
guanine (CpG) dinucleotides to produce 5-methylcytosine (5mC)11. Cancer cells are characterized by an aberrant 
DNA methylation profile, which may be different between primary and metastatic  tumors12,13. Recently, it has 
been described that colorectal CTCs may undergo aberrant methylation in some particular  genes14. However, 
the DNA methylome of colorectal CTCs with the ability to initiate and support metastasis formation is still 
unexplored. In this context, it is important to characterize the DNA methylation pattern of this subset of CTCs 
to better understand the metastatic process and obtain new clinical applications for cancer patients.

Therefore, in this study, we analyzed the DNA methylome of the metastasis-competent CTC-MCC-41 cell line 
in comparison with primary (HT29, Caco2, HCT116, RKO) and metastatic (SW620 and COLO205) CRC cell 
lines. This epigenomic analysis revealed that metastasis-competent cancer CTCs displayed a distinct methylation 
program with respect to primary and metastatic tumor cells which is able to regulate the transcriptional profile 
of CTCs. This analysis enabled the identification of aberrantly DNA methylated genes and pathways, providing 
relevant biological information in the context of metastasis and discovering potential biomarkers and therapeutic 
targets of CTCs with clinical implications for cancer patients.

Materials and methods
Cancer cell lines and treatments
The characteristics of all the human CRC cell lines used in this study are indicated in Supplementary Table 1. 
The cell line CTC-MCC-41 (RRID:CVCL_0I26) was recently stablished and characterized by coauthors of this 
 work9,10,15. This cell line was cultured using Corning Ultra-Low attachment cell culture flasks (Merck) and RPMI-
1640 medium (Merck) supplemented with 10% fetal bovine serum (FBS) (Merck), 1% penicillin/streptomycin 
solution (Gibco, Thermo Fisher Scientific), 1% l-glutamine (Merck), 1% insulin-transferrin-selenium (ITS-G) 
(Gibco, Thermo Fisher Scientific) basic human fibroblast growth factor (bFGF) (Miltenyi Biotec) at a final con-
centration of 10 ng/mL and human epidermal growth factor (hEGF) (Miltenyi Biotec) at a final concentration 
of 20 ng/mL. The primary tumor cell lines HT29 (RRID:CVCL_0320), Caco2 (RRID:CVCL_0025), HCT116 
(RRID:CVCL_0291), and RKO (RRID:CVCL_0504); and the metastatic cell lines COLO205 (RRID:CVCL_0218) 
and SW620 (RRID:CVCL_0547) used in this study were all purchased from the American Type Culture Col-
lection (ATCC) (Rockville, MD). The cell lines from ATCC were cultured according to its recommendations 
with the following media: RKO and Caco2 with EMEM, HT29 and HCT116 with McCoy’s 5A, COLO205 with 
RPMI-1640, and SW620 with Leibovitz’s L-15. All media were supplemented with 1% penicillin/streptomycin 
(Gibco, Thermo Fisher Scientific) and 10% FBS (Merck), except for Caco2 (HTB-37, ATCC®), for which 20% 
FBS was used according to ATCC culture guides and previous  publications16. All the cells used in this study were 
grown at 37 °C with 5%  CO2, and all experiments were performed with mycoplasma-free cells. To promote DNA 
demethylation, the CTC-MCC-41 cell line was treated with 5-aza-2′-deoxycytidine (AZA). Briefly, 2.5 ×  106 cells 
were plated in Corning™ Ultra-Low attachment cell culture flasks (Merck) and treated with 5 μM AZA for 72 h. 
DMSO (Merck) was used as a control.

Isolation of DNA and RNA from cell lines
Total genomic DNA was isolated from cell lines using a standard high salt method based on SDS/Proteinase K. 
The isolated DNA was treated with RNAse A (Qiagen) following the manufacturer’s recommendations and stored 
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at − 80 °C until analysis. All DNA samples were quantified with the Qubit 4 fluorometric method (Invitrogen) 
using the Qubit dsDNA BR (Broad Range) Assay Kit (Invitrogen). Total RNA was isolated from cell lines using 
TRIzol (Invitrogen) according to the manufacturer’s protocol, quantified using a NanoDrop One spectropho-
tometer (Thermo Scientific) and stored at − 80 °C until analysis.

Genome‑wide DNA methylation analysis by EPIC arrays
Total genomic DNA (500 ng) of 3 passages of the cell lines CTC-MCC-41 (P12, P13 and P14), HT29 (P2, P3 and 
P4), and COLO205 (P2, P3 and P4) was converted by sodium bisulfite using the EZ DNA Methylation kit (Zymo 
Research). In addition, 500 ng of total genomic DNA from one passage of the cell lines Caco2, HCT116, RKO, 
and SW620 was also converted by sodium bisulfite with the EZ DNA Methylation kit (Zymo Research). Following 
the manufacturer’s protocol, the bisulfite-converted DNA was hybridized using the Infinium MethylationEPIC 
array (EPIC), which cover over 850,000 CpG sites along the human genome. Whole-genome amplification and 
hybridization were performed, followed by single-base extension and analysis on a HiScan (Illumina) to assess 
the cytosine methylation states. Image intensities were extracted using GenomeStudio (V2011.1) Methylation 
Module (1.9.0) software from Illumina. Data quality control was assessed with GenomeStudio and BeadArray 
Controls Reporter (Illumina) based on the internal control probes present on the array. The methylation score of 
each CpG from samples that passed this quality control was represented as the β-value and previously normalized 
for color bias and background level adjustment and quantile normalization across arrays. β-values were obtained 
as the ratio of the fluorescent signal of the methylated (M) probe relative to the sum of the M and unmethylated 
(U) probes (β = M/(M + U)). The β-values range from 0 (no methylation) to 1 (completely methylated). Probes 
and sample filtering involved a two-step process for removing SNPs and unreliable β-values with a high detection 
p value > 0.01. After this filtering step, the remaining CpGs were considered valid for the study. Unsupervised 
hierarchical clustering heatmaps with the ComplexHeatmap package (2.10.0)17, scatter plots and principal com-
ponent analysis (PCA) of β-values were carried out using the R environment. Gene Ontology (GO) enrichment 
analysis of biological and Panther pathways for the methylation profiles was evaluated using GENECODIS.

Locus‑specific DNA methylation analysis by pyrosequencing and qMSP
Total genomic DNA (500 ng) of 3 passages of the cell lines CTC-MCC-41 (P12, P13 and P14) and HT29 (P2, 
P3 and P4) was converted by sodium bisulfite with the EZ DNA Methylation kit (Zymo Research) following the 
manufacturer’s recommendations. For pyrosequencing, primer sequences (Supplementary Table 2) were designed 
with PyroMark Assay Design 2.0 (Qiagen). Standard PCRs were carried out with ~ 10 ng of bisulfite-converted 
genomic DNA. PCR products were observed with 2% agarose gels before pyrosequencing. A PyroMark Q24 
Vacuum Workstation was used for the immobilization and preparation of PCR products. Pyrosequencing reac-
tions were performed using a PyroMark Gold Q24 Reagent Kit (Qiagen, Germany) following the manufacturer’s 
instructions. Methylation values were obtained using PyroMark Q24 Software 2.0 (Qiagen). For quantitative 
methylation-specific PCR (qMSP), primer sequences (Supplementary Table 3) were designed using Primer3 (v. 
0.4.0). The DNA methylation levels for qMSP were determined in a StepOne Plus system (Applied Biosystems). 
Each reaction contained 2 µL of bisulfite-converted DNA as a template, 10 µL Power SYBR™ Green PCR Master 
Mix (Thermo Fisher) and 0.3 µL of each forward and reverse 10 µM primer in a total volume of 20 µL. The DNA 
methylation level determined by qMSP was expressed as a percentage of methylation (%) according to the fol-
lowing  formula18: Methylation (%) = 100/[1 + 2^(CTCG–CTTG)], where  CTCG and  CTTG represent the threshold 
cycle (CT) of the methylation and unmethylation status, respectively. The methylation assays were conducted 
in triplicate using the Human Methylated & Nonmethylated DNA set (Zymo Research) as positive and negative 
controls. Water was used as a no-template control.

Gene expression data obtained from microarray analysis
The gene expression data from the cell lines CTC-MCC-41 and HT29 analyzed with microarray methodology 
were obtained from a previous work by Alix-Panabières et al.10. Briefly, in this study, the transcriptomes (total 
RNA) of CTC-MCC-41 and HT29 cells were analyzed using Human Genome U133 Plus 2.0 GeneChip arrays 
(Affymetrix).

Gene expression analysis by qRT‒PCR
For quantitative RT‒PCR (qRT‒PCR), the isolated RNA was first treated with DNase I using the Turbo DNA-free 
Kit (Invitrogen) according to the manufacturer’s recommendations. Next, 1–2 μg of RNA was retrotranscribed 
using the SuperScript First-Strand Synthesis System for RT‒PCR (Invitrogen) according to the manufacturer’s 
recommendations. Reactions were performed in triplicate on a StepOne Plus system (Applied Biosystems) using 
25–200 ng cDNA, 10 μL Power SYBR Green PCR Master Mix (Applied Biosystems) and 0.3 μL of the 10 μM spe-
cific primers in a final volume of 20 μL. The results were normalized to the expression level of β2-microglobulin 
(endogenous control) in each sample. The primers used for qRT‒PCR analysis were previously  described10 and 
are indicated in Supplementary Table 4.

Statistical analysis
For genome-wide DNA methylation analysis, differentially methylated CpGs (DMCpGs) were determined using 
empirical Bayes methodology. P values were corrected for multiple testing (false discovery rate, FDR) using the 
Benjamini‒Hochberg method, and a threshold of p value < 0.05 was selected for significance. For the valida-
tion assay of DNA methylation levels and for the evaluation of expression differences after AZA treatment, the 
Kolmogorov‒Smirnov test was first used to evaluate the normality of the distribution, and the Mann‒Whitney 
U test or Student´s t test was used accordingly. GraphPad Prism 6.0 software and the R statistical environment 
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(version 4.2.0) were used for statistical analysis. All expressed p values were calculated with two-tailed tests and 
were considered significant when the p value < 0.05.

Results
CTC‑MCC‑41 cells show a globally different DNA methylation profile than primary HT29 tumor 
cells
The DNA methylome of CTC-MCC-41 was evaluated with respect to the primary CRC cell line HT29 using EPIC 
arrays. After quality control, we obtained 852,917 valid CpGs for the analysis (Fig. 1A). Principal component 
analysis (PCA) of these CpGs revealed a different methylation profile between CTC-MCC-41 and HT29 (Fig. 1B), 
with both cell types classified into different groups. In agreement with this, CTC-MCC-41 also showed a very 
different methylation profile with respect to HT29  (R2 = 0.68) (Fig. 1C). In particular, we were able to identify 
188,185 significant differentially methylated CpGs (DMCpGs) (FDR adjusted p value < 0.05) with a difference 
of methylation (Δβ-value) greater than 0.20 (Δβ-value > |0.20|) between CTC-MCC-41 and HT29 cancer cells. 
Notably, a hierarchical clustering analysis revealed a DNA methylation profile able to clearly differentiate CTC-
MCC-41 from HT29 cancer cells (Fig. 1D). Supplementary Table 5 shows the top 50 DMCpGs found between 
CTC-MCC-41 and HT29.

The 188,185 DMCpGs previously identified showed a wide distribution throughout all the chromosomes 
of the genome, showing a higher number of hypomethylated CpGs (114,621 CpGs; 61% of all DMCpGs) than 
hypermethylated CpGs (73,564 CpGs; 39% of all CpGs) in CTC-MCC-41 respect to HT29 cancer cells (Fig. 1E). 
Interestingly, the hypo- and hypermethylated CpGs of CTC-MCC-41 showed a similar distribution according to 
their CpG context and gene region location (Fig. 1F). In particular, most of these DMCpGs were mainly located 
in regions with low CpG density (open sea), whereas the other CpGs were distributed in regions with a higher 
enrichment of CpGs, such as CpG islands (CpGIs) and shore regions. Regarding the gene region, both the hypo- 
and hypermethylated CpGs were fairly homogeneously distributed throughout promoters, gene bodies and 
intergenic regions. In addition, although most of the CpGs located at transcription factor-binding sites (TFBS) 
did not show methylation changes, some of these CpGs were differentially methylated. These methylation differ-
ences corresponded with a higher number of hypomethylated CpGs located at TFBS (19,651 CpGs; 17% of all the 
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Figure 1.  Genome-wide DNA methylation analysis of CTC-MCC-41 with respect to HT29 primary tumor 
cells. (A) Schematic flowchart used to identify significant differentially methylated CpGs in CTC-MCC-41 
compared to HT29. (B) Principal component analysis (PCA) of DNA methylation data obtained in CTC-
MCC-41 and HT29 cells. (C) Scatter plot representing the mean normalized levels of DNA methylation 
(β-values) in CTC-MCC-41 and HT29 cells. Dots in red show significantly differentially methylated CpGs. (D) 
Hierarchical clustering heatmap of the 10,000 most differentially methylated CpGs (FDR adjusted p value < 0.05) 
between CTC-MCC-41 and HT29. Heatmap shows three different passages (P) of CTC-MCC-41 (P12, P13 and 
P14) and HT29 (P2, P3 and P4). (E, F) Description of the 188,185 differentially methylated CpGs (DMCpGs) 
found in CTC-MCC-41 with respect to HT29 according to (E) chromosome location and methylation status 
and (F) CpG context, gene location and transcription factor-binding sites (TFBS). QC quality control, FDR false 
discovery rate, CpGI CpG island, HypoM hypomethylated, HyperM hypermethylated.
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DMCpGs at TFBS) of CTC-MCC-41 cells than hypermethylated CpGs (11,762 CpGs; 16% of all the DMCpGs 
at TFBS). On the other hand, enhancer regions also showed DMCpGs, but these differences corresponded with 
a small proportion of the CpGs (< 4%) located at these regulatory regions (Supplementary Fig. 1).

CTC‑MCC‑41 cells have a different DNA methylation profile at CpGIs and shore regions of gene 
promoters than primary HT29 tumor cells
The epigenetic deregulation of CpGIs and shores of gene promoters has been described as a very relevant feature 
that occurs in  cancer19,20. Therefore, we decided to focus our analysis on CpGs located in these particular regions. 
Thus, we identified 27,378 CpGs located in CpGIs or shore regions of gene promoters (corresponding to 10,579 
genes) differentially methylated between CTC-MCC-41 and HT29 (Fig. 1A). Importantly, using hierarchical 
clustering analysis, we identified a methylation profile at these CpG-rich promoter regions that was able to clearly 
differentiate CTC-MCC-41 from HT29 cancer cells (Fig. 2A). The top 50 DMCpGs from CpGIs or shore regions 
of gene promoters are represented in Supplementary Table 6. In addition, we carried out a Gene Ontology (GO) 
and Panther pathway analysis with the differentially methylated genes from these CpG-rich promoters, revealing 
an enrichment of relevant biological processes (regulation of transcription, cell adhesion and differentiation, 
apoptosis, cell cycle and proliferation, metabolic processes and DNA repair, among others) and pathways (such 
as Wnt signaling, cadherin pathway, inflammation, angiogenesis and integrin signaling) related to cancer devel-
opment and metastasis (Fig. 2B and Supplementary Fig. 2). The top 10 differentially methylated genes related to 
each biological process and pathway are indicated in Supplementary Table 7–8.

CTC‑MCC‑41 cells exhibit a globally different DNA methylation profile than metastatic 
COLO205 tumor cells
Similar to our previous analysis, the DNA methylome of CTC-MCC-41 was also evaluated with respect to the 
metastatic CRC cell COLO205 with EPIC arrays, allowing the analysis of 852,917 valid CpGs (Fig. 3A). The 
evaluation of the methylation levels of these CpGs using PCA and scatter plot  (R2 = 0.66) showed that CTC-
MCC-41 and COLO205 have different global methylation profiles (Fig. 3B,C). Among the CpGs analyzed, we 
identified 196,748 significant DMCpGs (FDR adjusted p value < 0.05; Δβ-value > |0.20|) between CTC-MCC-41 
and COLO205. Importantly, a hierarchical clustering analysis of these DMCpGs identified a methylation profile 
that clearly differentiates the CTC-MCC-41 from the COLO205 cancer cells (Fig. 3D). The top 50 DMCpGs in 
CTC-MCC-41 with respect to COLO205 are represented in Supplementary Table 9.

The analysis of the 196,748 DMCpGs previously obtained showed that methylation differences are distributed 
throughout the entire genome. Similar to our previous comparison between CTC-MCC-41 and HT29, most of 
the DMCpGs found in CTC-MCC-41 were hypomethylated with respect to COLO205 (116,431 CpGs; 59% of all 
DMCpGs), while the rest (80,317 CpGs; 41% of all DMCpGs) were hypermethylated (Fig. 3E). These DMCpGs 

0 100 200

Wnt signaling pathway

Cadherin signaling pathway

Inflamma�on mediated by chemokine and cytokine

Angiogenesis

Integrin signalling pathway

PDGF signaling pathway

Apoptosis signaling pathway

TGF-beta signaling pathway

FGF signaling pathway

EGF receptor signaling pathway

Endothelin signaling pathway

Panther Pathways

0 500 1000

Regula�on of transcrip�on
Signal transduc�on

Transmembrane transport
Transport

Cell differen�a�on
Cell adhesion

Apopto�c process
Cell cycle

Blood coagula�on
Posi�ve regula�on of cell prolifera�on

Cell division
Cellular protein metabolic process

Metabolic process
Carbohydrate metabolic process

DNA repair
Mito�c cell cycle

Response to drug

Biological Process  

B

No. of genes
(Adjusted p-value < 0.05)

No. of genes
(Adjusted p-value < 0.05)

CT
C-

M
CC

-4
1 

P1
3

CT
C-

M
CC

-4
1 

P1
4

CT
C-

M
CC

-4
1 

P1
2

HT
29

 P
2

HT
29

 P
3

HT
29

 P
4

A

M
et

hy
la

�o
n

0.5

1.0

0.0

Figure 2.  DNA methylation profiles of CpGIs and shore regions of gene promoters in CTC-MCC-41 compared 
to HT29 primary tumor cells. (A) Hierarchical clustering heatmap of the 10,000 most differentially methylated 
CpGs (FDR adjusted p value < 0.05) in CTC-MCC-41 with respect to HT29 and located at CpGIs and shore 
regions of gene promoters. Heatmap shows three different passages (P) of CTC-MCC-41 (P12, P13 and P14) 
and HT29 (P2, P3 and P4). (B) Gene Ontology (GO) analysis representing some of the most cancer-relevant 
biological processes and Panther pathways based on the 10,000 most differentially methylated CpGs of CTC-
MCC-41 compared to HT29 and located at CpGIs and shore regions of gene promoters.
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showed a similar distribution according to their CpG context and gene region location (Fig. 3F), with most of 
the CpGs located in regions with low CpG density (open sea). In addition, the distribution of these CpGs was 
fairly similar between promoters, gene bodies and intergenic regions (Fig. 3F). We also found DMCpGs located 
at TFBS, but these CpGs represented a small fraction of the total CpGs from the TFBS. The methylation differ-
ences found at TFBS corresponded with a higher number of hypomethylated CpGs (19,068 CpGs; 16% of the 
DMCpGs at TFBS) of CTC-MCC-41 cells than hypermethylated CpGs (13,468 CpGs; 17% of the DMCpGs at 
TFBS). In addition, a small proportion of the CpGs (< 5%) located at enhancer regions showed methylation dif-
ferences between CTC-MCC-41 and COLO205 cells (Supplementary Fig. 1).

CTC‑MCC‑41 cells present a different DNA methylation profile at CpGIs and shore regions of 
gene promoters than metastatic COLO205 tumor cells
When we focused the analysis of CTC-MCC-41 and COLO205 at CpGIs and shores of gene promoters, we were 
able to identify 26,828 DMCpGs (Fig. 3A), which corresponded with 10,569 genes. Using hierarchical cluster-
ing analysis, we observed that the CpGIs and shores of gene promoters in CTC-MCC-41 display a distinctive 
methylation profile in comparison with the COLO205 metastatic cancer cells (Fig. 4A). Supplementary Table 10 
shows the 50 DMCpGs located at these regulatory regions. On the other hand, the GO analysis of the differen-
tially methylated genes identified showed the enrichment of key biological processes, including regulation of 
transcription, cell adhesion and differentiation, apoptosis, cell cycle and proliferation, metabolic processes and 
DNA repair. In addition, the Panther pathway analysis revealed an enrichment of important pathways related to 
cancer development and metastasis, such as Wnt signaling, cadherin pathway, inflammation, angiogenesis and 
integrin signaling, among others (Fig. 4B and Supplementary Fig. 3).

CTC‑MCC‑41 cells have a DNA methylation profile different from both primary and metastatic 
cancer cells
After comparing the DNA methylation profile of CTC-MCC-41 with HT29 and COLO205, we wondered whether 
CTC-MCC-41 could have a methylation profile different from both types of CRC cells (primary and metastatic). 
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Thus, considering the DMCpGs previously identified in CTC-MCC-41 with respect to HT29 and COLO205, a 
hierarchical clustering analysis revealed an epigenetic signature of 17,827 CpGs that enabled the distinction of 
CTC-MCC-41 from both HT29 and COLO205 cancer cells (Fig. 5A). Importantly, the tree-based dendrogram 
yielded two arms: one with CTC-MCC-41 and the other with the primary and metastatic cancer cells.

To confirm the existence of a unique CTC methylation signature in CRC, we extended our analysis to other 
CRC cell lines representing primary (Caco2, HCT116, RKO) and distant metastatic (SW620) tumors. First, 
we analyzed the methylation levels of these cancer cell lines with the EPIC array system, and we obtained the 
DMCpGs (Δβ-value > |0.20|) with respect to CTC-MCC-41. Then, considering the DMCpGs obtained in CTC-
MCC-41 with respect to all primary (HT29, Caco2, HCT116, RKO) and metastatic (COLO205 and SW620) 
cancer cells analysed, we obtained a methylation profile of 9,949 CpGs that enabled the classification of CRC 
cells according to their cell type: CTC, primary or metastatic cancer cells (Fig. 5B). In particular, the tree-based 
dendrogram exhibited two clear arms: CTC-MCC-41 was segregated in one branch, and the other cancer cells 
were segregated in another branch, with two well-differentiated groups containing all the primary cancer cells 
(HT29, Caco2, HCT116, RKO) and the metastatic cells (COLO205 and SW620).

The transcriptional program of CTC‑MCC‑41 cells is epigenetically regulated by DNA 
methylation
To determine whether DNA methylation changes at CpGIs and shore regions of gene promoters are able to regu-
late the gene expression of colorectal CTCs, we took advantage of a previous work published by Alix-Panabières 
et al.10, where the transcriptional profile of CTC-MCC-41 was analyzed in comparison with HT29 cancer cells, 
revealing the differentially expressed genes (up- and downregulated) between both cancer cell types. Thus, we 
evaluated the association between these differentially expressed genes and the differentially methylated genes in 
CpGIs and shore regions of gene promoters found in our work when we compared CTC-MCC-41 and HT29 can-
cer cells (Fig. 6A,B). Venn diagram analysis enabled the identification of 769 genes whose hypermethylation was 
associated with transcriptional silencing and 852 hypomethylated genes that were associated with transcriptional 
activation. Importantly, the expression levels of some of the genes identified in our work have been previously 
validated in CTC-MCC-41 with respect to HT29 by Alix-Panabières et al.10 (downregulated in CTC-MCC-41: 
TGFB2, DKK1, GJB6, PTGS2, PDGFC, SMARCA1, and GATA2; upregulated in CTC-MCC-41: BMP7, BCL11A, 
SEMA6A, FN1, ABCB1, CCND2, and GAL). Therefore, to confirm the association observed between expression 
and methylation, we decided to focus our analysis on these previously studied genes and validate the methylation 
status of their promoter CpGs. Supplementary Tables 11–12 show the methylation levels of the hypermethylated 
and hypomethylated genes that were obtained in our genome-wide analysis by EPIC array and selected for valida-
tion. For the validation assay, we used bisulfite pyrosequencing for all the selected genes except for one (GAL), for 
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which we used qMSP methodology. Importantly, for all the genes analyzed, we were able to confirm the expected 
presence of hypermethylation or hypomethylation in CTC-MCC-41 with respect to the HT29 cancer cell line. 
Only in one gene (GATA2) was the methylation level observed after bisulfite pyrosequencing in CTC-MCC-41 
not as high as that obtained by the EPIC array. Figure 6C and D shows the validation of one representative CpG 
for each of the selected genes. Other validated CpGs are indicated in Supplementary Fig. 4. After confirming 
the methylation levels of the selected genes in CTC-MCC-41, we wondered whether the epigenetic program of 
the hypermethylated genes in colorectal CTCs could be reversed. For this purpose, we treated CTC-MCC-41 
cells in vitro with the demethylating agent AZA. Importantly, after AZA treatment, we completely restored the 
expression of the epigenetically silenced genes TGFB2, DKK1, GJB6 and PTGS2 (Fig. 6E).

In addition to these validated genes, it is noteworthy that among the 852 hypomethylated and downregulated 
genes identified in CTC-MCC-41, we also found genes involved in pathways relevant to cancer metastasis, such as 
Wnt signaling (e.g., FZD5, LEF1, ACTA2, ARRB1), the cadherin pathway (e.g., CDH3, LYN, PCDHA1, PCDHA4, 
PCDHA5, PCDHA7, PCDHA12), inflammation (e.g., IKBKB, GNG4, CASK) or angiogenesis (e.g., DLL1, LPXN).

Discussion
Alteration of epigenetic mechanisms, such as DNA methylation, has relevant implications for CRC develop-
ment and  progression21. These epigenetic mechanisms are considered hallmarks of  cancer22. The analysis of the 
epigenomic profiles of tumor cells may help to discover new clinical applications and to understand important 
cancer biological processes, such as metastasis, which is responsible for over 90% of cancer-related  deaths23,24. 
CTCs play a causal role in cancer progression, since the dissemination of these cells from primary tumors or 
metastatic sites may colonize distant tissues and form metastatic  tumors5,6. Thus, in this study, we compared the 
DNA methylome of the human colorectal metastasis-competent cell line CTC-MCC-41 with primary (HT29, 
Caco2, HCT116, RKO) and metastatic (SW620 and COLO205) CRC cell lines, revealing that metastasis-compe-
tent CTCs displayed a unique methylation program completely different from those of primary and metastatic 
tumor cells. To our knowledge, this is the first study that evaluates the DNA methylome of a colon CTC line.

Since the first immortalized cell line (HeLa) was  established25, human cancer-derived cell lines have been 
demonstrated to be fundamental models used in laboratories for many years to understand the biology of cancer 
and pursue clinical  applications21,26,27. Recent findings based on the characterization of hundreds of cell lines 
with omics technologies reinforced the concept of cell line usefulness in medical  research28. In this sense, the 
epigenomic characterization of CTC lines, such as CTC-MCC-41, represents a great opportunity to provide 
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Figure 5.  DNA methylation signature of CTC-MCC-41 with respect to colorectal primary and metastatic 
tumor cells. (A) Hierarchical clustering heatmap with the 17,827 differentially methylated CpGs (FDR adjusted 
p value < 0.05) in CTC-MCC-41 cells compared to HT29 and COLO205 cells, representing primary and 
metastatic tumor cells, respectively. (B) Hierarchical clustering heatmap of the 9,949 differentially methylated 
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insights into the biology and clinical applications of this subset of CTCs at the origin of metastatic relapses in 
cancer patients. CTC-MCC-41 represents a unique model in colon cancer, as it is the only established CTC line 
obtained from a metastatic patient prior to antitumor  therapy9.

In the present study, the epigenomic analysis of CTC-MCC-41 revealed that metastasis-competent colorec-
tal CTCs have a different global DNA methylation profile than primary and metastatic cancer cells. It is also 
noteworthy that we identified that these CTCs are defined by a distinctive methylation signature with respect to 
primary and metastatic cancer cells. Although the global methylation differences observed were fairly similarly 
distributed between hypermethylation and hypomethylation, CTCs showed a slight predominance of hypometh-
ylated CpGs. This hypomethylation was mainly distributed in CpG-poor regions, suggesting that the epigenetic 
regulation of this part of the genome may be important for metastasis-competent CTCs. In cancer, the hypo-
methylation of these regions has been associated with proto-oncogene expression, chromosomal instability, and 
malignant transformation of  tumors29,30. In line with this, other studies have revealed that the cancer cell line 
CTC-MCC-419 and CTCs obtained from peripheral blood of several tumor  types31,32 are characterized by the 
expression of proto-oncogenes and the presence of chromosomal aberrations. On the other hand, with respect 
to CpGs located at TFBS, we also observed that the number of hypomethylated CpGs associated with TFBS in 
CTC-MCC-41 was higher than the number of hypermethylated ones. In this sense, a previous work identified 
that CTCs may undergo methylation changes in CpGs from  TFBS33. Interestingly, although in a small proportion, 
some of the methylation differences were located at the CpGs of enhancers, which are epigenetically regulated 
regions involved in cancer cell plasticity and tumor  progression34.

A relevant feature of cancer cells is the aberrant methylation of promoter CpGIs and shore  regions11,35. In 
our work, we observed that promoter CpGIs and shore regions (CpG-rich promoters) of CTC-MCC-41 are 
characterized by a different methylation profile than primary and metastatic cancer cells. In this sense, the aber-
rant promoter methylation of some particular genes (VIM and SFRP2) has been recently described in CTCs 
from CRC  patients14. Importantly, the methylation differences that we found in the promoter CpGI and shore 
regions of CTCs were highly associated with transcriptional regulation, which is a relevant function of epigenetic 
 mechanisms11. Many of these methylation differences were also associated with the Wnt signaling pathway, sug-
gesting that the alteration of this pathway is a relevant characteristic of metastasis-competent CTCs. In many 
malignancies, including CRC, the alteration of the Wnt pathway is associated with the stemness of cancer  cells36, 
which is also a property previously described in CTC-MCC-41  cells9. In addition to Wnt signaling, the changes 
observed in promoter CpGIs and shore regions of CTC-MCC-41 showed association with other relevant bio-
logical processes and pathways, including apoptosis, metabolism and DNA repair, among others. Importantly, 
a previous work in CTC-MCC-41 showed that the transcriptional program of this cell line is associated with 
changes in the expression of genes involved in these  pathways10.

In cancer, aberrant DNA methylation of CpGI and shore promoters is usually linked to changes in gene 
expression, with a negative correlation between methylation and gene  expression21,37. In line with this, in the 
present work, multiple genes of CTC-MCC-41 showed a negative association between their DNA methylation 
and transcriptional levels. Importantly, in several selected genes, we confirmed promoter hypermethylation 
(TGFB2, DKK1, GJB6, PTGS2, PDGFC, SMARCA1, GATA2) or hypomethylation (BMP7, BCL11A, SEMA6A, 
FN1, ABCB1, CCND2, GAL). One important property of DNA methylation is that the silencing of this mecha-
nism can be reversed with epigenetic drugs (epidrugs), such as DNA demethylating agents. In this sense, the 
5-aza-2′-deoxycytidine drug was able to reverse the epigenetic silencing of some of the hypermethylated genes in 
CTC-MCC-41, including DKK1, TGFB2, GJB6 and PTGS2, confirming the epigenetic regulation of these genes 
by DNA methylation. Altogether, these results indicate that DNA methylation is a regulator of the transcriptional 
program in metastasis-competent CTCs.

In addition, to provide relevant biological information, the aberrantly methylated genes identified in this work 
also represent potential biomarkers and therapeutic targets for metastasis-competent CTCs. For example, we 
have identified the hypermethylation of DKK1, which is a tumor suppressor gene that works as a potent inhibi-
tor of the canonical Wnt signaling pathway to avoid epithelial-mesenchymal transition, cell proliferation and 
metastasis in  cancer38,39. DKK1 has been found to be hypermethylated in several types of tumors, and its tumor 
suppressor activity can be reversed using demethylation  agents40,41, suggesting that hypermethylation of this gene 
may be a new therapeutic target in metastatic-competent CTCs. In line with this, the use of DNA demethylating 
drugs, such as guadecitabine (SGI-110), is under study in metastatic CRC  patients42. On the other hand, the 
hypermethylation of DKK1 has also been identified as a prognostic factor in cancer  patients43,44, indicating that 
the hypermethylation of this gene in CTCs could have clinical implications as a prognostic biomarker.

Importantly, we have identified other potential therapeutic targets in metastasis-competent CTCs that are 
involved in the activation of the Wnt signaling pathway. This is the case for the genes FZD5, LEF1, ACTA2, and 
ARRB1, which showed transcriptional activation associated with hypomethylation in the CTC-MCC-41 cell 
line. Importantly, therapeutic targeting of the Wnt pathway is a promising strategy under study to impair cancer 
cells in several tumors, including CRC 45,46. This is the case, for example, for vantictumab (OMP-18R5), which 
is a fully human monoclonal antibody that inhibits the Wnt pathway through binding of several FZD receptors, 
including  FZD547, which has been evaluated in clinical trials with solid tumors (NCT01973309, NCT01957007, 
NCT02005315). In line with this, the hypomethylation of FZD5 could be a potential biomarker to select patients 
who would benefit from anti-FZD5 therapies. Similarly, the inhibition of LEF1, which is a transcription factor 
with a central role in the Wnt pathway, has shown antitumoral properties in several preclinical  studies48. In 
line with this, we have identified in CTC-MCC-41 cells other promoter hypomethylated genes involved in the 
cadherin pathway (DH3, LYN, PCDHA1, PCDHA4, PCDHA5, PCDHA7, PCDHA12), inflammation (IKBKB, 
GNG4, CASK) or angiogenesis (DLL1, LPXN), suggesting that these genes could also be therapeutic targets for 
metastasis-competent CTCs in CRC patients.
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It has been described that the survival duration of metastasis-competent CTCs in the vascular system rep-
resents one of the most critical parameters that controls the formation of clinical  metastases4. In this sense, 
for example, the activation of Wnt signaling pathway in colorectal tumor cells stimulates stemness properties, 
survival and  proliferation49; suggesting that the activation of this pathway by deregulated epigenetic mechanisms 
in metastasis-competent CTCs could promote the survival of these cells in circulation. Therefore, the use of 
therapies that target Wnt signaling pathway could be a relevant approach to reduce the survival of this type of 
CTCs in the vascular system, which could significantly reduce the risk of  metastasis4.

The epigenetically deregulated genes identified in the metastasis-competent CTCs analyzed in this work open 
the possibility to target and eradicate this subtype of CTCs with new drugs or with a combination of existing 
ones. In future studies, it would be interesting to evaluate the epigenetically deregulated genes found in this work 
in peripheral CTCs from CRC patients.

Conclusions
The characterization of the epigenomic profile of CTC-MCC-41 revealed that metastasis-competent CTCs in 
CRC display a globally different DNA methylation program than primary and metastatic tumor cells. These CTCs 
also have a unique DNA methylation profile of their CpG-rich promoters that is associated with relevant cancer 
pathways and has the ability to regulate the transcriptional programs of these cells. The aberrantly DNA methyl-
ated genes identified in this work represent potential biomarkers and therapeutic targets of metastasis-competent 
CTCs that may contribute to the development of new specific therapies directed against this type of CTCs in CRC.

Data availability
The DNA methylation data obtained with EPIC array in this study are publicly available at the Gene Expression 
Omnibus (GEO) repository with the Accession Number GSE220096.
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