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A probabilistic view of protein 
stability, conformational 
specificity, and design
Jacob A. Stern 1, Tyler J. Free 2, Kimberlee L. Stern 3, Spencer Gardiner 4, Nicholas A. Dalley 3, 
Bradley C. Bundy 2, Joshua L. Price 3, David Wingate 1 & Dennis Della Corte 4*

Various approaches have used neural networks as probabilistic models for the design of protein 
sequences. These "inverse folding" models employ different objective functions, which come with 
trade-offs that have not been assessed in detail before. This study introduces probabilistic definitions 
of protein stability and conformational specificity and demonstrates the relationship between 
these chemical properties and the p(structure|seq) Boltzmann probability objective. This links the 
Boltzmann probability objective function to experimentally verifiable outcomes. We propose a novel 
sequence decoding algorithm, referred to as “BayesDesign”, that leverages Bayes’ Rule to maximize 
the p(structure|seq) objective instead of the p(seq|structure) objective common in inverse folding 
models. The efficacy of BayesDesign is evaluated in the context of two protein model systems, the 
NanoLuc enzyme and the WW structural motif. Both BayesDesign and the baseline ProteinMPNN 
algorithm increase the thermostability of NanoLuc and increase the conformational specificity of WW. 
The possible sources of error in the model are analyzed.

The inverse folding protein design problem is to design a protein that folds into a structure with desirable 
properties or function (thermostability, binding affinity, enzymatic activity, etc.)1. The ability to design pro-
teins with desired properties is key to designing new protein-based medicines, materials, and nanotechnology. 
Rational design allows humans to incorporate chemical knowledge into designs2, but manual approaches limit 
the sequence search space to human efficiency and knowledge of chemical principles. Computational protein 
design allows the user to quickly screen millions of sequences and to automate decisions based on an “objective 
function” that mathematically quantifies the quality of a protein design. In computational protein design, the 
choice of an objective function is essential in linking the computational design algorithm to a desired chemical 
function or property3.

One common protein sequence design objective is to find the minimum-energy sequence for a desired protein 
structure4. This approach has been used since the first Rosetta energy function was introduced5, 6, continuing into 
current usage with improved energy functions7. Over the years, a number of algorithms have been developed to 
find the minimum-energy sequence for a given structure8–12.

However, finding the minimum-energy sequence for a given structure does not guarantee that the designed 
sequence folds into the desired structure. As observed by4, minimizing the absolute energy of the sequence for 
the structure can result in sequences with energy minima at different conformations. To address this4, uses gra-
dient descent over sequence space to maximize p(structure|seq) , such that predicted structure matches target 
structure, using trRosetta13 as a model for p(structure|seq).

Several subsequent works attempt to maximize the improved, p(structure|seq) objective. ColabDesign14, 15 uses 
an input optimization method similar to4 but with AlphaFold216 as the structure prediction model. Similarly,17 
uses trRosetta as a model for p(structure|seq) but uses Markov Chain Monte Carlo (MCMC) optimization over 
sequences to maximize the Kullback-Leibler divergence between p(structure|seq) for a designed sequence and 
p(structure|seq) for a “background” structure.

However, the authors of both4 and17 found that optimizing over the inputs of a forward structure predic-
tion model leads to “adversarial” sequences that, while predicted to fold to the target structure, are insoluble in 
practice15, 18. This is a known problem exploited in “adversarial optimization”, where optimizing over the inputs 
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to a model identifies inputs for which the model has high confidence, but which do not lie on the manifold of 
data for which the model makes reliable predictions19.

There have been several attempts to resolve the problem of insoluble adversarial sequences. 4 and17 introduce 
terms to the original objective to increase the probability that sequences fall on the manifold of training data for 
the structure prediction model. 18 attempts to resolve the adversarial problem by using ProteinMPNN (which is 
trained with a p(seq|structure) objective) to redesign protein sequences for backbones designed by17. But all of 
these solutions alter the original design objective such that designed sequences are different from the sequences 
that maximize p(structure|seq).

In this work, we argue for a return to the p(structure|seq) objective function by theoretically linking this 
objective to notions of protein stability and conformational specificity20. Stability describes the energy difference 
between the folded native state and the unfolded denatured state of a protein. Conformational specificity refers 
to how strongly a protein prefers the native state over other folded conformations.

We present formal probabilistic definitions of protein stability and conformational specificity which illustrate 
the relationship between these protein design criteria and the p(structure|seq) objective. The link to protein 
stability and conformational specificity offers experiments that can be used to verify designs and motivates 
careful adherence to the p(structure|seq) objective function when stability and/or conformational specificity is 
the design goal.

Next, we describe “BayesDesign”, a new sequence design algorithm to maximize the p(structure|seq) objective 
without relying on gradient descent or MCMC optimization techniques, thereby avoiding adversarial inputs to 
a p(structure|seq) model. Our approach uses existing models for p(seq|structure) and p(seq) and applies Bayes’ 
Rule to design proteins that maximize p(structure|seq) (see Fig. 1).

Finally, we evaluate the stability and conformational specificity of BayesDesign-designed proteins on two 
model systems: the luminescent NanoLuciferase (NanoLuc) enzyme and the WW beta sheet motif.

Our contributions are as follows:

•	 We mathematically formalize protein design objectives for protein stability and conformational specificity 
and show how they relate to the Boltzmann probability objective function p(structure|seq).

•	 We derive a tractable probabilistic model, “BayesDesign” to design protein sequences maximizing the Boltz-
mann probability objective p(structure|seq) without finding adversarial sequences.

•	 We show that sequences designed by the BayesDesign algorithm increase the stability and conformational 
specificity of proteins structures relative to the native sequences corresponding to those structures.

Theory
Boltzmann probability, stability, and conformational specificity
The probability p(structure|seq) is known as the Boltzmann probability of a protein conformation and relates 
the Gibbs free energy of a state to the probability of a protein existing in that state.

SI Section A.1 introduces probabilistic definitions of protein stability and conformational specificity and shows 
that both are subsets of the Boltzmann objective. This shows that maximizing the Boltzmann objective can be 
expected to increase stability and/or conformational specificity of designed proteins. The effect of this objective 
function on these desirable properties motivates the use of the p(structure|seq) objective and points to wet-lab 
experiments that can measure the effects of maximizing the Boltzmann probability objective.

Bayes’ rule to maximize p(structure|seq)
BayesDesign is a probability model and an algorithm to maximize p(structure|seq) without using gradient-
based or MCMC optimization over the inputs of a deep neural network. We use Bayes’ Rule to rewrite the 
p(structure|seq) objective:

pboltz = p(structure = X|seq = s)

=
e−G(X)/kT

∑
C∈C e−G(C)/kT

K---L-P…

1753624…
Decode Order

ProtXLNet
p(seq)

ProteinMPNN
p(seq|structure)

K-V-L-P…

⊘

Figure 1.   The BayesDesign model for de novo protein design.
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where the second step follows from the fact that p(structure = X) does not depend on the sequence s. This 
allows us to maximize p(structure = X|seq) by using two models, p(seq|structure = X) and p(seq) . We use 
ProteinMPNN18 as a model for p(seq|structure = X) and ProtXLNet13 as a model for p(seq) . This allows us to 
adopt sequence decoding schemes similar to those commonly used in language models instead of optimizing 
over sequences. This approach yields faster sequence design while avoiding adversarial optimization issues. The 
choices of ProteinMPNN and ProtXLNet and the decoding algorithm are described in SI section A.2.1. We note 
that one limitation of applying Bayes’ Rule is that it relies on the argmax operator and thus requires some form 
of a greedy decoding scheme, making it unsuitable for sampling schemes commonly used in autoregressive 
inverse folding models.

Experimental methods
As shown in the theory section, the Boltzmann probability objective is linked to protein stability and conforma-
tional specificity. An additional goal was to design soluble sequences, avoiding the insoluble adversarial sequences 
that plague other approaches using the Boltzmann probability objective. Thus, we evaluate designed sequences 
for stability, conformational specificity, and solubility.

We additionally validate designed sequences by comparing their AlphaFold-predicted structures to the 
AlphaFold-predicted structure of the wild type sequence16.

Evaluation of stability and solubility for NanoLuc
We compare the stability and solubility of the wild type NanoLuc enzyme to sequences designed by the Bayes-
Design and ProteinMPNN algorithms.

NanoLuc has been heavily engineered to increase its enzymatic activity. 21 mutated 16 residues close to 
the active site, resulting in an increase in enzymatic activity by several orders of magnitude. This engineered 
sequence, with an added N-terminal Strep tag, is referred to in this work as the wild type Nanoluc. Using Bayes-
Design and ProteinMPNN, we redesign the enzyme while conserving various combinations of the active site 
and engineered residues, shown in Figure S5 and Table S1/S2. We evaluate the change in stability and solubility 
relative to the wild type sequence.

In vitro validation experiments are conducted using cell-free protein synthesis (CFPS), a versatile expression 
system that is well-suited for experimental in vitro investigations of de novo designed proteins22–24. CFPS is used 
in this work to obtain temperature-dependent protein solubility, which can be used as an indication of relative 
thermodynamic stability25–27, though it is important to note that protein solubility does not guarantee that a 
particular structural conformation is achieved. The BayesDesign mutants, the ProteinMPNN mutants, and the 
wild type NanoLuc are synthesized in vitro.

The expressed proteins are aliquoted and samples are heat treated at temperatures ranging from 37 to 95 ◦ C. 
After heat treatment, the samples are centrifuged, and soluble Nanoluc protein in the supernatant is measured. 
Experimental methods are detailed in the supplementary information.

Evaluation of conformational specificity for WW
We also evaluate the conformational specificity of designed sequences by redesigning the WW domain of human 
protein Pin 1.

The structure of this short 34-residue peptide has been widely characterized28 and it is known to follow a 
two-state model of unfolding. In this study we use the folding reversibility of WW as a proxy for conformational 
specificity. Sequences with high conformational specificity tend to refold to the native conformation after heat 
treatment (i.e. are reversible); others fail to recover the native state due to falling into alternate conformations 
upon refolding29. WW is chosen due to its poor reversibility, as low as 40% in some design studies30. We redesign 
the WW sequence with BayesDesign with the hypothesis that maximizing the Boltzmann probability objective 
will increase the conformational specificity of the native state.

We evaluate conformational specificity via the reversibility of the circular dichroism (CD) spectrum. CD 
measures the wavelength spectrum over a heating and cooling process. WW shows a characteristic peak at 227 
nm that disappears upon thermal denaturation. We evaluate the reversibility of WW (and designed sequences) 
by measuring the percent of the starting CD signal at 227 nm recovered after equilibration at 95 ◦ C and cooling 
back to 25 ◦ C as in31.

We compare the reversibility of the wild type sequence, a sequence designed by BayesDesign, and a sequence 
designed by ProteinMPNN. The rationale for using ProteinMPNN as a baseline is to compare the reversibility of 
sequences designed using the probability ratio of ProteinMPNN and XLNet (i.e. BayesDesign) versus sequences 
designed using the probabilities of ProteinMPNN alone.

Solid-phase peptide synthesis is used to synthesize the native WW sequence, the BayesDesign design, and a 
design by ProteinMPNN (see Tables S3 and S4 and Figure S16 for sequences and characterization).

argmax
s∈S

p(structure = X|seq = s)

= argmax
s∈S

p(seq = s|structure = X)p(structure = X)

p(seq=s)

= argmax
s∈S

p(seq = s|structure = X)

p(seq=s)
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Results
As preliminary validation, we evaluated AlphaFold-predicted structures for NanoLuc wild type and designed 
sequences. AlphaFold-predicted structures for designed sequences aligned closely with the predicted structure 
for the wild type sequence (see Figure S4).

While the hand-engineered wild type NanoLuc showed increased stability relative to the original luciferase 
enzyme21, both the BayesDesign and ProteinMPNN methods used in this study afforded a further increase in 
stability (Fig. 2). Remarkably, the BayesDesign and ProteinMPNN sequences retain solubility after heat treat-
ment at 95 ◦ C. This shows that in silico methods considering the full sequence when redesigning a protein can 
offer a significant increase in stability. Deep learning approaches like these make it possible to quickly redesign 
the entire protein sequence to increase stability, while taking advantage of stability patterns learned from data. 
The observed stability increases are particularly notable in the context of a reported 2% success rate of random 
substitution mutants to increase stability32–36.

Sequence designs that improve stability often do so at the expense of solubility36. Protein solubility is a desir-
able, if not essential, characteristic of active proteins for industrial, medicinal, and other applications26, 36, 37. From 
a biochemical perspective, randomly generated protein sequences are rarely soluble38 and random substitution 
mutations typically decrease protein solubility36. From an optimization perspective, previous gradient-based 

Figure 2.   Experimental NanoLuc thermal stability comparing the wild type NanoLuc to mutants designed with 
ProteinMPNN (M1–M4) or BayesDesign (B1–B4). Each protein was expressed with a cell-free protein synthesis 
system at 37 ◦ C. Parallel aliquots were subjected to 15-min heat treatments at 37, 60, 70, 80, or 95 ◦ C and the 
remaining soluble protein was measured. The solubility data is the average of n = 3 biological replicates and the 
standard deviation error bars are shown as vertical lines. Interpolating lines show the temperature-dependent 
stability trend for each protein mutant.

Figure 3.   All NanoLuc mutants were found to be at least 84% soluble.
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approaches to optimizing the p(structure|seq) objective often resulted in insoluble sequences18, requiring modi-
fication of the objective in order to obtain soluble sequence designs4.

All designed sequences in this work (M1–M4 and B1–B4) have baseline solubility greater than 84% when 
expressed at 37◦ (see Fig. 3). To our knowledge, this work is the first to present soluble protein designs using an 
algorithm that optimizes the unmodified p(structure|seq) objective.

These stabilization results come with an important caveat: the BayesDesign (B1–B4) and ProteinMPNN 
(M1–M4) sequences removed all appreciable enzymatic activity of NanoLuc, as shown in Figure S8. This points 
to the potential pitfalls of redesigning proteins whose function is sensitive to changes in structure and flexibility. 
First, changing a large number of residues is more likely to change a residue essential to protein function. Second, 
the theory introduced in section A.1.1 shows that the Boltzmann probability objective is linked to stability and 
conformational specificity, which may limit the flexibility needed to attain a catalytic conformation. The elimi-
nation of enzymatic activity indicates that the Boltzmann probability objective is not well suited for designing 
enzymes whose function depends on flexibility.

As an additional investigation, it was hypothesized that a BayesDesign sequence could preserve some enzy-
matic activity if fewer residues were mutated. To this end, the BayesDesign method was used to design sequences 
B5, B6, and B7 which have only two amino acid substitution mutations. These sequences exhibit greater thermal 
stability than the wild type enzyme (Figure S9A), but the enzymatic activity decreased by 500-fold or more (Fig-
ure S9B). Furthermore, the extent of stabilization correlated with the extent of activity lost for the BayesDesign 
sequences B5, B6 and B7 (Figure S9C). Taken together, these results support the theory of a theoretical tradeoff 
between stability and activity of the Nanoluc Enzyme. Future enzyme design studies are needed to further 
explore this tradeoff.

We also evaluated the BayesDesign algorithm on the short peptide WW. AlphaFold validation of BayesDe-
sign and ProteinMPNN-designed sequences showed close agreement between ProteinMPNN and the wild type 
structures and partial agreement between the BayesDesign structure and the wild type (see Figure S11).

We next used CD to evaluate the reversibility of WW folding. However, a wavelength scan at 25 ◦ C revealed 
that neither ProteinMPNN nor BayesDesign sequences had the characteristic peak at 227 nm like that of WW 
(see Fig. 4). Due to this discrepancy, we ran molecular dynamics simulations to further evaluate how similar the 
BayesDesign and ProteinMPNN structures were to the wild type structure. We used the PDBMD2CD tool39 to 
predict CD spectra from evenly-spaced frames of the molecular dynamics simulation, then selected the frames 
whose predicted spectra most closely matched the observed spectra for each of the BayesDesign, ProteinMPNN, 
and wild type structures (see Figure S15). We then measured the RMSD between the structures of the designed 
sequences and the structure of the wild type sequence (see Fig. 4). We found that the RMSD between BayesDesign 
and the wild type was 3.01 Å, and the RMSD between ProteinMPNN and the wild type was 1.18 Å, indicating 
that the structures did closely match the wild type.

Heating the BayesDesign peptide to 95 ◦ C showed an ellipticity shift of the minimum at 203 nm, indicating 
some denaturation. After cooling, the minimum at 203 nm was completely recovered, showing that the Bayes-
Design peptide was 100% reversible for its adopted conformation at its minimum of 203 nm (see Figure S13) 
whereas native WW was only 56% reversibile at its 227 nm peak (see Figure S12). The high reversibility of the 
BayesDesign peptide relative to the wild type confirms the hypothesis that using the BayesDesign algorithm 
results in designs with high conformational specificity. Interestingly, ProteinMPNN also demonstrated high 
reversibility (see Figure S14).

Discussion
In this study we provide theory suggesting that a protein designed to optimize the Boltzmann probability objec-
tive should increase either stability, conformational specificity, or both, relative to a sequence not optimized 
to maximize Boltzmann probability. We tested this hypothesis by redesigning WT NanoLuc and evaluating its 
stability via temperature-dependent protein solubility, and redesigning WT WW and evaluating its conforma-
tional specificity via CD reversibility.

We found that BayesDesign NanoLuc increased stability relative to WT NanoLuc, though at the cost of 
enzymatic activity. BayesDesign WW had high conformational specificity relative to WT NanoLuc, though 
with less fidelity to the WT structure than ProteinMPNN. These findings support the use of the p(structure|seq ) 
objective as used by BayesDesign, and also point to several possible sources of error to consider when developing 
probabilistic algorithms for protein design.

Source of error 1: using the wrong objective function
The objective function used to train the probability model should mimic the real-world effects of interest. In this 
study, we described three probabilistic objectives: the protein stability objective, the conformational specificity 
objective, and the Boltzmann probability objective. Proteins that maximize these objective functions can be 
expected to maximize stability, specificity, and Boltzmann probability, respectively.

These are three possible design objectives, but they may not be the best objective functions to model the 
desired outcome of some design tasks. For example, if the goal is to increase enzymatic activity, Boltzmann 
probability may be the wrong objective because both stability and conformational specificity limit the flexibility 
of enzymes, which is often key to their function.

Source of error 2: using the wrong probability model for the objective
Even if trained with the correct objective function, a probability model may be incorrect. If the model is trained 
on data, biases in the training data may limit the accuracy of the model on the desired task. BayesDesign consists 
of two models, ProteinMPNN and ProtXLNet. ProteinMPNN was trained on static protein crystal structures in 
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the PDB. ProtXLNet was trained on the UniRef100 database40. Both of these models capture information about 
the joint probability of protein sequences and structures. Within that joint distribution, ProteinMPNN predicts 
sequence conditioned on structure, and ProtXLNet predicts sequence marginalized (summed) over all structures.

However, the PDB is biased toward crystallizable sequences, meaning that the marginal distribution p(seq) for 
the PDB is different from that of UniRef100. We hypothesize that this miscalibration is likely why BayesDesign 
fails to design proteins more stable or with higher conformational specificity than ProteinMPNN.

The adversarial sequences discovered by4 and17 are another example of design problems arising from an 
incorrect probability model. The forward probability model p(structure|seq) was incorrect in the regime of low-
probability sequences, resulting in designed sequences predicted to fold into structures with high probability, 
but which were insoluble in practice.

Source of error 3: using a poor optimization scheme for the probability model
Given an objective function that matches the desired real-world phenomena and an accurate probability model 
for that objective function, the task remains to find the protein sequence that optimizes the objective function 
under the probability model.

However, optimizing over a sequence space of size 20L requires approximation for large proteins. For this 
reason, various algorithms use optimization schemes that seek to navigate the loss surface more efficiently. The 
approximations involved in these optimization schemes often result in designs that do not identify the global 
optimum.

(a)

(b)

Figure 4.   CD spectra indicating reversibility of BayesDesign and ProteinMPNN folding and corresponding 
structures. (a) Circular dichroism (CD) profile of wild type (black), BayesDesign (blue), and ProteinMPNN 
(red) sequences at 25 ◦ C before and after heat treatment. ProteinMPNN and BayesDesign both achieve high 
reversibility, but neither has the ∼227 nm peak that distinguishes the native WW structure. (b) Protein 
structures from molecular dynamics frames that most closely match the observed CD spectra for the WW wild 
type (black), BayesDesign (blue), and ProteinMPNN (red) sequences.
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The greedy decoding used for BayesDesign and ProteinMPNN in this paper optimizes over each amino acid 
position sequentially by selecting each amino acid position conditioned on all previously-selected positions. This 
does not exhaustively search the joint distribution of all amino acid sequences. However, we find that sequences 
designed with greedy decoding over the BayesDesign model achieve higher probability on the BayesDesign 
model than sequences designed by ProteinMPNN, and vice-versa.

Conclusion
We introduce a probabilistic framework for predicting the effects of the Boltzmann probability objective function 
p(structure|seq) on protein stability and conformational specificity. We introduce BayesDesign, a new protein 
design algorithm to maximize this design objective by applying Bayes’ rule to unconditional and structure-
conditioned autoregressive sequence models.

Compared to other methods that maximize p(structure|seq) , our method designs soluble sequences without 
modifying the original objective function. Compared to methods that maximize p(seq|structure) , we have theo-
retical reasoning that suggests that designed sequences should increase protein stability and/or conformational 
specificity.

We show that redesigning the NanoLuc enzyme with this objective increases its stability. For the WW pep-
tide, the BayesDesign-designed sequence achieves higher conformational specificity than the wild type peptide.

One of the surprising results of this study was the strong performance of ProteinMPNN relative to BayesDe-
sign, despite it lacking the theoretical guarantees afforded by BayesDesign. We identify several possible reasons 
for this discrepancy and suggest improvements to address in future work.

Data and code availability
Code for the BayesDesign algorithm is available at https://​github.​com/​della​corte​lab/​bayes_​design. Experimental 
data is available from the corresponding author upon request.
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References
	 1.	 Defresne, M., Barbe, S. & Schiex, T. Protein design with deep learning. Int. J. Mol. Sci. 22(21) (2021).
	 2.	 Koga, N. et al. Principles for designing ideal protein structures. Nature 491, 222–227 (2012).
	 3.	 Coates, T. L. et al. Current computational methods for enzyme design. Mod. Phys. Lett. B 35, 2150155–574 (2021).
	 4.	 Norn, C. et al. Protein sequence design by conformational landscape optimization. Proc. Natl. Acad. Sci. 118(11), e2017228118 

(2021).
	 5.	 Simons, K. T., Kooperberg, C., Huang, E. & Baker, D. Assembly of protein tertiary structures from fragments with similar local 

sequences using simulated annealing and bayesian scoring functions11edited by f. e. cohen. J. Mol. Biol. 268(1), 209–225 (1997).
	 6.	 Liu, Y. & Kuhlman, B. RosettaDesign server for protein design. Nucleic Acids Res. 34, W235–W238 (2006).
	 7.	 Alford, R. F. et al. The rosetta all-atom energy function for macromolecular modeling and design. J. Chem. Theory Comput. 13, 

3031–3048 (2017).
	 8.	 Jones, D. T. De novo protein design using pairwise potentials and a genetic algorithm. Protein Sci. 3(4), 567–574 (1994).
	 9.	 Dahiyat, B. I. & Mayo, S. L. De novo protein design: Fully automated sequence selection. Science 278(5335), 82–87 (1997).
	10.	 Kuhlman, B. et al. Design of a novel globular protein fold with atomic-level accuracy. Science 302(5649), 1364–1368 (2003).
	11.	 Ingraham, J., Garg, V. K., Barzilay, R. & Jaakkola, T. Generative Models for Graph-Based Protein Design (Curran Associates Inc., 

2019).
	12.	 Anand, N. et al. Protein sequence design with a learned potential. Nat. Commun. 13, 746 (2022).
	13.	 Yang, J. et al. Improved protein structure prediction using predicted interresidue orientations. Proce. Natl. Acad. Sci. 117(3), 

1496–1503 (2020).
	14.	 Roney, J. P. & Ovchinnikov, S. State-of-the-art estimation of protein model accuracy using alphafold. Phys. Rev. Lett. 129, 238101 

(2022).
	15.	 Wang, J. et al. Scaffolding protein functional sites using deep learning. Science 377(6604), 387–394 (2022).
	16.	 Jumper, J. et al. Highly accurate protein structure prediction with alphafold. Nature 596, 583–589 (2021).
	17.	 Anishchenko, I. et al. De novo protein design by deep network hallucination. Nature 600, 547–552 (2021).
	18.	 Dauparas, J., Anishchenko, I., Bennett, N., Bai, H., Ragotte, R. J., Milles, L. F., Wicky, B. I. M., Courbet, A., de Haas, R. J., Bethel, 

N., Leung, P. J. Y., Huddy, T. F., Pellock, S., Tischer, D., Chan, F., Koepnick, B., Nguyen, H., Kang, A., Sankaran, B., Bera, A. K., 
King, N. P. & Baker, D. Robust deep learning based protein sequence design using proteinmpnn. bioRxiv (2022).

	19.	 Goodfellow, I. J., Shlens, J. & Szegedy, C. Explaining and harnessing adversarial examples (2014).
	20.	 Marshall, S. A. & Mayo, S. L. Achieving stability and conformational specificity in designed proteins via binary patterning. J. Mol. 

Biol. 305(3), 619–631 (2001).
	21.	 Hall, M. P. et al. Engineered luciferase reporter from a deep sea shrimp utilizing a novel imidazopyrazinone substrate. ACS Chem. 

Biol. 7, 1848–1857 (2012).
	22.	 Schinn, S.-M., Broadbent, A., Bradley, W. T. & Bundy, B. C. Protein synthesis directly from pcr: Progress and applications of cell-

free protein synthesis with linear dna. New Biotechnol. 33(4), 480–487 (2016).
	23.	 Dopp, J. L., Rothstein, S. M., Mansell, T. J. & Reuel, N. F. Rapid prototyping of proteins: Mail order gene fragments to assayable 

proteins within 24hours. Biotechnol. Bioeng. 116(3), 667–676 (2019).
	24.	 Woodrow, K. A., Airen, I. O. & Swartz, J. R. Rapid expression of functional genomic libraries. J. Proteome Res. 5(12), 3288–3300 

(2006).
	25.	 Jarzab, A. et al. Meltome atlas–thermal proteome stability across the tree of life. Nat. Methods 17, 495–503 (2020).
	26.	 van Koningsveld, G. A. et al. Effects of ph and heat treatments on the structure and solubility of potato proteins in different prepa-

rations. J. Agric. Food Chem. 49(10), 4889–4897 (2001).
	27.	 Liu, J. L. et al. Enhanced production of a single domain antibody with an engineered stabilizing extra disulfide bond. Microb. Cell 

Factories 14, 158 (2015).
	28.	 Lawrence, P. B. et al. Criteria for selecting pegylation sites on proteins for higher thermodynamic and proteolytic stability. J. Am. 

Chem. Soc. 136(50), 17547–17560 (2014).
	29.	 Zhu, G.-F., Ren, S.-Y., Xi, L., Du, L.-F. & Zhu, X.-F. Temperature induced structural transitions from native to unfolded aggregated 

states of tobacco etch virus protease. J. Mol. Struct. 1082, 80–90 (2015).

https://github.com/dellacortelab/bayes_design


8

Vol:.(1234567890)

Scientific Reports |        (2023) 13:15493  | https://doi.org/10.1038/s41598-023-42032-1

www.nature.com/scientificreports/

	30.	 Xiao, Q. et al. Influence of pegylation on the strength of protein surface salt bridges. ACS Chem. Biol. 14(7), 1652–1659 (2019).
	31.	 Rago, F., Saltzberg, D., Allen, K. N. & Tolan, D. R. Enzyme substrate specificity conferred by distinct conformational pathways. J. 

Am. Chem. Soc. 137(43), 13876–13886 (2015).
	32.	 Pokala, N. & Handel, T. M. Energy functions for protein design: Adjustment with protein-protein complex affinities, models for 

the unfolded state, and negative design of solubility and specificity. J. Mol. Biol. 347(1), 203–227 (2005).
	33.	 Foit, L. et al. Optimizing protein stability in vivo. Mol. Cell 36, 861–871 (2009).
	34.	 Broom, A. et al. Modular evolution and the origins of symmetry: Reconstruction of a three-fold symmetric globular protein. 

Structure 20, 161–171 (2012).
	35.	 Araya, C. L. et al. A fundamental protein property, thermodynamic stability, revealed solely from large-scale measurements of 

protein function. Proc. Natl. Acad. Sci. 109(42), 16858–16863 (2012).
	36.	 Broom, A., Jacobi, Z., Trainor, K. & Meiering, E. M. Computational tools help improve protein stability but with a solubility tradeoff. 

J. Biol. Chem. 292, 14349–14361 (2017).
	37.	 Qing, R. et al. Protein design: From the aspect of water solubility and stability. Chem. Rev. 122(18), 14085–14179 (2022).
	38.	 Wei, Y., Kim, S., Fela, D., Baum, J. & Hecht, M. H. Solution structure of a de novo protein from a designed combinatorial library. 

Proc. Natl. Acad. Sci. 100(23), 13270–13273 (2003).
	39.	 Drew, E. D. & Janes, R. W. PDBMD2CD: Providing predicted protein circular dichroism spectra from multiple molecular dynamics-

generated protein structures. Nucleic Acids Res. 48, W17–W24 (2020).
	40.	 T. U. Consortium. UniProt: The Universal Protein Knowledgebase in 2023. Nucleic Acids Res. 11 2022. gkac1052.

Author contributions
J.A.S. designed the study and the theory and developed the algorithms. K.L.S. and J.L.P designed the WW 
experiments and K.L.S. and N.A.D. performed the experiments. T.J.F., S.G., and B.C.B. designed the NanoLuc 
experiments and T.J.F. performed the experiments. D.W. and D.D.C. helped to refine the theory and D.D.C. 
managed the project.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​023-​42032-1.

Correspondence and requests for materials should be addressed to D.D.C.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2023, corrected publication 2023

https://doi.org/10.1038/s41598-023-42032-1
https://doi.org/10.1038/s41598-023-42032-1
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	A probabilistic view of protein stability, conformational specificity, and design
	Theory
	Boltzmann probability, stability, and conformational specificity
	Bayes’ rule to maximize 

	Experimental methods
	Evaluation of stability and solubility for NanoLuc
	Evaluation of conformational specificity for WW

	Results
	Discussion
	Source of error 1: using the wrong objective function
	Source of error 2: using the wrong probability model for the objective
	Source of error 3: using a poor optimization scheme for the probability model

	Conclusion
	References


