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Learning hyperparameter 
predictors for similarity‑based 
multidisciplinary topology 
optimization
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Stefan Menzel 1*, Satchit Ramnath 5, Thiago Rios 1 & Fabian Duddeck 2

Topology optimization (TO) plays a significant role in industry by providing engineers with optimal 
material distributions based exclusively on the information about the design space and loading 
conditions. Such approaches are especially important for current multidisciplinary design tasks in 
industry, where the conflicting criteria often lead to very unintuitive solutions. Despite the progress 
in integrating manufacturing constraints into TO, one of the main factors restricting the use of TO 
in practice is the users’ limited control of the final material distribution. To address this problem, 
recently, a universal methodology for enforcing similarity to reference structures in various TO 
methods by applying scaling of elemental energies was proposed. The method, however, requires an 
expensive hyperparameter sampling, which involves running multiple TO processes to find the design 
of a given similarity to a reference structure. In this article, we propose a novel end-to-end approach 
for similarity-based TO, which integrates a machine learning model to predict the hyperparameters 
of the method, and provide the engineer, at minimal computational cost, with a design satisfying 
multidisciplinary criteria expressed by the similarity to a reference. The training set for the model 
is generated based on an academic linear elastic problem, but the model generalizes well to both 
nonlinear dynamic crash and industrial-scale TO problems. We show the latter by applying the 
proposed methodology to a real-world multidisciplinary TO problem of a car hood frame, which 
demonstrates the usefulness of the approach in industrial settings.

Structural topology optimization (TO) methods are computational techniques which optimize the distribution 
of a given material within a specified design space based on boundary and initial conditions, e.g., supports, 
forces, or impact velocities in case of dynamic problems. The high-dimensional design representations used in 
TO, where often every finite element of the simulation model is parametrized by an individual design variable, 
give the computer program the highest level of flexibility, resulting in complex structural concepts of superior 
performance. At the same time, the multidisciplinary character of the problems encountered in engineering 
practice nowadays makes the traditional trial-and-error design process more and more challenging due to very 
unintuitive solutions designers have to come up with to fulfill stringent performance, environmental, and eco-
nomic requirements. In such a case, utilization of numerical optimization methods such as structural TO seems 
a natural choice, allowing for an efficient mitigation of limited human capabilities to manage problems involving 
multitudes of conflicting design criteria.

Traditionally, structural TO methods are divided into density-based approaches, including homogeniza-
tion methods1 as well as Solid Isotropic Material with Penalization (SIMP) based techniques2, and Level Set 
Methods (LSMs)3. More recently, also feature-mapping techniques4, e.g., approaches using Moving Morphable 
Components (MMCs)5 as a design representation, gained a lot of attention thanks to the decoupling of the 
design parametrization from the discretized model used for simulation, which allows for a more straightforward 
integration of manufacturing limitations6,7, and, through reduction of the dimensionality of the optimization 
problem, enables efficient use of even nongradient techniques to address highly nonlinear dynamic problems8–12. 
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At the same time, also heuristic, nongradient TO approaches such as Hybrid Cellular Automata (HCA)13,14 or 
Bi-directional Evolutionary Structural Optimization (BESO)15 are increasingly used to address complex multi-
disciplinary problems, which is possible due to their general character. Thanks to such research developments, it 
becomes feasible to incorporate simulation models of various physical phenomena into TO and go beyond linear 
elastic static problems addressed in standard approaches, which answers very well the needs of the industry.

Apart from well-established methods for multidisciplinary sizing and shape optimization16–19, the TO 
approaches involving multiple design criteria and different physics are under continuous development. In the 
context of the automotive industry, especially the methods allowing for a concurrent optimization considering 
static and crash, as well as Noise, Vibration, and Harshness (NVH) load cases20–23 play an important role in 
defining structural concepts in the early phases of development. Moreover, in practical applications, considering 
economic factors associated with manufacturing technology is critical and was also addressed in the TO research 
in the recent years24–26. Nevertheless, there are still many design requirements which are virtually impossible 
to describe in a closed mathematical form. Usually, due to the economic limitations of the manufacturing and 
assembly process, it is much more efficient to re-use components developed in the previous product design 
cycles and increase the commonality among different models. For instance, in the automotive industry, often a 
common platform, i.e., a set of components shared among different models, is developed to maximize the cost 
efficiency of the production process. Moreover, during the re-integration of a topologically-optimized design into 
a larger system, it is required to add features whose requirements were difficult to account for in the optimization, 
but play an important role in the assembly process. Typically, standard TO approaches eliminate such features. 
Finally, in cases where aesthetics are important, such as rim design27, it is not unusual to strive for novelty in 
the design process in order to explore new structural concepts, which can be accomplished, e.g., by maximizing 
the dissimilarity to an entire set of known designs27,28. Often, enhancing design space exploration by enforcing 
generation of diverse solutions is also important in the context of improving global search capabilities of nongra-
dient optimizers29–31. Considering these additional optimization criteria, related often to subjective preferences 
of a designer and a specific know-how of the company, which can be seen as an entire range of disciplines not 
related to any physical load cases, it is extremely difficult to utilize TO to directly derive practically useful design 
concepts, and alternative methods are needed to address this problem.

A very promising methodology able to account for both different structural criteria and nonstructural disci-
plines mentioned above is TO considering similarity constraints. In one of the first approaches employing this 
concept, Oh et al.27 used gradient-based SIMP together and a Generative Adversarial Network (GAN) for design 
exploration with an additional design novelty objective, interpreted as geometric dissimilarity. This methodol-
ogy, however, requires an expensive generation of large amounts of design concepts using TO in order to train 
the GAN. Moreover, it relies on a gradient-based TO process, which restricts the applicability of the approach 
to the standard optimization tasks where the gradient information can be derived analytically. In the context of 
crash load cases, which are essential in the development of car body structures, analytical sensitivities are usually 
not available32 and alternative methods, such as heuristic HCA approach13,14 or the MMC-based nongradient 
techniques8–11 have to be used. To address such problems, recently, an Energy Scaling Method (ESM)33,34, which 
is able to control similarity of the structure being optimized to a reference design, was proposed. Since the 
method directly scales the elemental energies obtained from the finite element simulation model, it is independ-
ent of the density update rules utilized in the underlying TO approach, and, therefore, can be used with both 
gradient-based and nongradient methods like HCA. Figure 1 shows structures of different similarity levels w.r.t. 
the reference structure obtained using ESM in HCA. By varying the energy scaling factor, a hyperparameter of 
ESM, and running multiple TO runs, one can obtain an entire spectrum of structures—from the most similar to 
the reference, through neutral, to the most dissimilar designs. We strongly believe that ESM offers an intuitive 
and straightforward way of dealing with multiobjective, multidisciplinary problems by efficiently coupling the 
standard TO approaches using structural optimization criteria with a similarity objective, which can encapsulate 
requirements from many different disciplines without the need to provide their precise mathematical description, 
which is often very difficult in case of real-world scenarios.

In recent years, Machine Learning (ML) started to play an increasingly important role in enhancing TO meth-
ods. Apart from the approaches aiming for a direct prediction of the optimal design35–37 or learning potentially 
more efficient material parameterization for TO via unsupervised learning27,38, also methods taking advantage 
of lower-dimensional TO representations, e.g., MMCs, together with meta-models of structural responses have 
been proposed11,12,39. In fact, these methodologies belong to a broader category of approaches based on surrogate 
modelling, which have been successfully used for years in various, industrial-scale design optimization prob-
lems involving computationally costly simulations16,29,40–43. In more recent approaches, instead of predicting the 
structural responses based on input features being the design variables, the performance of the structure result-
ing from the entire TO run can be inferred by providing an ML model with the optimization hyperparameters, 
e.g., weights of objectives in the aggregated cost function31. Finally, alternative use cases of ML in TO involve 
supervised learning of sensitivities44,45 or building models predicting favorable topological variations46, as well.

In our previous works33,34, we have validated the ESM using standard TO benchmark test cases and demon-
strated its usefulness in solving nonlinear dynamic crash as well as industrial-scale problems. Despite the high 
practical value of ESM, it remained computationally costly, since, to find a design of a given similarity w.r.t. the 
reference structure, one has to carry out multiple optimization runs for different values of the scaling factor. In 
this work, to address this problem, we propose a holistic end-to-end similarity-based TO approach capable of 
handling complex multidisciplinary problems, where an ML model predicts the relationship between the attain-
able similarity levels and the hyperparameter values of ESM based exclusively on a single, standard TO run. We 
refer to the framework as an end-to-end method since it is able to automatically determine the required hyper-
parameter value to reach a specific level of similarity. Using the learned hyperparameter predictor, the designer 
can directly understand the influence of the hyperparameters of ESM on the TO process and specify a priori the 
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required similarity level of the resulting, topologically-optimized design. Despite training of the ML model on 
a dataset of structures generated using an academic, linear elastic compliance minimization TO problem, the 
model generalizes well to both nonlinear crash test cases and industrial optimization tasks, which we demonstrate 
in this work. Moreover, in multiple sensitivity studies, we investigate the properties of the obtained ML model 
to understand the main factors influencing the similarity-based optimization process.

The remainder of this paper is structured as follows. First, we introduce the novel end-to-end similarity-based 
TO framework leveraging the potential of ML to automatically predict energy scaling factors. Secondly, based 
on an ML model’s sensitivity analysis we investigate the influence of relevant design features on the attainable 
similarity levels. Finally, we apply the end-to-end approach to challenging real-world applications involving 
nonlinear crash TO as well as 3D large-scale TO of a car hood frame. At the end, we summarize the paper and 
give an outlook for promising future research directions.

End‑to‑end similarity‑based topology optimization method for multidisciplinary 
problems
This section introduces the holistic, end-to-end TO framework for similarity-driven TO based on ESM. Figure 2 
illustrates the flow of information between the main components of the proposed algorithm. As in the standard 
TO, the user provides the system with a design domain and boundary conditions along with the definition of the 
optimization problem. Based on this information, a single, standard TO run is performed. In addition, a reference 
design, which encapsulates the criteria related to multiple alternative disciplines, is defined. The information from 
the standard TO result and the reference is utilized to extract features which are used by the hyperparameter 
predictor to determine the relationship between the dissimilarity metric and the energy scaling factor. Depending 
on a particular dissimilarity metric which is used, the difference between designs can be quantified in various 
ways. The metric used in this work, which is described in the next section, can be interpreted as a fraction of 
the design volume where the optimized structure and the reference design are different. Thanks to this intuitive 
interpretation, the designer can specify the desired volume difference prior to the similarity-based optimization 
and find an appropriate scaling factor value based on the relationship generated by the hyperparameter predictor. 
Moreover, by predicting the entire curve, the sensitivity of the dissimilarity metric w.r.t. different scaling factor 
values can be easily analyzed. Finally, the predicted scaling factor value is used to derive the optimized design 
of a given similarity level via ESM-based TO.

Energy scaling method.  Following the other methods for similarity-based TO27,33, ESM utilizes a dis-
similarity metric s of the form:

(1)
s =

N
∑

e=1

(

xe − x
ref
e

)2

N
,

Figure 1.   An example of similarity-based TO using ESM in HCA. The reference design used for computation 
of the dissimilarity metric s is shown in the red box on the left hand side. Each of the points on the blue curve 
corresponds to a TO run for a different value of the energy scaling factor p. Designs similar to the reference are 
obtained for p > 0.5 , while the dissimilar ones are generated for p < 0.5 . A similarity-based TO for p = 0.5 
yields the same design as a standard TO without similarity constraints.
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with N, xe , and xrefe  being the total number of elements in the design domain (for both the design being optimized 
and the reference structure), relative density of the element e in the design subject to optimization, and the rela-
tive density of the element e in the reference structure, respectively. Please note that in density-based TO, relative 
densities are the design variables taking values in the range of [0, 1], which influence the stiffness of the elements 
according to the specific relationship47. For instance, in SIMP, the relationship between element density and its 
Young’s modulus is modeled as a power law in order to penalize the elements with intermediate densities, i.e., 
xe ∈ (0, 1) . As mentioned before, the metric (1) corresponds approximately to the ratio of the volume (or mass) 
of the difference between the design being optimized and the reference structure to the total volume (or mass) 
of the design domain. The approximate character of the metric results from the utilization of continous design 
variables, however, since both SIMP and HCA try develop designs with densities equal exclusively to 0 or 1, 
the metric calculated for the final design should be very close to the fraction of the design volume where the 
optimized structure and the reference design are different.

As indicated in our prior publications33,34, ESM was inspired by our observation that a formal integration 
of the sensitivity of the dissimilarity metric (1) into a gradient-based optimization algorithm, e.g., Optimality 
Criteria method47, for solving a compliance minimization problem, leads to an update rule which scales up the 
elemental energies in the areas occupied by the reference structure and scales down the energies of all the other 
elements. Intuitively, the algorithm tries to artificially increase the sensitivities of compliance in the preferred 
zones to deposit more material in those areas. This scaling, however, is proportional to the difference between 
the current density of an element in the structure being optimized xe and the density of the corresponding ele-
ment in the reference structure xrefe  . In contrast, in ESM, we employ a simpler strategy and scale the elemental 
energies according to the rules defined in Table 1, which results in a better stability of the optimization process 
and yields designs with clearer boundaries between material and void. In our previous work34, we have rigorously 
compared the performance of both, formal gradient-based approach with an analytical compliance constraint 
and a heuristic ESM using SIMP, and have demonstrated the superiority of the novel ESM approach, which can 
be used together with gradient-based and nongradient TO methods. In this work, we use ESM in an unchanged 
form, however, instead of running multiple TO runs for different values of the energy scaling factor p, we com-
plement the method by employing an ML-based hyperparameter predictor as described in the next section.

Learning hyperparameter predictor.  This section proposes a novel approach for building hyperparam-
eter predictors for TO problems, which we describe in the context of similarity-driven TO based on ESM. The 
process consists of three steps. Firstly, we propose a fully automatic method for generating training data based 
on a standard 2D TO test case. Secondly, taking into account the sensitivity analysis described in our previous 
publication34, we extract the features that are the key determinants of the relationship between the dissimilar-
ity metric of the topologically-optimized design (s) and the energy scaling value (p). A typical s(p) function is 

Figure 2.   Illustration of the end-to-end framework for multidisciplinary, similarity-based TO using ESM.

Table 1.   Elemental energy scaling scheme employed by ESM. Depending on the location of the elements w.r.t. 
the reference design, the energies are scaled up or down using the scaling factor p. In case of gradient-based 
compliance (c) minimization problems, this is equivalent to scaling of the compliance sensitivities. For HCA, 
we scale the Strain Energy Density (SED) for static problems or internal energy density (IED) for nonlinear 
dynamic crash scenarios.

Area SIMP (min. compliance) HCA (min. compliance) HCA (max. crash energy absorption)

Preferred ∂c
∂x := p · ∂c

∂x
SED := p · SED IED := p · IED

Nonpreferred ∂c
∂x := (1− p) · ∂c

∂x
SED := (1− p) · SED IED := (1− p) · IED
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illustrated in Fig. 3. Finally, using the automatically generated data and the proposed feature extractors, we build 
a regression model for predicting attainable similarity levels for different values of the hyperparameter p, which 
is the crucial component of the end-to-end ESM.

Training set generation.  Since in most industrial applications designs similar to a certain reference structure 
are of interest, as illustrated in Fig. 3, we limit the analysis presented in this paper exclusively to the energy 
scaling values greater than or equal to 0.5. However, in fact, also dissimilar structures could be generated for 
p ∈ (0.5, 1.0] by applying a transformation xrefe := 1− x

ref
e  to each of the elements e of the reference structure.

In this paper, we propose to generate the training data for the regression model using a standard, linear elastic 
cantilever beam test case with random variations of loading conditions and the volume constraint, which is a 
standard benchmark problem in TO. The design domain (Fig. 4) consists of 100× 100 square finite elements, 
with all degrees of freedom on the left edge of the structure being fixed. The material properties of the used 
mechanical model are defined in Table 2. As we show later, despite the simplicity of this optimization scenario, 
which helps to reduce the computational effort for the data generation process, the hyperparameter predictors 
obtained based on such data generalize to both 3D linear elastic and nonlinear dynamic TO problems.

To achieve high diversity of the training set, we generate 600 test case-reference pairs, where each pair consists 
of the test case depicted in Fig. 4a and a reference design generated by running minimal-compliance SIMP TO49 
for a random angle θ , position l of the load along the right edge of the design domain (Fig. 4b), and a volume 
fraction  fr ∈ [0.2, 0.8] . Based on the provided test case-reference pair, a set of 12 similarity-based TO runs is per-
formed using ESM in SIMP, for energy scaling factor p values distributed uniformly in range [0.5, 0.98] . Here, also 
a compliance minimization problem for a randomly chosen target volume fraction ft ∈ [0.2, 0.8] is performed. 
The randomization of the sampling parameters θ , l, fr , and ft is realized using an Optimized Latin Hypercube 
Sampling (OLHS)29, which helps to improve the distribution of the data in the training set.

As a result of the sampling process involving 7800 TO runs, a set of 7200 training samples is generated, where 
each of them consists of a structure optimized using ESM in SIMP and the corresponding reference structure. 
Figure 5 shows selected samples of the resulting dataset.

Feature extraction.  As indicated in our prior publication34 based on the performed sensitivity analysis, the 
features which have the strongest impact on the relationship between the dissimilarity metric of the optimized 
design s and the energy scaling factor p are:

•	 Target volume fraction of the structure being optimized ( ft).
•	 Reference design’s volume fraction ( fr ). Intuitively, if the difference between ft and fr is big (small) for 

p > 0.5 , the attainable levels of similarity are low (high) since the intersection area between the optimized 
and the reference design has to remain small (large).

Figure 3.   Typical relationship between the dissimilarity metric (s) of the topologically-optimized design w.r.t. 
reference structure and the applied energy scaling factor (p)48. The green dashed box shows the part of the 
curve to be predicted by the hyperparameter predictor. Please note that for p ∈ (0.5, 1.0] only designs similar 
to the reference are generated while running TO for p = 0.5 is equivalent to standard TO without similarity 
constraints.
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•	 Dissimilarity metric of a standard TO optimization result (without similarity constraints) w.r.t. the reference 
design ( sr ). The higher the dissimilarity metric the more difficult it is to reduce it even for very high values 
of p, which results in a more “steep” shape of the curve shown in Fig. 3 for p > 0.5.

In this paper, we use the features defined above to extract the relevant information from the dataset generated 
as described in the previous section. In addition, since we are mainly interested in predicting the dissimilarity 
metric for different values of the scaling factor p, it is also used as a feature in the regression model. For a given 
case, represented in the dataset by a single test case-reference pair, the features ft , fr , and sr remain constant. In 
order to compute sr , a single standard TO without similarity constraints has to be carried out. Figure 6 shows a 
result of the feature extraction process for selected samples of the generated dataset of structures.

Figure 4.   Design domain and boundary conditions of the test case (a) used in similarity-based TO for different 
values of the energy scaling factor p to generate training data. The corresponding reference structures are 
generated using standard TO49 based on a design space and boundary conditions parameterized as shown in 
(b). In both cases, a force of magnitude |�F| = 1 (N) is applied. The dimensions are defined in (mm).

Table 2.   Description of the mechanical parameters used in the simulation model as well as the optimization 
hyperparameters of the SIMP algorithm used in the automatic training set generation.

Parameter Force Mesh size Element type Poisson’s ratio Young’s modulus SIMP power Filter radius

Value 1 (N) 100× 100 4-node shell 0.3 1 (MPa) 3 1.5

Figure 5.   Selected designs from the training set. Each of the rows in the table presents designs obtained via 
similarity-based TO for a different reference structure, shown in the first column. Above each structure, we 
specify its volume fraction (f). Please note that the designs presented in the second column, i.e., for p = 0.5 , 
correspond to a standard TO result without any similarity constraints.
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Regression model.  For simplicity, and to assure high generalization of the regression models despite training 
exclusively on data generated based on 2D linear elastic test cases, we restrict the analysis presented in this paper to 
polynomial regression models of the input features ft , fr , sr , and p, which are used to predict the output property—
dissimilarity metric s of the design resulting from the ESM-based TO process w.r.t. the reference. Polynomial regres-
sion models are easier to interpret and much faster to train and evaluate than more complex models like artificial 
neural networks, as well. For a given degree d of the polynomial model, all polynomial combinations of the input fea-
tures of degree less than or equal to d are used. For instance, for d = 2 , the resulting model consists of 15 polynomial 
features and takes the form s ≈ f (ft , fr , sr , p) = a0 + a1ft + a2fr + a3sr + a4p+ a5ft fr + a6ft sr + a7ftp
+a8fr sr + a9frp+ a10srp+ a11ft

2
+ a12fr

2
+ a13sr

2
+ a14p

2.
We evaluate the performance of polynomial regression models for d ∈ {1, 2, 3, 4, 5, 6, 7, 8} using the well-

known k-fold cross validation technique with k = 10 , based on a subset of 6480 data samples corresponding 
to 540 test case-reference pairs, which constitutes 90% of the original dataset. The remaining 10% of the dataset 
(60 test case-reference pairs) is kept aside as a test set and is used neither for training nor validation of the 
models. Please note that we always operate on chunks of data samples, where each chunk corresponds to a set of 
similarity-based TO runs for 12 different values of parameter p and the same reference structure. As a result, in 
model testing, we can predict the entire s(p) curve based exclusively on the unseen data points.

Figure 7 presents the coefficient of determination ( R2 ) and the Root Mean Square Error (RMSE) values com-
puted on training and validation set for models of different degree d, averaged over the k folds. One can easily 
note that the accuracy of the model on the training and validation set gradually increases with the degree of the 
polynomial regression model, but for d = 5 , the model starts to overfit, which is demonstrated by the decreas-
ing performance on the validation set. Hence, for the further analysis, unless stated otherwise, we choose the 
model of degree 5 as the one giving the best results on the unseen data samples. When evaluated on the separate 
test set, the model yields R2 = 0.96 and RMSE = 0.027 , which is comparable to the performance obtained in 
the cross validation set.

To better illustrate predictive capabilities of the model, in Fig. 8, we show randomly selected s(p) curves from 
the test set and the corresponding inferences of the obtained model. The model is able to accurately predict dif-
ferent types of s(p) relationships based on basic characteristics of the standard TO result, expressed by its volume 
fraction ft as well as dissimilarity to the reference design sr , and the volume fraction of the reference structure 
fr . By predicting the entire s(p) curve, we provide the designer with a possibility to understand the influence of 
parameter p on the attainable dissimilarity levels s, and to select a suitable value of p. Please note that we predict 
the s(p) characteristic based on a single TO run, which, in comparison to the previously used sampling-based 
approach33,34 results in 12 times lower computation time for the sampling resolution used in our experiments.

Figure 6.   Result of the feature extraction process for selected samples in the automatically generated dataset of 
structures.
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Figure 7.   Average values of R2 and RMSE calculated based on training and validation set, for polynomial 
regression models of different degrees.

Figure 8.   Relationship between the dissimilarity metric s and the energy scaling value p for randomly selected 
test case-reference pairs from the test set, with the corresponding predictions of the best polynomial regression 
model. The green, transparent areas in the plots correspond to a 99% confidence interval, estimated based on 
10-fold cross validation using polynomial regression models of degree 5.
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Evaluation of the regression model
In this section, a sensitivity analysis of the obtained polynomial regression model is presented to investigate the 
impact of different input features. Please note that we consider only the predictions of the model and do not 
compare the results with the ground truth, which is not possible due to the unavailability of the data points in 
certain regions of the parameter space of the model.

First of all, we investigate the influence of the target volume fraction ft on the s(p) model. Figure 9 shows a 
result of such an analysis for fixed values of sr = 0.4 and fr = 0.5 . The behavior of the model is consistent with 
the intuition since the attainable dissimilarity levels are high for all values of p if 

∣

∣ft − fr
∣

∣ is large, because the 
overlap between the optimized design and the reference structure for such cases is small.

Secondly, Fig. 10 presents a result of the sensitivity analysis of s(p) model w.r.t. the volume fraction of the 
reference design fr , for fixed values of sr = 0.4 and ft = 0.5 . Again, for high values of 

∣

∣ft − fr
∣

∣ , the dissimilarity 
metric of the optimized design can be reduced only to a limited extent irrespective of the value of p, which is 
an expected outcome.

Finally, in Fig. 11 we analyze the influence of the dissimilarity metric w.r.t. the reference design computed for a 
standard TO result without any similarity constraint, for constant values of fr = 0.5 and ft = 0.5 . For cases where 
the standard TO result is already similar to the reference structure, ESM can influence the material distribution 
to a very little extent, irrespective of the applied value of the energy scaling factor p. As a result, relatively “flat” 
s(p) curves are obtained for these cases. The higher the dissimilarity of the standard TO result, the greater the 
influence of p on the final value of s, which is in good agreement with a common sense.

Figure 9.   Influence of the target volume fraction ft on the relationship between the dissimilarity metric s and 
the energy scaling factor p. The presented curves were generated based on a polynomial regression model of 
degree 5, for sr = 0.4 and fr = 0.5.

Figure 10.   Influence of the volume fraction of the reference design fr on the relationship between the 
dissimilarity metric s and the energy scaling factor p. The presented curves were generated based on a 
polynomial regression model of degree 5, for sr = 0.4 and ft = 0.5.
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In all of the investigated scenarios, a non-monotonic behavior of the polynomial regression models at or 
close to the lower bounds of the feature intervals, i.e., for ft = 0.2 in Fig. 9, fr = 0.2 in Fig. 10, and sr = 0.11 in 
Fig. 11, can be observed. Since when increasing the value of the energy scaling parameter p, the dissimilarity 
metric of the optimized design s should decrease, the non-monotonicity is most probably associated with the 
well-known Runge’s phenomenon50, which manifests itself through high oscillations of higher-degree polyno-
mial regression functions at the ends of the intervals, especially when using evenly spaced sampling points as 
the ones generated via OLHS. To improve the accuracy of the model close to the variables’ interval bounds, one 
could consider increasing the number of sampling points in these areas as well as modifying the distribution of 
the sampling points. Alternatively, other regression models could be used to mitigate this phenomenon, as well.

Real‑world applications
In this section, we evaluate the capability of the end-to-end similarity-based TO framework to address real-world 
problems beyond the standard linear elastic cases which were used in this work for learning the predictor of the 
hyperparameter p. We consider two scenarios to test different challenges met in industrial, multidisciplinary 
TO problems. In the first scenario, we introduce a dynamic 2D crash TO problem, to examine the influence of 
nonlinearities of the objective function on the predictive capabilities of the proposed hyperparameter model. In 
the second test case, we evaluate the ability of the model to generalize to complex 3D scenarios by addressing a 
large-scale car hood frame optimization problem subject to static loading conditions.

Test cases.  Below, the two real-world TO test cases are described in detail.

Nonlinear dynamic 2D crash problem.  In order to analyze the robustness of the proposed end-to-end frame-
work w.r.t. the nonlinear characteristics of the simulation model, we propose to use a 2D crash scenario as 
depicted in Fig.  12, which we utilized also in the experiments in our prior publications33,34. A rectangular beam 
is fixed at the right and left edge and impacted by a cylindrical pole from the top. To solve the crash TO problem, 
we use the state-of-the-art HCA method, which targets homogenization of the internal energy density all over 
the structure14. Consequently, the method implicitly maximizes the energy absorption by the structure while 

Figure 11.   Influence of the dissimilarity of the standard TO result w.r.t. reference sr on the relationship between 
the dissimilarity metric s and the energy scaling factor p. The presented curves were generated based on a 
polynomial regression model of degree 5, for fr = 0.5 and ft = 0.5.

Figure 12.   2D crash test case (left) and the reference structure used in similarity-based TO (right). The pole 
impacts the beam with speed |�v| = 20 (m/s) . The dimensions are defined in (mm). The out-of-plane thickness of 
the beam is 5 (mm).



11

Vol.:(0123456789)

Scientific Reports |        (2023) 13:14856  | https://doi.org/10.1038/s41598-023-42009-0

www.nature.com/scientificreports/

constraining its volume to a predefined value, usually expressed by a volume fraction. Table 3 summarizes the 
optimization and simulation parameters of the utilized simulation model.

3D car hood optimization.  We evaluate the generalization of the proposed end-to-end framework to complex 
3D problems based on a hood frame optimization scenario considered already in our prior publication34. Opti-
mization of car hood frames is a prominent example of a multidisciplinary design problem, where multiple static 
and crash load cases have to be taken into account28,51 along with criteria related to durability, cost, manufactur-
ability, and the assembly process. The test case considered here is presented in Fig. 13 and the corresponding 
simulation and optimization parameters for this problem are listed in Table 4. Without loss of generality, we 
consider only a single static load case, which represents loading of the structure according to the aerodynamic 
forces acting on the hood skin. However, in HCA, which we use also for TO of the car hood frame, both static 
and crash load cases can be considered concurrently21, and it is also possible to use ESM in such scenarios. In this 
work, we encapsulate the criteria related to other disciplines, in particular the limitations of the manufacturing 
and assembly process, by defining a reference as depicted in Fig. 14.

Results.  In this section, we apply the end-to-end similarity-driven TO approach based on the hyperparam-
eter predictor to the test cases described above and discuss the obtained results. The primary goal of this section 
is to investigate the generalization capabilities of the hyperparameter model on unseen data corresponding to 
challenging real-world problems.

Nonlinear dynamic 2D crash problem.  First of all, we consider the 2D nonlinear dynamic crash scenario 
depicted in Fig. 12 and summarized in Table 3. To calculate the input features for predicting the s(p) relationship 
in the proposed end-to-end framework, at first, one has to perform standard TO to extract the relevant features. 
The result of such a TO run is illustrated in Fig. 15 and the corresponding features are given in Table 5.

Table 3.   Parameters used in simulation and optimization of the 2D crash test case.

Parameter Value

Pole mesh 22 elements

Pole element type 4-node shell

Pole mass density 5.0× 10−6 (ton/mm3)

Beam mesh 160× 40× 1

Beam element type 8-node solid

Beam mass density 2.7× 10−9 (ton/mm3)

Beam Young’s modulus E 7.0× 104 (MPa)

Beam Poisson’s ratio ν 0.33

Beam yield strength σy 241 (MPa)

Beam tangent modulus Etan 70 (MPa)

LS-Dyna material card (beam) *MAT_PIECEWISE_LINEAR_PLASTICITY

LS-Dyna material card (pole) *MAT_RIGID

Volume fraction 0.5

Filter radius 5.5 (mm)

Figure 13.   Industrial 3D car hood frame test case used in similarity-based TO. Isometric view from the top and 
bottom. At points A and B, prescribed displacements of 2 (mm) are defined. All degrees of freedom of the finite 
element model’s nodes in areas C, D, E are fixed. Moreover, a distributed gravity load is applied to the entire 
model. In TO, a symmetry condition on elemental densities w.r.t. the light blue plane is imposed.
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Given the input features, the model trained based on linear elastic SIMP TO results is used to predict the s(p) 
relationship. Figure 16 presents the predicted curve together with the actual dissimilarity metric values (ground 
truth) computed based on similarity-driven TO results for the 2D crash scenario, which are described in our 
prior publications33,34. Based on the obtained results, one can easily note that the hyperparameter model gener-
alizes well to a scenario where both a different TO method, HCA, is used, and the underlying physical problem 
involves nonlinearities. In addition, using the predicted curve, the designer can easily inspect the attainable 
levels of dissimilarity metric s and estimate the value of p needed to reach a specific value of s. Figure 17 presents 
structures optimized using the end-to-end similarity-based TO framework for three selected similarity levels.

Table 4.   Parameters used in simulation and optimization of the industrial 3D car hood frame test case.

Parameter Value

Number of elements 195, 830

Element type 8-node solid

Prescribed displacement 2 (mm)

Mass density ρ 2.7× 10−9 (ton/mm3)

Young’s modulus E 6.7× 104 (MPa)

Poisson’s ratio ν 0.32

Volume fraction 0.35

HCA filter radius 10.5 (mm)

Symmetry constraint as shown in Fig. 13

Figure 14.   Reference used in the similarity-based TO of the industrial 3D car hood frame. Isometric view 
from the top and bottom. The model was created by designers of Honda Development & Manufacturing of 
America and represents the preferred locations of material according to the limitations of the manufacturing 
and assembly process.

Figure 15.   Design obtained using standard HCA algorithm without similarity constraints for the 2D crash TO 
problem.

Table 5.   Input features for the hyperparameter predictor, calculated for the 2D crash TO problem.

Input feature Value

Volume fraction of the reference design (fr ) 0.50

Dissimilarity of reference w.r.t. standard TO design (sr ) 0.27

Target volume fraction (ft ) 0.50

Energy scaling factor (p) p ∈ [0.5, 0.98]
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3D car hood optimization.  In this section, we present the application of the end-to-end similarity-based TO 
framework to the industrial 3D car hood optimization scenario depicted in Fig.  13. Figure 18 shows a stand-
ard TO result (without similarity constraints) for the minimal compliance optimization using HCA. Based on 
the resulting structure as well as the reference design (Fig.  14), the input features for predicting s(p) curve are 
computed and are given in Table 6. The predicted values of the dissimilarity metric s for different levels of p 
are presented in Fig.   19 along with the actual dissimilarity metrics (ground truth) computed after running 
similarity-based TO. The corresponding topologically-optimized structures are described in our past works34,48. 
Surprisingly, also in the case of a complex, large-scale 3D TO problem, the predictions of the hyperparameter 
model trained on academic linear elastic test cases are in a good agreement with the underlying ground truth 
data. Hence, the model allows for an accurate estimation of the required energy scaling value to reach the desired 
dissimilarity metric s. As can be seen in Fig.  19, for the test case considered here, the dissimilarity metric s can 
be varied to a very small extent by adjusting the parameter p, which is most probably caused by a high difference 

Figure 16.   Relationship between the dissimilarity metric s and the energy scaling value p predicted by the 
proposed hyperparameter model (dashed red curve) and the corresponding curve obtained via performing 
multiple similarity-based TO runs34 (solid blue curve) for the 2D dynamic crash TO problem, together with the 
corresponding structural performance metric, i.e., intrusion (I) of the pole into the structure.

Figure 17.   Designs optimized using the end-to-end ESM TO framework for the 2D crash test case and three 
different similarity levels.
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between the target volume fraction ( ft = 0.35 ) and the volume fraction of the reference design ( fr = 0.76 ). 
Finally, in Fig. 20, we show designs optimized using the proposed end-to-end framework for three selected val-
ues of the energy scaling factor p. Please note that in case of the structures obtained for p = 0.72 and p = 0.90 , 
the dissimilarity metric changes only slightly, but both designs are topologically very different, which might be 
counter-intuitive for a human designer. In fact, this is an expected result when using the dissimilarity metric (1) 
evaluating only the volumetric difference between the structures, which might be almost the same in both cases. 
The metric used in the paper has an easy physical interpretation—an increase of the dissimilarity metric by 0.01 
corresponds approximately to an increase of the volume of the non-overlapping parts of two structures by 1% of 
the design space volume. In order to quantify topological or other intuitively relevant geometric differences, an 
interesting extension of the framework presented in this work might be to use alternative dissimilarity metrics, 

Figure 18.   Design obtained using standard HCA algorithm without similarity constraints for the 3D hood 
frame TO problem. Isometric view from the top and bottom.

Table 6.   Input features for the hyperparameter predictor, calculated for the 3D hood frame TO problem.

Input feature Value

Volume fraction of the reference design (fr ) 0.76

Dissimilarity of reference w.r.t. standard TO design (sr ) 0.49

Target volume fraction (ft ) 0.35

Energy scaling factor (p) p ∈ [0.5, 0.98]

Figure 19.   Relationship between the dissimilarity metric s and the energy scaling value p predicted by the 
proposed hyperparameter model (dashed red curve) and the corresponding curve obtained via performing 
multiple similarity-based TO runs34 (solid blue curve) for the 3D hood frame TO problem, together with the 
corresponding structural performance metric, i.e., Internal Energy Density (IED).
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where especially the ones based on deep learning approaches28,52 could be promising due to their capability of 
learning to extract features relevant from the standpoint of the engineering development process28,53,54.

All in all, we were able to efficiently solve an industrial-scale multidisciplinary TO problem, where the non-
structural criteria related to costs and the limitations of the manufacturing and assembly process were expressed 
by defining a reference which incorporates specific engineering know-how. The high efficiency of the algorithm 
results from the fact that the increase of computational costs due to the utilization of ESM in HCA or SIMP is 
negligible, since using ESM involves only a simple scaling of elemental energies33,34. The generality of the method 
allows also for an easy integration of criteria related to other physical simulations, e.g., crash. Hence, incorpora-
tion of additional load cases into this problem should be straightforward and feasible from the standpoint of 
computational costs, even on regular workstations used in industry. As such, our end-to-end similarity-based 
TO framework can be easily applied to other large-scale industrial multidisciplinary problems, where utilization 
of TO in early design phases plays a critical role due to the high problem complexity resulting from multiple load 
cases and design criteria that have to be considered concurrently, which often leads to very unintuitive structural 
concepts. In our opinion, in such cases, the proposed methodology can be a very useful engineering tool able to 
integrate specific human knowledge and preferences into a mathematical optimization process.

Conclusion
In this paper, we proposed an end-to-end framework for similarity-based Topology Optimization (TO) based 
on Energy Scaling Method (ESM)33,34. The ESM approach has a generic character and can be used with differ-
ent types of TO methods to address complex multidisciplinary problems by allowing a designer to encapsulate 
criteria related to manufacturing, costs, assembly process, or even aesthetics, by specifying a reference design for 
similarity-based TO. The similarity level of the structure being optimized to the reference design is controlled by 
adjusting the energy scaling factor, a hyperparameter of ESM. Unlike in the previous approach, in the end-to-end 
framework, an expensive sampling of different values of the energy scaling factor based on multiple TO runs is 
no longer needed, and is replaced by a hyperparameter model able to predict the entire relationship between the 
dissimilarity metric and the energy scaling factor by extracting relevant features from a single TO run. Based 
on the predicted relationship, the designer is provided with an information about the attainable similarity levels 
and their sensitivity w.r.t. variations of the energy scaling factor.

We trained the hyperparameter predictor based on a large dataset of designs generated using 2D linear elastic 
benchmark TO problems, however, it has very good generalization capabilities. We demonstrated it by apply-
ing the end-to-end framework to two real-world problems representing typical challenges met in the industrial 
practice. Based on a 2D dynamic crash TO problem, we showed the generalization capabilities of the proposed 
hyperparameter predictor, and consequently, the applicability of the end-to-end similarity-based TO framework 
to problems involving nonlinear and noisy objective functions. Moreover, we studied the ability of the framework 
to address industrial-scale multidisciplinary TO problems using a hood frame TO test case, where criteria related 
to manufacturability and costs were incorporated into TO by using a reference design provided by engineers 
of Honda Development and Manufacturing of America. The hyperparameter predictor generalizes well also to 
this scenario, which demonstrates good scalability of the method despite training the model based exclusively 
on much less complex, 2D geometries. Finally, in the sensitivity studies presented in the paper, we analyzed the 
properties of the hyperparameter predictor to better understand the influence of different input features on 

Figure 20.   Selected hood frame designs optimized using the end-to-end ESM TO framework for different 
similarity levels.
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the relationship between similarity and the applied scaling factor. The behavior of the model in the sensitivity 
analyses was consistent with our prior studies and observations.

An interesting direction for the future research would be to integrate into the framework other types of design 
similarity metrics, where especially the ones based on deep learning could help to improve manufacturability of 
the optimized designs52,55. Moreover, considering multiple reference designs could be very useful in industrial 
practice in case of both, development of novel structures, and inclusion of specific know-how of companies 
related to manufacturing process and the associated costs. In such cases, perhaps also more complex, multi-
output hyperparameter predictors would be beneficial to estimate the energy scaling factors.

All in all, we strongly believe that the proposed end-to-end similarity-based TO framework, thanks to a 
very intuitive way of integrating alternative design criteria, which are often very difficult to specify in a closed 
mathematical form, could play an important role in the future industrial design processes especially when mul-
tiple criteria are involved. By integrating the hyperparameter predictor, we were able to considerably reduce the 
computational costs by eliminating the need for multiple TO runs to determine the required hyperparameter 
values and explore attainable similarity levels. The future research directions open a range of possibilities to 
integrate more of the specific design knowledge of companies, contained in large datasets of existing designs, 
into the similarity-driven design process.

Data availability
The datasets as well as simulation models generated and analysed during the current study are available from the 
corresponding author on reasonable request. The source code of the Energy Scaling Method is available under 
https://​github.​com/​HRI-​EU/​Simil​arity-​TO-​ESM.
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