
1

Vol.:(0123456789)

Scientific Reports |        (2023) 13:15263  | https://doi.org/10.1038/s41598-023-41997-3

www.nature.com/scientificreports

Quantum computation at the edge 
of a disordered Kitaev honeycomb 
lattice
Igor Timoshuk 1, Konstantin Tikhonov 2 & Yuriy Makhlin 1,2*

We analyze propagation of quantum information along chiral Majorana edge states in two-
dimensional topological materials. The use of edge states may facilitate the braiding operation, an 
important ingredient in topological quantum computations. For the edge of the Kitaev honeycomb 
model in a topological phase, we discuss how the edge states can participate in quantum-information 
processing, and consider a two-qubit logic gate between distant external qubits coupled to the edge. 
Here we analyze the influence of disorder and noise on properties of the edge states and quantum-
gate fidelity. We find that realistically weak disorder does not prevent one from implementation of a 
high-fidelity operation via the edge.

Topological phases of matter may support boundary states with non-abelian statistics due to bulk-boundary 
correspondence. These states and their topological protection are useful in quantum-information processing1,2. 
Recently, propagating Majorana edge modes in two-dimensional topological materials attracted attention3–7. 
Various methods to detect and characterize these modes were studied, including electrical probes of neutral 
Majorana zero modes by edge-state interferometry8, the use of time-domain interferometry to probe the edge 
modes and analysis of energy transport between external spins along the edge9, application of spin-polarized 
scanning tunneling microscopy to probe the charge-neutral edge states in Kitaev materials and other two-
dimensional quantum magnets10, or optical methods to probe chirality11.

Properties of chiral Majorana edge modes may be relevant for quantum-computing applications. Topological 
quantum computations rely on braiding of non-abelian anyons as an elementary quantum logical gate, which 
is topologically protected. Since implementation of braiding of point-like anyons is an experimentally chal-
lenging task, it was suggested that the use of chiral one-dimensional edge modes may facilitate this step. It was 
demonstrated12 that proper design of the edge interconnections may allow for braiding of Majorana fermionic 
excitations. This approach can be used to transfer quantum information along the edges and extended to real-
ize quantum logical gates, in particular, in a Kitaev material13. However, realization of materials, described by 
the Kitaev honeycomb or similar models is a difficult and actively investigated problem. Approaches include 
search for natural materials14 or design of artificial circuits, for instance, assembled from quantum bits. In either 
approach the system may be subject to disorder and noise effects. This is especially relevant for qubit circuits, 
since artificial atoms (qubits) cannot be fabricated identical, and their nominally identical couplings are una-
voidably non-uniform. Understanding the effects of these imperfections on the physics of the edge states and 
their dynamics is important.

Here we focus on Majorana zero edge modes in the B-phase of the Kitaev honeycomb model15 in a magnetic 
field. Possible realizations include Kitaev materials14 or artificial qubit networks with carefully tuned circuit 
parameters13,16–21. However, disorder and time-dependent noise may affect properties of the edge states and 
the quality of quantum operations performed. These issues are analyzed in this article. In particular, we study 
stability of the flux-free energy sector under disorder and localization of edge states. Further, we describe meth-
ods to transfer quantum information using the chiral edge states13 and study how various imperfections affect 
the quality of this operation and the corresponding quantum gates. Our results, on one hand, characterize the 
parameter ranges, suitable for needed quantum manipulations, and on the other hand may be used to probe 
various properties of the system.

Exchange operations between external spins
The Kitaev honeycomb spin model15 in external magnetic field h is defined via the Hamiltonian
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with summations over links in three different directions, x, y, z, on the honeycomb lattice. In this paper we assume 
Jx = Jy = Jz = J . Following Ref.15, we use a fermionic representation for the spin-1/2 operators in terms of four 
Majoranas cj , b

x,y,z
j  per site j (see Fig. 1):

subject to a constraint of the physical subspace,

The products ujk = ibαj b
α
k  , defined for every link [ij] in direction α = x, y, z , commute with the Hamiltonian 

and with each other, so that Eq. (1) reduces to a quadratic Hamiltonian in each sector of fixed ujk = ±1 , with 
the coupling terms i2 Jujkcjck.

Magnetic field breaks time-reversal symmetry and opens a gap in the bulk. In weak field, h ≪ J , the effect of 
the field is described by the third-order contribution15:

where summation is performed over triples jkl, in which one site is connected with the other two15 and 
κ ∝ hxhyhz/J

2 . In the fermionic language, this term (4) is also quadratic and couples next-nearest neighbors, 
i
2κcjcl . Thus we obtain c-fermions on a honeycomb lattice with nearest- and next-nearest-neighbor couplings 
(J-terms and κ-terms, cf. Eq. (48) in Ref.15).

In the lowest-energy sector ujk = +1 the system is translationally invariant15,22, and in the momentum rep-
resentation the Hamiltonian reads

where �(q) = 4κ
[

sin(qn1)+ sin(−qn2)+ sin(q(n2 − n1))
]

 , n1,2 = (±1,
√
3)/2 . Here � and µ refer to the even 

or odd (black or white) sublattice. Depending on the values of the coupling constants Jx,y,z various phases can 
be realized15. For |Jx| < |Jy + Jz | , |Jy| < |Jx + Jz | , |Jz | < |Jx + Jy| , the system is in the gapless B-phase, which will 
be of interest to us below. In zero field � = 0 , and the spectrum ±|f (q)| is gapless, with two nodes ±q∗ in the 
Brillouin zone. The existence of these nodes is topologically protected by time-reversal symmetry (since under 
time reversal the structure of (6) persists). A finite field breaks time-reversal symmetry and opens a gap, so that 
near the nodes ±q∗ the spectrum is hyperbolic:

with δq = q − q∗ (respectively, δq = q + q∗ ) and the gap � = 6
√
3κ . Thus, the spectrum in the 2D-bulk is 

gapped, but due to the bulk-boundary correspondence a fermionic zero mode is expected at the boundary.
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Figure 1.   Outline of a Majorana-fermion exchange operation for two spins s1 and s2 . Spin operators are 
represented by four Majoranas per spin. Exchange of fermions from different spins (green arrows) is achieved 
via the interspin coupling (12), while the intra-spin Majorana exchange is effected via the local magnetic 
fields (11) (blue).
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Chiral Majorana edges can carry quantum states and can be coupled to external quantum systems. Manipu-
lations which we will describe below can be applied for various edge types. However, properties of the edge 
states, their spectra and structure may vary. It was argued in Ref.13 that the most suitable is the zigzag edge of a 
Kitaev sample in uniform magnetic field, which vanishes at the edge, in the outermost row, hz = 0 . This ensures 
conservation of the link operators u1 and u2 near both external spins. While creation of this profile of magnetic 
field distribution may be challenging in ‘natural’ Kitaev materials14, it is much easier in artificial qubit lattices, 
where each coupling can be controlled individually, at least in principle13 (cf. proposals for superconducting 
qubits16,17, trapped ions18,19, or polar molecules20,21). In this approach, controllable xx, yy, and zz interactions 
could be implemented23–27. In this configuration, the edge state of zero energy is localized near the edge15. Similar 
to Ref.15, a zero mode of the unperturbed Hamiltonian exists in the range 2π/3 < qx < 4π/3 of longitudinal 
momenta (along the edge), see Fig. 2, and its wave function decays into the bulk with the decay factor 2 cos qx/2 
per unit length. The spectrum of the edge mode obtained from the first-order perturbation theory,

is linear near zero energy with the velocity vgr = −12κ , cf. Fig. 2.
We proceed to discuss how such systems may be used to initialize, transmit and readout quantum states. 

While our discussion is general, in our choice of needed manipulations we have in mind artificial qubit networks 
with controlled local parameters.

Coupling external spins to edge states.  In this subsection we describe in the fermionic language how a 
two-qubit gate can be performed on two external spins coupled to the edge of a Kitaev honeycomb sample13. In 
the process, quantum states are transferred between the spins using the chiral Majorana edge mode. The result-
ing operation is achieved in several steps, which include Majorana exchange operations, i.e., operations on a pair 
of Majorana operators, γ1 and γ2 , with the result of a ‘ 90◦ rotation’ in the γ1-γ2 plane:

This operation can be effected by turning on the coupling Hamiltonian H = igγ1γ2 for a period t = π/(4g) . In 
particular, local magnetic field

leads to an exchange (10) of cj and bαj  after a time span t = π/(4hα).
To exchange a pair of Majoranas from different spins, the spins should be coupled. For instance, the 

zz-coupling

after a time span π/(4�) results in the exchange

of c1 and c2 . Note the extra factor u12 = ibz1b
z
2 = ±1 . Importantly, u12 commutes with H�.

Using these Majorana exchanges, one can construct an exchange of two spins (qubits) s1 and s2 using the 
edge states of the honeycomb model. We thus assume that the qubits are coupled to zigzag edges of the Kitaev 
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Figure 2.   Edge mode spectrum for a zigzag edge with zero hz component of the magnetic field at the boundary 
row of spins. Gray areas correspond to the continuous bulk spectrum.
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honeycomb sample, see Fig. 3, via the zz-coupling (this implies that the external spin is coupled via the z-com-
ponent to the edge spin, which in turn is coupled to two other lattice spins via x- and y-links).

Applying external magnetic field, polarized along x or y directions, to the spins s1 and s2 we can exchange b 
and c Majoranas on each qubit (11) as indicated by the blue arrows in Fig. 3. Turning on the interaction between 
an external spin and one of the edge spins, we achieve an exchange as in Eq. (13), which allows to record the 
state of the c-Majorana to the edge or read out the state from the edge to the c-Majorana. Various write/read 
strategies can be used, and one needs to choose an optimal method depending on specific requirements and 
properties of the edge modes. For instance, one can keep the coupling � weak to achieve adiabaticity for the 
relevant bulk states ( � ≪ J for the range of states discussed below), at the same time keeping it strong enough, 
so that the process is instantaneous for the low-energy edge state ( � ≫ vgr ). This creates a narrow wave packet. 
Alternatively, one can couple strongly, � ≫ J , ensuring instantaneous coupling for all states. In this case, one aims 
at writing a wave packet which does not overlap with the bulk states, but only with the edge modes. Furthermore, 
the spectrum of the edge modes is linear only at very low energies, thus in order to prevent strong deformation 
of the traveling wave packets due to nonlinearities, one may aim at a sufficiently wide wave packet. One can 
achieve this by keeping a weak coupling on for a sufficiently long period13, so that the wave packet moves during 
the writing (respectively, readout) operation. This allows one to achieve high fidelities13, but prevents one from 
controlling the shape of the wave packet. For completeness, in the “Exchanging the external spin states via edge 
states” section we describe another approach, which enables creation of a wide wave packet with full control of 
its shape. Note, however, that here we focus on propagation of quantum states along the edge and analyze fidelity 
of this process. From this viewpoint, a specific choice of the recording/readout procedure is not crucial here.

We outline first the full exchange operation, leaving some details to the “Exchanging the external spin states 
via edge states” section: First, record the c1-fermion of the 1st qubit to the edge, then wait until it propagates to the 
location of the 2nd qubit, and perform a similar exchange (readout) operation at the location s2 . Further, similarly, 
the fermions bx1 and by1 can be transferred to spin 2. As a result of these manipulations, operators σα

1 = ibα1 c1 and 
σα
2  are exchanged for each α = x, y, z (see Fig. 3b):

where Dj = bxj b
y
j b

z
j cj . In the physical subspace, D1 = D2 = 1 (cf. Ref.1 and the “Exchange operations between 

external spins” section), and hence exchange of the external qubits’ states is achieved.

Exchanging the external spin states via edge states.  Let us demonstrate how a state of an external 
qubit can be written to a wide wave packet at the edge. While point-like coupling to a single edge spin can 
produce a narrow packet, one may need a wider packet, for instance, to ensure that only long-wavelength edge 
modes are involved, and the relevant, low-energy part of the spectrum is linear, so that the wave packet is trans-
mitted without distortion. To show that this is possible in principle and an arbitrary-shape wave packet may be 
created, we consider the setup in Fig. 4. With this choice of couplings shown in the figure, the external yellow 
spins may be viewed as a part of the Kitaev lattice. In particular, the operators u at the external purple links are 
conserved during operation. We verified numerically that the ground state of such an augmented honeycomb 
lattice does not carry vortices unless the auxiliary tree is large enough, see below. Thus, we can work in the gauge, 
where the link operators are uij = 1 at the external purple �i links.

Let us first show that one can record the initial arbitrary state of the external (red) qubit onto the edge wave 
packet, which occupies two edge spins e1, e2, see Fig. 4, left. The initial state of an external (red) qubit is arbitrary, 
hence at the green link the value of ûg is arbitrary, similar to u1 and u2 in the discussion above. Initially, we keep 
the external �i couplings turned off and prepare the red qubit in some initial state, which is to be transferred via 
the edge modes.
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Figure 3.   SWAP operation between two external qubits s1 and s2 at two different locations near the edge. (a) 
Initial and (b) final (14) locations of the constituent Majorana operators ci , bi . Green and blue arrows indicate 
Majorana exchange operations between the qubits and within one qubit, respectively. These are performed via 
controlled spin couplings (12) and local fields (11).
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We now describe the operation in more detail. We assume that initially couplings at the blue and green edges 
are switched off. The transfer of a fermion operator c1 from the red qubit to a wave packet at the edge is achieved 
in three steps by gradually transferring it row by row. First, we apply a pulse of the green �1 coupling for a period 
t1 = π

4�1
 to exchange cext with c1 at site 1:

At the next step, the couplings �2 and �3 are switched on:

In the fermionic language and in the absence of vortices, uij = 1 , this Hamiltonian reads:

where a new Majorana fermion is defined by c23 = 1√
�
2
2+�

2
3

(�2c2 + �3c3) . Similar as above, such interaction, if 

switched on for t2 = π

4
√

�
2
2+�

2
3

 , exchanges the states of c1 and c23 . As a result, cext of the external qubit propagates 
to the next row of spins:

Proceeding similarly in the following row, we switch on the interactions �4 and �5 (one may choose �4 = �5 ) of 
the qubits 2 and 3 with the edge qubits for t3 = π

4�4
 , one more exchange is performed, and finally we find that 

the initial cext is mapped to

Note that the shape of the resulting wave packet (19) can be controlled via the couplings �2 , �3.
After this recording procedure, this wave packet (19) propagates along the edge and arrives at the location 

of the other (‘primed’) external qubit. In other words, after some travel time ttr we find that cei  → c′ei near this 
primed qubit. There one can swap the state of the wave packet onto this other external (red) qubit by following 
the same row-by-row procedure in reverse order. Thus, the steps performed effect the sequence of operations:

Thus, finally cext of the first external qubit is swapped onto c′ext of the second external qubit via the wave packet 
at the edge as a mediator.

In reality, however, due to various imperfections (such as deformation of the wave packet due to nonlinearity 
of the edge-mode spectrum, influence of disorder or noise), the propagation is not perfect. Then the cei  → c′ei 
mapping for i = 1, 2 , implied by perfect propagation, is replaced by cei = Pc′ei +

√
1− P2dei , where the Majorana 
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Figure 4.   Left: Interaction between an externally controlled qubit (red dot) and the edge of the Kitaev model 
lattice. Purple and green α-edges correspond to σα

i σ
α
j  controllable interactions ( α = x, y, z ). Right: Extended 

construction, which allows to record and read out wider wave packets to/from the edge.
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operator dei is a normalized ( d2ei = 1 ) superposition of Majoranas at other edge sites (so that c′ei and dei anticom-
mute). Thus, the initial c-Majorana at the first external qubit is mapped to that for the second external qubit 
with errors:

d′e being some combination of edge Majoranas around the location of the second qubit.
As we will see in the “Fidelity” section, the quantity P determines the fidelity of the exchange operation. From 

the description above it is clear that the value of P(t) in a given configuration depends on the travel time along 
the edge, and the optimal value of P(t) is attained at certain t∗ , so that one should pick ttr near t∗ . The suppres-
sion of P(t) from its maximal value depends on the ratio Lδt/wt∗ between the time mismatch δt = ttr − t∗ and 
the width of the wave packet w, where L is the distance between the external qubits along the edge, see Fig. 3.

The recording (and reading-out) algorithm, described above, can be generalized to enable creation of edge 
wave packets of a larger span and with arbitrary spatial profile. This requires larger tree-like structures, see 
Fig. 4, right.

These structures allow one to create superpositions over K edge sites

with the weights αi determined by the purple couplings in the tree.
For deeper tree-like structures, wider and hence less dispersing wave packets are created, which improves the 

overlap P, see numerical results in Fig. 5. In this figure, we illustrate suppression of the overlap caused by non-
linearity in the spectrum, ε0(q)− v0grq , and imperfections in the write and read procedures from the coupling to 
the bulk states. Complexity of this construction grows with the size K of the desired wave packet, however, due to 
parallelization, the required time grows only logarithmically. We observed that the size of the tree may be limited 
by its instability to vortex formation, since its energy cost decreases for larger trees and weaker couplings in the 
tree; however, numerically we observed a vortex in the ground state (below the largest arc) only for the largest 
tree studied ( K = 32 ) and weak couplings ∼ 0.1J . This should not affect operation of smaller tree structures and 
at stronger couplings as discussed above.

Let us also remark that while the qubit-edge coupling described above allows for wave packets of arbitrary 
profile, applications to quantum-state transfer may also rely on other procedures, for instance, longer coupling 
via a point-like contact13, which may be more suitable experimentally depending on qubit realization.

Fidelity.  From the expression (21) for the mapping of the c-fermion and similar expressions for transfer of bx 
and by , we find that σα

ext = ibαextcext is transformed to

We note that the factors of ug and u′g cancel out from the first term. Thus in the limit of perfect edge Majorana 
transmission, P = 1 , we indeed achieve a perfect spin swap. Further, from this expression one can evaluate the 
fidelity of the constructed spin-swap operation. If we are interested in the quality of transfer of the first qubit’s 
state, one can consider its arbitrary initial mixed state ρ and evaluate the final state of the second external qubit.

From Eq. (23) we find that ρ  → 1
2 + P2(ρ − 1

2 ) . We may use the Uhlmann-Josza fidelity28–30 for mixed states 
or the A-fidelity30,31, F(ρ, ρ′) = (Tr

√
ρρ′)2 , since ρ and ρ′ commute. After averaging over possible initial states32, 

the resulting value of the fidelity of the constructed spin-swap operation is

(21)cext  → Pugu
′
gc

′
ext +

√

1− P2d′e,

(22)cext  → ug

K
∑

i=1

αicei , αi ∈ R,

K
∑
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α2
i = 1

(23)σα
ext  → P2(σ ′

ext)
α + P

√
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′
g(c

′dbα + b′αdc)+ (1− P2)dcdbα .

Figure 5.   Overlap with the perfectly transmitted wave packet vs. width K (see Fig. 4; data for L = 120 ). Its 
suppression is caused by non-linearity of the edge-mode dispersion and is weaker for a wider wavepacket.
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Below we characterize fidelity of operations via P2.

Fidelity at static disorder
In this section we evaluate the contribution to decoherence caused by δ-correlated bond disorder. Such systems 
with periodic boundary conditions and various coupling-strength distributions were discussed in33–35. We assume 
that each nearest- and next-nearest-neighbor coupling in the lattice is sampled from a Gaussian distribution: 
with mean J and variance �δJ2ij� = σ 2J2 and mean κ and variance �δκ2ij� = σ 2κ2 , respectively.

Disorder may modify properties of the system in various aspects. First, we verified that with a moderate 
level of static disorder the system remains in the vortex-free sector. Numerical simulations confirm this at least 
for σ � 0.35 , see the “Methods” section. Further, disorder may localize the Majorana edge modes. Due to their 
chiral nature13,15, they are expected to be robust towards localization at sufficiently weak disorder. Stability to 
localization can be verified by inspecting the inverse participation ratio (IPR)

where N is the number of nodes in the sample, ψk
i  is the amplitude of the k-th state at the i-th node. Averaging in 

Eq. (25) is performed over eigenstates in a certain energy range and over disorder realizations. In order to verify 
the limits to the edge state stability, we numerically compute the mean IPR for all N eigenstates of the disordered 
Hamiltonian and compare it with the mean IPR for the edge states. As the spectrum in Fig. 2 suggests, the edge 
states lie in the gap of the bulk spectrum and can be easily identified by the corresponding eigenvalue. For a 
system of N = 9600 nodes and perimeter of L = 240 sites, we show the values of IPR in Fig. 6. According to 
these results, the edge states remain fully extended up to disorder levels σ � 0.2 (indeed, I2 = 1/L corresponds 
to a plane-wave-like eigenstate propagating along the boundary). At stronger disorder in the studied range, the 
edge states become nonuniform along the edge, reflecting spatial variation of their velocity, see below, but are 
still localized near the edge.

In our further analysis we assume that disorder is not too strong so that the ground state is vortex-free and 
the edge modes are delocalized. Nevertheless, for the algorithm in the “Exchange operations between external 
spins” section, it is crucial to read out the edge state at the optimal time, when the wave packet arrives at the 
read-out position: possible mismatch suppresses fidelity of the operation. In this section, we evaluate the effect 
of static disorder on propagation of the edge state.

For simplicity, we assume that the write and read operations are performed on the same set of nodes, at the 
same position: in other words, the wave packet makes a full circle around the sample between these operations. 
We observe that the major effect of disorder may be interpreted as a modification of the edge-mode velocity, 
which becomes position-dependent. This dependence is different for each particular realization of random 
disorder. Here we evaluate corrections to the velocity and its sample-to-sample fluctuations to characterize the 
effect of disorder on the fidelity F (24).

If disorder is not too strong, its main effect can be captured perturbatively. Every initial state can be repre-
sented as a linear combination of the eigenstates in the disordered system. First- and second-order corrections to 
the eigenenergies from disorder modify the dynamic phases of the eigenstates. Taking periodicity into account, 
the final overlap after one turn can be found as

(24)F = 1+ P2

2
.
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Figure 6.   Mean IPR of the edge and bulk states as a function of disorder, quantified via the standard deviation 
of the coupling strength parameters.
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where ε0(q) is the spectrum in a clean system, δε(q) = ε1(q)+ ε2(q)+ · · · is the perturbative correction, and 
the shape of the wave packet is defined via its Fourier transform Aq . The first-order correction ε1 is given by:

via the diagonal matrix element Vqxqx of the disorder-induced part V of the Hamiltonian for the edge state with 
wavevector qx . At qx = π + q̃x and small q̃x , the state is localized on the first row of nodes15, where the amplitude 
of the normalized state is 1/

√
L . We find for the first-order disorder-induced energy correction:

In the second order of perturbation theory, the correction is non-zero and is dominated by transitions to the 
bulk states:

Evaluating the sum, we find a correction to the average velocity of the edge mode (the numerical coefficient is 
quoted for κ/J = 0.027):

which indicates that the wavepacket is slowed down, on average.
Let us now evaluate the overlap of the wavepackets after a full rotation. As we discussed in the “Exchanging 

the external spin states via edge states” section, the overlap is suppressed to a certain value P0 already in a clean 
system due to nonlinearity of the spectrum and imperfections in coupling to the edge, see Fig. 5. Here we evalu-
ate additional suppression due to static disorder. Disorder modifies the velocity at the edge and hence the final 
position of the wave packet at a certain time t. This random shift is determined, on average, by Eq. (30), and 
fluctuates according to Eq. (28). One may try to optimize the overlap by adjusting the readout time t.

The average overlap squared, P2 , at the average optimal readout time t = L/(v0gr + δvgr) becomes

For a Gaussian initial wave packet of width w, averaging Eq. (31) over disorder, we find

Note that the disorder strength σ should be compared to the size-dependent emergent scale ∼ w/
√
L . Indeed, 

scattering at each random link shifts the traveling wave packet by ∼ ±σ , accumulating to σ
√
L due to random 

signs.
We numerically evaluated the overlap P2 between the original and final wave packets using three different 

read-out approaches, see Fig. 7. One method uses readout at the bare arrival time L/v0gr of the clean system. 
In another approach, optimization for the disorder-averaged delay of the wave packet by reading out at time 
t = L/(v0gr + δvgr) improves the fidelity. This optimized numerical fidelity is compared to Eq. (32) (dashed line). 
Finally, one can try to tune to the optimal readout time individually for each disorder configuration.

Fidelity under non‑stationary noise
Consider now time-dependent noise in the system. We first analyze the effect of uniform non-stationary noise, 
assuming that each coupling in the system follows the same noisy pattern: δJij(t)/J0 = δκ(t)/κ0 = ξ(t) . In this 
case, each energy eigenstate evolves as follows:

In the limit of low-frequency noise, all the couplings in the Kitaev model fluctuate collectively between experi-
mental runs. Physically, such a situation may be realized if all the couplings are controlled by a uniform fluctuat-
ing field. The same effect occurs if the couplings are robust, but the waiting time ttr fluctuates. Thus such simple 
structure of fluctuations may nevertheless induce nontrivial consequences for the fidelity.

The overlap between the clean and noisy wave functions depends on the quantity χ(t) =
∫ t
0 dt

′ξ(t ′) and its 
statistical properties. Assuming Gaussian noise ξ(t) , we observe that χ(t) is also Gaussian distributed. Its vari-
ance grows with time and can be found explicitly,

(26)P(t) =
∑

q

A2
qe

iqL−it(ε0(q)+δε(q)),

(27)ε1(qx) = Vqxqx

(28)�ε1(qx)� = 0, �ε21(qx)� =
176κ2

L
σ 2q̃2x .

(29)
〈

ε2(qx)
〉

≈ −ε0(qx)σ
2 · 1

N

∑

q′∈BZ

4J2

|Eq′ |2
.

(30)δvgr = −1.07vgrσ
2,

(31)P2(t) = P20

∑

q,q′
A2
qA

2
q′e

−it(δε(q)−δε(q′)).

(32)�P2� = P20

(

1+ 11σ 2L

9w2

)−1/2

.

(33)ψε(t) = exp



−iε

t
�

0

dt′(1+ ξ(t ′))



ψε(0).
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in terms of the spectral density of fluctuations, �ξ 2ω� ≡
∫

dt�ξ(t)ξ(0)�eiωt.
For a short correlation time this gives

while for 1/f noise �ξ 2ω� = ν/|ω| one finds

where ωir is the infrared cutoff frequency.
Similar to the previous section, the overlap can be found from

For a Gaussian wave packet of width w, after summation over momenta and averaging over noise we find

Note a similarity of Eqs. (38) and (32). In both cases fidelity is suppressed due to fluctuations of the velocity (or, 
equivalently, travel time). The case of short correlation time, Eq. (35) is similar to δ-correlations in space, Eq. (32) 
in terms of scaling with the travel time/length.

Consider now the effect of short-correlated low-frequency noise. We assume that relative fluctuations for 
each ij-coupling, δJij/J = ξij(t) or δκij/κ = ξij(t) , are Gaussian, uncorrelated and have the same spectral density, 
�(ξij)2ω� = ν/|ω| . Similarly to the Fig. 7 left, the Fig. 8 shows the numerically evaluated overlap vs. noise level for 
two detection methods: after the time span given by the nominal transport time in a clean system and after a 
time corrected for the noise-averaged wave packet delay (optimized time).

In this limit, the effect of the noise is similar to the stationary disorder in the “Fidelity at static disorder” sec-
tion, while in the evaluation of the local variance of the couplings the contribution of high frequencies should 
be neglected. The dashed line in Fig. 8 shows the expected value for the optimal-time approach:

Note that for the numerical parameters corresponding to the Fig. 8, the average shift of the wave packet is much 
smaller than its fluctuations, hence the optimized time is the same as the travel time for the clean system.

(34)�χ2(t)� =
∫

dω

2π
�ξ 2ω�

(

sin(ωt/2)

ω/2

)2

,

(35)�χ2(t)� ≈ �ξ 2ω=0� · t,

(36)�χ2(t)� ≈ ν

π
t2 ln

1

ωirt
,

(37)P2 = P20

∑

q,q′
A2
qA

2
q′e

−iv0gr(q−q′)χ(t).

(38)P2 = P20

(

1+
v2gr

w2
�χ2(t)�

)−1/2

(39)�P2� = P20

(

1+ 11

9

Lν

w2
ln

vgr

ωir

)−1/2

.

Figure 7.   Left: The overlap between the initial and final wave packets vs. disorder. The overlap was evaluated 
numerically for three different readout methods: readout at the optimal travel time in the clean system, 
ttr = L/vgr(0) (constant); readout at the time point, optimized for the disorder-averaged velocity, L/vgr(σ ) , 
plotted together with the expected value (32) (dashed curve); and readout at time t∗ maximizing P2 individually 
for each specific realization of disorder (tuned). At each point, the mean value and standard deviation are 
calculated for an ensemble of 300 random hexagon samples with 2400 nodes. Right: Optimal overlap time for a 
hexagonal sample with 2400 nodes. The observed slowdown follows Eq. (30).
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Discussion
We discussed how chiral Majorana edge modes, specifically in the Kitaev honeycomb model, can be used to 
transmit and process quantum information with the focus on the influence of various practical limitations and 
imperfections on fidelity of such operations. As an example, we considered an algorithm to perform the SWAP 
operation on two external qubits, coupled to the edge. This involves writing a quantum state onto the edge, 
propagation along the edge, and readout at a different location. To complement other approaches, we proposed 
an algorithm to transfer the quantum state of an external qubit to the chiral edge, which allows to create a wave 
packet of needed width with a fully controlled profile. Wider wave packets are more robust to distortion of their 
shape because of the nonlinearity of the edge mode spectrum.t"

To demonstrate how the Majorana edge states can be used and evaluate fidelity of quantum-state transfer, 
we focused on coupling conventional (non-topological) external qubits (spins) via the edge. While such qubits 
and their coupling to the edge are not topologically protected, this setting is more straightforward experimen-
tally and probes the same fidelity of the quantum-state transfer. Such a setup still allows for sufficiently high 
fidelity and would be an important step towards the use of Majorana edge modes in fully topological quantum 
computations12.

We found that the ground state of the system remains vortex-free at not too strong disorder, demonstrat-
ing some stability. Furthermore, we verified that the edge modes exhibit robustness towards disorder-induced 
localization. At the same time, their properties are affected by disorder or non-stationary noise, suppressing 
fidelity of quantum-state transmission along the edge. In a finite system this leads to fluctuations of the wave-
packet propagation time, and thus limits reproducibility of the results between nominally identical samples. 
Homogeneous non-stationary fluctuations and 1/f spatially uncorrelated noise affect the fidelity in qualitatively 
similar ways due to locality of the propagating wave-packet.

Overall, the proposed algorithm allows to reach high fidelity 0.95, Eq. (24), without further optimization of 
the SWAP operation, cf. Fig. 5, and is stable with respect to considered imperfections of the lattice (Fig. 7). The 
spread in the values of nominally identical circuit parameters on the order of 10% should not prevent one from 
realization of the algorithm in a sample of several hundred qubits. This should be attainable, for instance, in 
superconducting-qubit networks36 or other artifical systems.

From the practical point of view a relevant type of imperfection are vacancies in the lattice, which may host 
zero modes35,37, and these will be analyzed in future work.

Methods
We verified that at weak disorder the system remains in the vortex-free sector. Formation energy for a vortex 
pair is a random quantity in a disordered system, and it is important to evaluate the probability q that this energy 
becomes negative, which favors vortex formation. We note that a negative exchange coupling supports creation 
of vortices, since it can be compensated by a vortex pair around this bond. However, vortices may appear in the 
ground state even at positive couplings under certain conditions, in particular, for very weak couplings around 
a certain site33. To verify numerically that probability q is low, for each choice from a selection of disorder 
levels σ � 0.35 and sample sizes up to ∼ 300 , we evaluated the lowest energy of vortex-pair formation in 25 
random samples and found it to be positive in all cases (hence, no vortices in the ground state). Nevertheless, 
the disorder-averaged energy drops with disorder strength, while its variance grows, and extrapolation suggests 
a critical disorder of ∼ 0.35.

While stronger disorder may favor a random-flux phase33, one expects only a weak logarithmic dependence 
of critical disorder on the sample size from considerations above. This is consistent with our numerical data in 
the studied range. We thus conclude that for this disorder level and for sample sizes studied in this article, non-
vortex-free samples would be extremely rare.

Figure 8.   Overlap vs. noise strength for δ-correlated 1/f noise. Notations and parameters are the same as in 
Fig. 7 and vgr/ωir = 19.1 . Dashed line follows Eq. (39).
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