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Red blood cell distribution width 
for the prediction of outcomes 
after cardiac arrest
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 The red blood cell distribution width (RDW) is a routinely available blood marker that measures the 
variation of the size/volume of red blood cells. The aim of our study was to investigate the prognostic 
value of RDW in cardiac arrest patients and to assess whether RDW improves the prognostic value of 
three cardiac arrest-specific risk scores. Consecutive adult cardiac arrest patients admitted to the ICU 
of a Swiss university hospital were included. The primary outcome was poor neurological outcome 
at hospital discharge assessed by Cerebral Performance Category. Of 702 patients admitted to the 
ICU after cardiac arrest, 400 patients (57.0%) survived, of which 323 (80.8%) had a good neurological 
outcome. Higher mean RDW values showed an independent association with poor neurological 
outcomes at hospital discharge (adjusted OR 1.27, 95% CI 1.14 to 1.41; p < 0.001). Adding the 
maximum RDW value to the OHCA- CAHP- and PROLOGUE cardiac arrest scores improved prognostic 
performance. Within this cohort of cardiac arrest patients, RDW was an independent outcome 
predictor and slightly improved three cardiac arrest-specific risk scores. RDW may therefore support 
clinical decision-making.
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PROPHETIC  Prognostication of outcome in patients with out-of hospital cardiac arrest hospitalized 
in intensive care

RDW  Red blood cell distribution width
ROC  Receiver operating characteristic curve
ROSC  Return of spontaneous circulation
SCA  Sudden cardiac arrest
SD  Standard deviation
TRIPOD  Transparent reporting of a multivariable prediction model for individual prognosis or 

diagnosis

Sudden cardiac arrest (SCA) is an important cause of death worldwide, and survivors frequently suffer from 
physical, psychological, and cognitive  sequelae1–4. As many patients in an early stage after cardiac arrest remain 
unconscious, prognosis and therapeutic options often need to be discussed with family members who act as 
surrogate decision-makers5. In these early goals of care discussions, expected outcomes, such as neurological 
outcome, including mortality or disabilities, might have an important impact on decision-making6. Therefore, 
early and reliable prognostic tools may help provide further therapeutic management  guidance6. So far, some 
well-validated prognostic models for the prediction of good neurological outcome at hospital discharge after 
cardiac arrest have been proposed, such as the Out-of-hospital Cardiac Arrest [OHCA] score, the Cardiac Arrest 
Hospital Prognosis [CAHP] score, and the Prognostication using logistic regression model for unselected adult 
cardiac arrest patients in the early stages [PROLOGUE]  score7–10.

A previous study assessed the short-term prognostic value of various routine blood markers, whereas some 
markers, such as procalcitonin and lactate were able to improve the prognostic performance of a parsimonious 
clinical prediction model for mortality and neurological  outcome11. Thus, addition of routine blood markers to 
clinical prediction models seems to be a promising approach, as these parameters are usually inexpensive and 
widely available. Among routine blood markers, the red blood cell distribution width (RDW), measures the vari-
ation of the size/volume of red blood cells and is often reported routinely as part of the complete blood  count12, 

13. RDW is calculated by dividing the standard deviation (SD) of erythrocytes volume by the mean corpuscular 
volume (MCV) of erythrocytes expressed as  percentage14, 15. Commonly, RDW is used in anemia diagnostics, 
but it recently gained attention for prognostic research by acting as an independent risk factor for death in acute 
coronary syndrome, lung cancer, acute pulmonary embolism, and unselected intensive care unit [ICU]  patients13, 

14, 16–20. However, only a few studies assessed the prognostic value of RDW in cardiac arrest patients. In the Korean 
Cardiac Arrest Research Consortium Study [KoCARC study], RDW was found to be independently associated 
with poor neurological outcome after out-of-hospital cardiac arrest with a good prognostic performance (area 
under the curve [AUC] 0.63)21. Herein, our aim was to validate the results of the KoCARC Study in a large 
prospective Swiss cohort of cardiac arrest survivors and to investigate if the addition of RDW to three cardiac 
arrest specific scores (i.e., OHCA-, CAHP-, and PROLOGUE score) improves prediction model performance.

Methods
Study setting. Data were prospectively collected on patients in the ongoing COMMUNICATE/PRO-
PHETIC study at a tertiary teaching hospital in Switzerland (University Hospital Basel). Details of the study 
procedure have been published  previously4, 11, 22–31. Depending on the patients’ cognitive abilities, the informed 
consent was given by the patient or a medical guardian. If a medical guardian could not be located, an independ-
ent physician acted as the surrogate decision-maker.

The Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis [TRI-
POD] statement guided us through the analysis and reporting of this  study32–34.

Participants. Adult patients with return of spontaneous circulation [ROSC] after out-of-hospital [OHCA] 
or in-hospital [IHCA] cardiac arrest who were admitted to the intensive care unit [ICU] of the University Hos-
pital Basel after cardiac arrest were eligible for inclusion in this study. Monitored patients (e.g., ICU, operating 
room, cardiac catheterization laboratory) and those who refused informed consent were excluded. Patients’ 
treatment was based on the standardized local treatment protocol in accordance with the guidelines of the Euro-
pean Resuscitation  Council35, 36.

Outcomes. The primary outcome was poor neurological outcome at hospital discharge after cardiac arrest 
as assessed by the Cerebral Performance Category [CPC]  scale37. The scale is divided into five categories of 
functional outcomes: A score of 1 implies good recovery with readmission of everyday life, however, mild neuro-
logical or psychological symptoms might be present, a score of 2 implies moderate disability with independence 
regarding activities of daily living, a score of 3 implies severe disability with dependence on others for activi-
ties of daily living, a score of 4 implies any state of coma or persistent vegetative state and a score of 5 includes 
death or brain  death37. The secondary outcome was in-hospital mortality. According to previous studies, we 
dichotomized levels 1 (good recovery) and 2 (moderate disability) as good neurological outcome, whereas levels 
3 (severe disability), 4 (vegetative state) and 5 (death) were defined as poor neurological  outcome5, 6.

Data collection. The routine blood markers, including RDW, were collected at ICU admission (day 0) and 
on day 1, 3, 5, 7, as well as on the day of discharge from the ICU. RDW was assessed by the ADVIA hematology 
system (SIEMENS Healthineers International, Zurich, Switzerland) using impedance with hydrodynamic focus-
ing. RDW is a percentage value with a theoretical range from 0 to 100. For the purpose of this study referred to 
as ‘RDW value’.
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The following data was extracted from the electronic patient record: Demographics (i.e. gender, age), coexist-
ing morbidities (i.e,. coronary artery disease, heart failure, neurologic disease, diabetes, hypertension, chronic 
obstructive pulmonary disease [COPD], chronic kidney disease, liver cirrhosis and malignancy), resuscitation 
details (setting of cardiac arrest, observed cardiac arrest, provision of bystander cardiopulmonary resuscitation 
[CPR], initial rhythm, no-flow time, time until ROSC), etiology of cardiac arrest, clinical and laboratory values 
(i.e. blood pressure on ICU admission, Glasgow Coma Scale [GCS], red blood cell distribution width, hematocrit, 
blood pH, lactate) and CPC score at hospital discharge.

The three clinical risk scores used in this study are composed as follows: The OHCA score is calculated by five 
clinical (no-flow and low-flow interval, initial rhythm) and laboratory values (creatinine, lactate)7, 31. The CAHP 
score contains additional information on resuscitative measures (location of cardiac arrest, epinephrine dosage) 
and another laboratory parameter (pH) at ICU  admission8, 31. The PROLOGUE score omits the no-flow time 
and includes different resuscitation details (unwitnessed arrest, low-flow time, non-shockable rhythm), clinical 
and laboratory values (age, GCS, pupillary light reflex, adrenaline dose, phosphate, creatinine, hemoglobin, 
lactate, potassium)10, 31.

Statistical analysis. The statistical analysis was performed by STATA 15.0 using descriptive statistics to 
specify our cohort with mean and standard deviation (SD) or median and interquartile range (IQR) for continu-
ous variables and frequencies for binary and categorical variables. Continuous variables were visually inspected 
for normal distribution. A two-sided T-test was used for the analysis of continuous variables, whereas a chi-
square test was used for binary and categorical variables. The discrimination of RDW values was calculated by 
receiver operating characteristics [ROCs] and the corresponding AUC.

To evaluate the association of RDW with our primary and secondary outcomes, univariate and multivariable 
analyses were performed. The models were adjusted for predefined known confounders of  RDW13, 38–40 such as 
age, gender, hematocrit, and comorbidities. Odds ratios [OR] with 95% confidence interval [CI] were calculated 
using logistic regression for poor neurological outcome and mortality.

The multivariable model was performed by adding the OHCA-, CAHP- and PROLOGUE score to assess the 
effect of the maximum RDW values over days 0, 1, 3, 5, 7 and ICU discharge on the association with outcomes. 
In line with the KoCARC  study21 we calculated 4 quartiles of the mean RDW value with the following ranges: 
< 13.5, 13.5–14.3, 14.3–15.5, > 15.5.

We investigated specificity and sensitivity using cut-offs regarding poor neurological outcome at hospital 
discharge. The highest specificity for poor neurological outcome was observed at a maximum RDW value of 13.2, 
and maximum sensitivity was observed at a maximum RDW value of 16.6. Maximum specificity for mortality 
at hospital discharge was observed at a maximum RDW value of 13.2, and maximum sensitivity was observed 
at a maximum RDW value of 17 using the Youden Index.

In addition, RDW cut-offs for the prediction of good neurological outcome at hospital discharge (mean RDW 
value; cut-off 14.6) and survival to hospital discharge (mean RDW value; cut-off 15.5) as defined by Cheng et al. 
were  validated41. The mean RDW values on day 0 and day 7 were compared using a two-tailed paired t-test.

Ethics approval and consent to participate. The study was  permitted by the Ethics Committee of 
North-western and Central Switzerland (www. eknz. ch) and led by the principles of the Declaration of Helsinki 
and its amendments.

Results
Baseline characteristics. Seven hundred and two consecutive patients admitted to the ICU with ROSC 
after cardiac arrest were included. Overall, every patient had at least one RDW measurement.

Until hospital discharge 400 patients (57.0%) survived, of which 323 (80.8%) had a good neurological out-
come. Table 1 depicts the baseline characteristics stratified by neurological outcome at hospital discharge. The 
mean age was approximately 65 years, and 506 patients (72.1%) were male. The majority of cases were out-of-
hospital cardiac arrests (83.5%), whereas 16.5% were survivors of an in-hospital cardiac arrest. The most frequent 
cause of cardiac arrest was coronary artery disease (333 patients, 47.8%). Patients with poor neurological outcome 
at hospital discharge were older (mean ± SD age 67.2 years, ± 13.9 vs. 61.8 years, ± 14.2; p < 0.001) and had a higher 
rate of pre-cardiac arrest comorbidities: COPD (15.3% vs. 5.6%; p < 0.001), malignant disease (14.9% vs. 6.8%; 
p < 0.001), neurological disease (19.0% vs. 9.3%; p < 0.001), diabetes (24.3% vs. 18.0%; p = 0.04) However, survivors 
with a good neurological outcome more often had pre-cardiac arrest evidence of coronary artery disease (64.1% 
vs. 52.9%; p = 0.003). Patients with a poor neurological outcome at hospital discharge had a longer mean no-
flow time (4.71 min vs. 1.18 min; p < 0.001) and less often received bystander CPR (60.3% vs. 83.9%; p < 0.001).

Association of RDW and risk scores with neurological outcome at hospital discharge. Higher 
mean RDW values were independently associated with poor neurological outcome at hospital discharge 
(mean, ± SD 15 ± 2 vs 14 ± 2, adjusted OR 1.27, 95% CI 1.14–1.41; p < 0.001; Table 2). Patients with poor neuro-
logical outcome at hospital discharge had higher mean RDW values on day 0, 1, 3 and 5. The highest mean RDW 
difference between patients with poor and good neurological outcome, as illustrated in Fig. 1, was found on day 
3 (mean ± SD 14.9 ± 2.02 vs. 14 ± 1.51, adjusted OR 1.28, 95% CI 1.10–1.49; p = 0.002).

All three risk scores were associated with poor neurological outcome with AUCs for the OHCA-, CAHP- and 
PROLOGUE score of 0.82, 0.83 and 0.75. When adding the maximum RDW values to these scores, the prognostic 
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performance of all scores slightly improved: OHCA score from AUC 0.82 to 0.83; p = 0.047; CAHP score from 
AUC 0.83 to 0.84; p = 0.03 and PROLOGUE score from AUC 0.75 to 0.77; p = 0.02.

Table 1.  Baseline characteristics. COPD chronic obstructive pulmonary disease, CPC cerebral performance 
category scale, CPR cardiopulmonary resuscitation, ICU intensive care unit, IHCA in-hospital cardiac arrest, 
GCS glasgow coma scale; n number, RDW red cell distribution width, ROSC return of spontaneous circulation, 
SD standard deviation. Significant values are in Italic. 

Factor
All patients
(N = 702)

Good neurological outcome: 
CPC 1–2
(N = 323)

Poor neurological outcome: 
CPC 3–5
(N = 379) p-value

Sociodemographics

Age [years], mean (SD) 64.7 (14.3) 61.8 (14.2) 67.2 (13.9)  < 0.001

Male gender, n (%) 506 (72.1%) 255 (78.9%) 251 (66.2%)  < 0.001

Comorbidities

Coronary artery disease, n (%) 407 (58.1%) 207 (64.1%) 200 (52.9%) 0.003

Congestive heart failure, n (%) 100 (14.3%) 38 (11.8%) 62 (16.4%) 0.08

COPD, n (%) 76 (10.8%) 18 (5.6%) 58 (15.3%)  < 0.001

Liver disease, n (%) 19 (2.7%) 5 (1.5%) 14 (3.7%) 0.1

Hypertension, n (%) 362 (51.6%) 169 (52.3%) 193 (51.1%) 0.76

Diabetes, n (%) 150 (21.4%) 58 (18.0%) 92 (24.3%) 0.04

Chronic kidney disease, n (%) 95 (13.6%) 37 (11.5%) 58 (15.3%) 0.15

Malignant disease, n (%) 78 (11.1%) 22 (6.8%) 56 (14.9%)  < 0.001

Neurological disease, n (%) 102 (14.6%) 30 (9.3%) 72 (19.0%)  < 0.001

Resuscitation measures

No-flow Time [min], mean (SD) 3.01 (5.27) 1.18 (2.66) 4.71 (6.41)  < 0.001

Time until ROSC [min], mean 
(SD) 22.02 (18.38) 16.19 (13.75) 27.41 (20.38)  < 0.001

Observed cardiac arrest, n (%) 572 (81.6%) 293 (90.7%) 279 (73.8%)  < 0.001

Bystander CPR, n (%) 499 (71.2%) 271 (83.9%) 228 (60.3%)  < 0.001

Setting of cardiac arrest  < 0.001

At home, n (%) 258 (37.2%) 92 (29.0%) 166 (44.1%)

Public, n (%) 321 (46.3%) 173 (54.6%) 148 (39.4%)

IHCA, n (%) 114 (16.5%) 52 (16.4%) 62 (16.5%)

Cause of cardiac arrest  < 0.001

Coronary artery disease, n (%) 333 (47.8%) 195 (61.3%) 138 (36.4%)

Primary arrhythmia, n (%) 100 (14.3%) 53 (16.7%) 47 (12.4%)

Other/unknown, n (%) 264 (37.9%) 70 (22.0%) 194 (51.2%)

Initial rhythm  < 0.001

Ventricular fibrillation, n (%) 335 (47.9%) 217 (67.2%) 118 (31.3%)

Ventricular tachycardia, n (%) 33 (4.7%) 18 (5.6%) 15 (4.0%)

Asystole, n (%) 113 (16.1%) 14 (4.3%) 99 (26.3%)

Pulseless electrical activity, n (%) 159 (22.7%) 36 (11.1%) 123 (32.6%)

Unknown, n (%) 60 (8.6%) 38 (11.8%) 22 (5.8%)

Initial Status at ICU admission

Total GCS, mean (SD) 6 (4) 7 (5) 4 (3)  < 0.001

Systolic blood pressure [mmHg], 
mean (SD) 115 (25) 116 (22) 115 (28) 0.45

Diastolic blood pressure [mmHg], 
mean (SD) 67 (17) 69 (15) 65 (18)  < 0.001

Mean arterial pressure [mmHg], 
mean (SD) 82 (18) 84 (16) 81 (19) 0.01

Initial pH, mean (SD) 7.21 (.166) 7.26 (.135) 7.17 (.175)  < 0.001

Initial lactate [mmol/l], mean 
(SD) 6.45 (4.41) 4.66 (3.5) 7.89 (4.55)  < 0.001

Hematocrit [l/l], mean (SD) .395 (.0697) .402 (.062) .39 (.0751) 0.03

Diagnostic measures

RDW max [%], mean (SD) 14.77 (1.96) 14.30 (1.64) 15.18 (2.11)  < 0.001

RDW max [%], median 14.30 (13.50, 15.50) 13.80 (13.20, 15.00) 14.60 (13.80, 15.90)  < 0.001
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Good 
neurological 
outcome: CPC 
1–2
(N = 323)

Poor 
neurological 
outcome: CPC 
3–5
(N = 379) p-value

Univariate
Multivariable* 
adjusted

RDW and 
OHCA score: 
multivariable* 
adjusted

RDW and 
CAHP score: 
multivariable* 
adjusted

RDW and 
PROLOGUE 
score: 
multivariable* 
adjusted Univariate

Multivariable* 
adjusted

OR (95%CI), 
p OR (95%CI), p OR (95%CI), p OR (95%CI), p OR (95%CI), p AUC 

AUC combined 
with RDW Max

A Primary outcome: Neurological outcome at hospital discharge

RDW Max, 
mean (SD) 14 (2) 15 (2)  < 0.001

1.31 (1.19, 
1.44), p < 0.001

1.27 (1.14, 
1.41), p < 0.001

1.19 (1.06, 
1.33), p = 0.002

1.19 (1.07, 
1.34), p = 0.002

1.2 (1.08, 1.33), 
p = 0.001 0.65 n.a

RDW Max, 
median (IQR) 14 (13, 15) 15 (14, 16)  < 0.001

Quartiles of 
RDW Max., 
n (%)

123 (38.1%) 72 (19.0%)

 < 0.001

(Ref 1) (Ref 1) (Ref 1) (Ref 1) (Ref 1)

n.a n.a

2nd quartile, 
n (%) 90 (27.9%) 87 (23.0%) 1.65 (1.09, 

2.5), p = 0.02
1.4 (0.91, 2.17), 
p = 0.13

1.21 (0.72, 
2.03), p = 0.48

1.09 (0.65, 
1.84), p = 0.75

1.04 (0.64, 
1.68), p = 0.89

3rd quartile, 
n (%) 60 (18.6%) 104 (27.4%) 2.96 (1.92, 

4.56), p < 0.001
2.41 (1.53, 3.8), 
p < 0.001

1.91 (1.11, 
3.31), p = 0.02

1.88 (1.09, 
3.25), p = 0.02

1.58 (0.95, 
2.62), p = 0.08

4th quartile, 
n (%) 50 (15.5%) 116 (30.6%) 3.96 (2.55, 

6.16), p < 0.001
3.14 (1.91, 
5.15), p < 0.001

2.32 (1.3, 4.14), 
p = 0.005

2.17 (1.21, 3.9), 
p = 0.01

2.33 (1.36, 
4.01), p = 0.002

RDW Day 0, 
mean (SD) 13.8 (1.36) 14.4 (1.87)  < 0.001 1.29 (1.16, 

1.44), p < 0.001
1.18 (1.05, 
1.33), p = 0.006

1.1 (0.97, 1.26), 
p = 0.13

1.11 (0.97, 
1.26), p = 0.12

1.12 (0.99, 
1.27), p = 0.07

RDW Day 1, 
mean (SD) 13.9 (1.34) 14.5 (1.81)  < 0.001 1.35 (1.2, 

1.52), p < 0.001
1.26 (1.1, 1.44), 
p = 0.001

1.17 (1.02, 
1.35), p = 0.03

1.19 (1.03, 
1.36), p= 0.02

1.19 (1.05, 
1.36), p = 0.009

RDW Day 3, 
mean (SD) 14 (1.51) 14.9 (2.02)  < 0.001 1.37 (1.19, 

1.57), p < 0.001
1.28 (1.1, 1.49), 
p = 0.002

1.24 (1.06, 
1.45), p = 0.007

1.25 (1.07, 
1.46), p = 0.005

1.26 (1.08, 
1.46), p = 0.003

RDW Day 5, 
mean (SD) 14.3 (1.65) 14.9 (1.8) 0.007 1.23 (1.05, 

1.44), p = 0.009
1.2 (1, 1.44), 
p = 0.06

1.16 (0.95, 
1.41), p = 0.15

1.17 (0.96, 
1.42), p = 0.11

1.18 (0.98, 
1.42), p = 0.08

RDW Day 7, 
mean (SD) 14.7 (1.8) 15.2 (1.74) 0.063 1.19 (0.99, 

1.44), p = 0.07
1.18 (0.95, 
1.46), p = 0.14

1.11 (0.89, 1.4), 
p = 0.34

1.15 (0.93, 
1.44), p = 0.21

1.17 (0.94, 
1.45), p = 0.16

RDW at ICU 
discharge, 
mean (SD)

14.1 (1.6) 15.1 (2.13)  < 0.001 1.39 (1.26, 
1.54), p < 0.001

1.33 (1.19, 
1.49), p < 0.001

1.23 (1.09, 
1.39), p = 0.001

1.23 (1.09, 
1.39), p = 0.001

1.25 (1.11, 1.4), 
p < 0.001

OHCA, mean 
(SD) 8 (18) 30 (18)  < 0.001 1.07 (1.06, 

1.08), p < 0.001
1.07 (1.06, 
1.09), p < 0.001

n.a n.a n.a

0.82 0.83, p < 0.05

CAHP, mean 
(SD) 128 (39) 185 (42)  < 0.001 1.03 (1.03, 

1.04), p < 0.001
1.03 (1.03, 
1.04), p < 0.001 0.83 0.84, p = 0.03

PROLOGUE, 
mean (SD) 231 (103) 332 (106)  < 0.001 1.01 (1.01, 

1.01), p < 0.001
1.01 (1.01, 
1.01), p < 0.001 0.75 0.77, p = 0.02

Survivors
(N = 400)

Non-Survivors
(N = 302) p-value

Univariate
Multivariable* 
adjusted

RDW and 
OHCA score: 
multivariable* 
adjusted

RDW and 
CAHP score: 
multivariable* 
adjusted

RDW and 
PROLOGUE 
score: 
multivariable* 
adjusted Univariate

Multivariable* 
adjusted

OR (95%CI), 
p OR (95%CI), p OR (95%CI), p OR (95%CI), p OR (95%CI), p AUC 

AUC combined 
with RDW Max

B Secondary endpoint: Mortality at hospital discharge

RDW Max, 
mean (SD) 14.5 (1.87) 15.1 (2.04)  < 0.001

1.16 (1.07, 
1.25), p < 0.001

1.1 (1.01, 1.21), 
p = 0.04

1.03 (0.93, 
1.14), p = 0.59

1.03 (0.92, 
1.14), p = 0.63

1.04 (0.94, 
1.15), p = 0.46 0.61 n.a

RDW Max, 
median (IQR) 14 (13, 15) 15 (14, 16)  < 0.001

Continued
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Association of RDW with mortality at hospital discharge. Regarding secondary outcome, higher 
mean RDW values were independently associated with mortality at hospital discharge (mean ± SD 15.1 ± 2.04 vs 
14.5 ± 1.87, adjusted OR 1.1, 95% CI 1.01–1.21; p = 0.04). Further, the third (RDW values 14.3–15.5) and fourth 
(RDW values < 15.5) quartile were independently associated with mortality at hospital discharge (adjusted OR 
1.97, 95% CI 1.25–3.1; p = 0.003 and OR 1.81, 95% CI 1.12–2.94; p = 0.02).

The maximum RDW values did not improve the prognostic performance of the OHCA-, CAHP- and PRO-
LOGUE score regarding mortality.

A Kaplan–Meier-curve for 30-day all-cause-mortality stratified by the two different optimal cut-offs of mean 
maximum RDW values (< 13.2 and > 17) calculated by Youden Index is shown in Fig. 2.

RDW dynamic over time. The mean RDW values increased over time, with the highest values observed 
at day 7. Overall a significant difference between day 0 and day 7 (14.1 vs. 14.9, mean difference 0.8, 95% CI 
0.61–1.04, p < 0.001) was observed. This could also be observed when stratifying the increase of RDW values 
over time according to the primary outcome: Day 0 vs. day 7 in patients with poor neurological outcome (14.2 
vs. 15.2, mean difference 1.0, 95% CI 0.74–1.33, p < 0.001) and day 0 vs. day 7 in patients with good neurological 
outcome (14.0 vs. 14.7, mean difference 0.7, 95% CI 0.32–0.94, p = 0.001), respectively.

Sensitivity and specificity. We also assessed the sensitivity and specificity of maximum RDW values 
at different cut-offs (Table 3). For poor neurological outcome, the optimal cut-off at a maximum RDW value 
(Youden Index) of 13.2 had a sensitivity of 91% and specificity of 23.5%. A cut-off at a maximum RDW value of 
16.6 resulted in a sensitivity of 20.6% and a specificity of 89.8%.

For mortality at hospital discharge, a cut-off at a maximum RDW value of 13.2 had a sensitivity of 91.1% and a 
specificity of 20.8%. A cut-off at a maximum RDW value of 17 had a sensitivity and specificity of 15.2% and 90%.

The proposed cut-offs by Cheng et al.41 had a sensitivity of 52% and specificity of 70% for poor neurological 
outcome, and a sensitivity of 30.8% and specificity of 79.2% for mortality (Supplementary Table S1).

Table 2.  Logistic regression analysis. AUC  area under curve, CAHP cardiac arrest hospital prognosis score, CI 
confidence interval, COPD chronic obstructive pulmonary disease, CPC cerebral performance category scale, 
ICU intensive care unit; n number, n.a. not available, OHCA out-of-hospital cardiac arrest score, OR odds ratio, 
PROLOGUE prognostication using logistic regression model for unselected adult cardiac arrest patients in the 
early stages, RDW red cell distribution width *Adjusted for age, gender, hematocrit, comorbidities.

Survivors
(N = 400)

Non-Survivors
(N = 302) p-value

Univariate
Multivariable* 
adjusted

RDW and 
OHCA score: 
multivariable* 
adjusted

RDW and 
CAHP score: 
multivariable* 
adjusted

RDW and 
PROLOGUE 
score: 
multivariable* 
adjusted Univariate

Multivariable* 
adjusted

OR (95%CI), 
p OR (95%CI), p OR (95%CI), p OR (95%CI), p OR (95%CI), p AUC 

AUC combined 
with RDW Max

Quartiles of 
RDW Max, 
n (%)

135 (33.8%) 60 (19.9%)

 < 0.001

(Ref 1) (Ref 1) (Ref 1) (Ref 1) (Ref 1)

n.a n.a

2nd quartile, 
n (%) 106 (26.5%) 71 (23.5%) 1.51 (0.98, 

2.31), p = 0.06
1.32 (0.85, 
2.07), p = 0.22

1.14 (0.67, 
1.93), p = 0.63

1.05 (0.61, 1.8), 
p = 0.85

0.91 (0.54, 
1.52), p = 0.71

3rd quartile, 
n (%) 80 (20.0%) 84 (27.8%) 2.36 (1.53, 

3.64), p < 0.001
1.97 (1.25, 3.1), 
p = 0.003

1.42 (0.83, 
2.45), p = 0.2

1.47 (0.85, 
2.53), p = 0.17

1.13 (0.67, 
1.91), p = 0.65

4th quartile, 
n (%) 79 (19.8%) 87 (28.8%) 2.48 (1.61, 

3.81), p < 0.001
1.81 (1.12, 
2.94), p = 0.02

1.19 (0.67, 2.1), 
p = 0.55

1.11 (0.62, 
1.98), p = 0.73

1.19 (0.69, 
2.06), p = 0.54

RDW Day 0, 
mean (SD) 13.9 (1.55) 14.4 (1.82)  < 0.001 1.17 (1.07, 

1.29), p = 0.001
1.08 (0.98, 
1.21), p = 0.13

1.01 (0.89, 
1.14), p = 0.9

1.01 (0.89, 
1.14), p = 0.93

1.03 (0.91, 
1.15), p = 0.68

RDW Day 1, 
mean (SD) 14 (1.59) 14.5 (1.66) 0.001 1.17 (1.06, 

1.3), p = 0.002
1.09 (0.97, 
1.22), p = 0.16

1 (0.87, 1.14), 
p = 0.98

1.02 (0.89, 
1.16), p = 0.79

1.03 (0.91, 
1.17), p = 0.63

RDW Day 3, 
mean (SD) 14.3 (1.77) 14.8 (1.91) 0.004 1.18 (1.05, 

1.32), p = 0.005
1.1 (0.96, 1.26), 
p = 0.16

1.07 (0.93, 
1.24), p = 0.32

1.08 (0.93, 
1.24), p = 0.31

1.08 (0.94, 
1.24), p = 0.25

RDW Day 5, 
mean (SD) 14.5 (1.75) 14.8 (1.73) 0.24 1.09 (0.94, 

1.27), p = 0.24
1.09 (0.92, 1.3), 
p = 0.33

1.07 (0.89, 
1.28), p = 0.5

1.07 (0.89, 
1.28), p = 0.5

1.08 (0.91, 
1.29), p = 0.37

RDW Day 7, 
mean (SD) 14.9 (1.86) 15.1 (1.59) 0.51 1.07 (0.88, 

1.3), p = 0.50
1.04 (0.83, 
1.31), p = 0.74

1.02 (0.8, 1.29), 
p = 0.89

1.03 (0.81, 
1.31), p = 0.83

1.03 (0.81, 1.3), 
p = 0.84

RDW at ICU 
discharge, 
mean (SD)

14.3 (1.76) 15.1 (2.14)  < 0.001 1.26 (1.16, 
1.38), p < 0.001

1.19 (1.07, 
1.32), p = 0.001

1.11 (0.99, 
1.25), p = 0.07

1.11 (0.99, 
1.24), p = 0.09

1.12 (1, 1.25), 
p = 0.04

OHCA, mean 
(SD) 11 (19) 33 (17)  < 0.001 1.08 (1.07, 

1.09), p < 0.001
1.07 (1.06, 
1.09), p < 0.001

n.a n.a n.a

0.81 0.81, p = 0.36

CAHP, mean 
(SD) 135 (42) 190 (40)  < 0.001 1.03 (1.03, 

1.04), p < 0.001
1.03 (1.03, 
1.04), p < 0.001 0.83 0.83, p = 0.58

PROLOGUE, 
mean (SD) 236 (102) 350 (101)  < 0.001 1.01 (1.01, 

1.01), p < 0.001
1.01 (1.01, 
1.01), p < 0.001 0.78 0.79, p = 0.31
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Discussion
In our cohort of cardiac arrest patients, RDW is an independent predictor of poor neurological outcome at 
hospital discharge, with mean RDW values on day three showing the strongest association. These findings 
persisted when adjusting the results for known RDW confounders such as age, gender, hematocrit, and 
 comorbidities13, 38–40. Also, a higher mean RDW value was found to be an independent predictor of mortality 
at hospital discharge.

As an inexpensive, routinely available blood marker, RDW might be a promising prognostic factor to sup-
port clinical decision-making. It could help to stewardship the management in a early course after cardiac arrest, 
especially if patient are unconscious and thus difficult to be neurologically assessed. Also, when integrated into 
established clinical prediction models such as OHCA-, CAHP- or PROLOGUE score, it might improve their 
predictive value.

Several studies found RDW to be an independent risk factor for death in acute coronary syndrome, lung 
cancer, acute pulmonary embolism, and unselected ICU  patients13, 14, 16–20. Many factors are associated with an 
increase in RDW, such as age, sex, anemia, inflammatory markers (e.g. C-reactive protein [CRP]), metabolic 
syndromes, or blood  transfusion13, 38, 39, 42–44. As cardiac arrest patients usually face a relevant phase of hypoxemia, 
one possible explanation for elevated RDW levels are hypoxia-induced elevated erythropoietin levels which also 
occur in patients with other acute conditions such as pneumonia, pulmonary embolism, pneumothorax, cardiac 
disease or  sepsis45. This might also explain the higher mean RDW values in patients with non-observed cardiac 

Figure 1.  The dynamic of mean RDW values during ICU stay, stratified by the primary outcome (CPC). CPC 
Cerebral performance category scale; RDW Red blood cell distribution width.

Figure 2.  Kaplan–Meier-curve for 30-day all-cause mortality stratified according to low (< 13.2), moderate 
(13.2–17) and high (> 17) RDW values. RDW Red blood cell distribution width.
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arrest and a consecutively longer no-flow time. Accordingly, these criteria are part of modern risk prediction 
scores for neurological outcome after cardiac  arrest9.

RDW was also elevated in patients with chronic kidney  disease38 and might be an indication for an underly-
ing inflammatory  state38, 43, 46. However, it is unclear if in our cohort the elevated RDW is an acute response to 
the cardiac arrest, to pre-existing comorbidities or to ICU treatment.

Our results are mostly in line with previous studies investigating the prognostic performance of RDW in 
cardiac arrest patients where RDW was found to be an independent predictor of poor neurological outcome 
and mortality at hospital discharge or 30-days after hospital  discharge21, 41, 47. Differences in study setting, study 
population and severity of illness may cause variations in results. Generally, two studies collected blood samples 
immediately after admission to the emergency department whereas we only included patients who survived 
until ICU  admission21, 47. Woo et al. reported much more patients with poor neurological outcome (70.6%), due 
to cultural and legal differences, as in Korea withdrawal of life-sustaining therapy was not allowed until  201810, 

48. Also, patients in their cohort received less bystander CPR (54.1%) compared to our cohort (71.2%) and the 
no-flow time as a marker for hypoxemic burden was not  reported21. Also, the pre-existing cut-offs from the 
KoCARC-study were not adequate for our cohort which may be attributed to different analytic techniques and the 
resulting lack of  harmonization12, 15. Consistent with previous studies, we found RDW values to be independent 
predictors of 30-day  mortality21, 47. However, in our cohort the prognostic value regarding mortality was not as 
strong. This may be due to the previously mentioned differences in study setting and population.

Importantly, there was a slight improvement of prognostic value of existing cardiac arrest scoring systems 
(OHCA-, CAHP- and PROLOGUE score) by adding RDW. Thus, RDW brings a benefit as a marker of no-flow 
time, since this clinical parameter is often missing or  unprecise31. Previous studies have found RDW to be 
elevated with  age49, 50. Also, in our study, RDW was associated with increasing age, however, RDW remained an 
independent predictor of poor neurological outcome even after adjusting the statistical model for age.

In our cohort, we found an increase in RDW values during the ICU stay. Only few studies have looked at the 
progression of RDW over time after an initial event. In an observational study, looking at the relationship between 
RDW and long-term neurological outcome after cardiac arrest, RDW did not increase over time, however, the 
sampling time was restricted to the first 72 h after cardiac arrest, which prohibits conclusions for longer than 
72 h post-cardiac  arrest51. In a cohort of patients with post-hypoxia (e.g., heart failure, pneumonia, atelectasis, 
pulmonary embolism, pneumothorax, and sepsis), RDW reached its maximum level within one month after the 
index event and remained elevated for three months in  total45.

This study has several strengths. First, the presented data is the result of a large and well-established cardiac 
arrest cohort over several years. Second, the analysis and reporting followed the TRIPOD statement. Third, the 
score values were calculated by the study team and were not communicated to the treating physicians, which 
reduces the concern of self-fulfilling prophecies, a common issue in unblinded prognostic research in cardiac 
arrest  patients52–54.

This study also has several limitations. First, our setting of an observational, single-center study limits the 
transfer to cohorts from other regions or countries. Second, we could not assess causes for elevated RDW and / or 
death, so there may be nondependent causes. Third, the lack of harmonization in RDW measurement technique 
may influence the different cut-offs and render our results difficult to compare to other  studies15. Finally, we did 
not collect any data about blood transfusions or nutritional state which could also increase RDW  values38, 44.

Conclusion
In our prospective cohort of unselected adult cardiac arrest patients, RDW was an independent predictor of poor 
neurological outcome at hospital discharge. Therefore, RDW could act as an inexpensive and easily available 
prognostic marker in cardiac arrest patients. Further studies should focus on the prognostic value of RDW for 
neurological long-term outcome.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.

Table 3.  Sensitivity and specificity. CPC cerebral performance category scale, RDW red cell distribution width. 
*RDW Max indicates the mean of each patients maximum RDW value.

Poor neurological outcome: CPC 3–5 Mortality at hospital discharge

RDW Max* cut-off 13.2 RDW Max* cut-off 16.6 RDW Max* cut-off 13.2
RDW Max* cut-off
17

Prevalence Pr(A) 54.00% 54.00% 43.00% 43.00%

Sensitivity Pr(+ A) 91.00% 20.60% 91.10% 15.20%

Specificity Pr(-N) 23.50% 89.80% 20.80% 90.00%

Likelihood ratio ( +) Pr(+ A)/Pr(+ N) 1.19 2.01 1.15 1.52

Likelihood ratio (-) Pr(-A)/Pr(-N) 0.38 0.88 0.43 0.94

Odds ratio LR( +)/LR(-) 3.12 2.28 2.67 1.62

Positive predictive value Pr(A +) 58.30% 70.30% 46.50% 53.50%

Negative predictive value Pr(N-) 69.10% 49.10% 75.50% 58.40%
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