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Lipid metabolism transcriptomics 
of murine microglia in Alzheimer’s 
disease and neuroinflammation
Daniel C. Shippy  & Tyler K. Ulland *

Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by the accumulation 
of amyloid-β (Aβ) plaques followed by intracellular neurofibrillary tangles (NFTs) composed of 
hyperphosphorylated tau. An unrestrained immune response by microglia, the resident cells of the 
central nervous system (CNS), leads to neuroinflammation which can amplify AD pathology. AD 
pathology is also driven by metabolic dysfunction with strong correlations between dementia and 
metabolic disorders such as diabetes, hypercholesterolemia, and hypertriglyceridemia. Since elevated 
cholesterol and triglyceride levels appear to be a major risk factor for developing AD, we investigated 
the lipid metabolism transcriptome in an AD versus non-AD state using RNA-sequencing (RNA-seq) 
and microarray datasets from N9 cells and murine microglia. We identified 52 differentially expressed 
genes (DEG) linked to lipid metabolism in LPS-stimulated N9 microglia versus unstimulated control 
cells using RNA-seq, 86 lipid metabolism DEG in 5XFAD versus wild-type mice by microarray, with 16 
DEG common between both datasets. Functional enrichment and network analyses identified several 
biological processes and molecular functions, such as cholesterol homeostasis, insulin signaling, and 
triglyceride metabolism. Furthermore, therapeutic drugs targeting lipid metabolism DEG found in 
our study were identified. Focusing on drugs that target genes associated with lipid metabolism and 
neuroinflammation could provide new targets for AD drug development.

Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by the accumulation of amyloid-β (Aβ) 
plaques followed by intracellular neurofibrillary tangles (NFTs) composed of hyperphosphorylated  tau1. Micro-
glia, the innate immune cells of the central nervous system (CNS), facilitate Aβ and tau clearance, but also pro-
mote neuroinflammation that damages neurons and exacerbates AD  pathology2. To date, few effective treatments 
for AD exist, and most AD drug research is focused on Aβ and tau reduction. Recently, the FDA approved the 
anti-amyloid antibodies aducanumab and lecanemab for the treatment of  AD3,4. Although both antibodies reduce 
the rate of cognitive decline, legitimate questions remain regarding the efficacy and safety of aducanumab and 
 lecanemab5,6. Furthermore, since only Aβ is targeted, and as AD is a complex disease, it is estimated that only 
8–20% of patients with AD will be eligible for  treatment7, so there is still an urgent need for new therapeutic 
interventions for AD. Recent studies suggest AD neuropathology is driven by metabolic dysfunction with strong 
correlations between dementia and metabolic disorders such as hypertension, diabetes, hypercholesterolemia, 
and  hypertriglyceridemia8. Furthermore, increased microglial lipid metabolism provides energy for microglial 
activation and effector functions, and alterations in microglial lipid metabolism are implicated in the develop-
ment of several neurological disorders, including  AD9,10. Therefore, the characterization of metabolic networks, 
and identification of drugs targeting the genes in these networks, could be a potential treatment strategy for AD.

Lipids account for most of the dry mass of the  brain11 and lipid metabolism changes during the aging 
 process12. Lipids in the brain can largely be classified as sterols, fatty acids, phospholipids, glycerolipids, and 
 sphingolipids13. The human brain has the highest level of cholesterol compared to other organs and is a vital 
component of eukaryotic  membranes14. Apolipoprotein E (ApoE) is the main cholesterol carrier in the  brain15, 
and is considered the strongest genetic risk factor for the development of late-onset  AD16. Individuals with one 
copy of the apoE ε4 allele increase their risk of developing AD approximately fourfold, while individuals with 
two copies increase their risk by approximately 12-fold16. Additionally, apoE ε4 allele carriers are more likely 
to develop hypercholesterolemia and  hypertriglyceridemia17–19. A recent study suggests management of blood 
glucose and cholesterol levels in early adulthood has a significant impact on AD risk later in  life20. Based on 
these findings, limiting dysfunctions in lipid metabolism could be vital for the prevention of AD, particularly 
for apoE ε4 allele carriers.
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Since metabolic disorders appear to be a major risk factor for developing AD, we investigated the lipid 
metabolism transcriptome in an AD versus non-AD state using RNA-sequencing (RNA-seq) and microarray 
datasets from N9 and murine microglia. We identified 52 lipid metabolism differentially expressed genes (DEG) 
in LPS-stimulated N9 microglia versus unstimulated control cells using RNA-seq, 86 lipid metabolism DEG in 
5XFAD versus wild-type mice by microarray, with 16 DEG common between both datasets. Functional enrich-
ment and network analyses identified several biological processes and molecular functions, such as cholesterol 
homeostasis, insulin signaling, and triglyceride metabolism as being dysregulated in neuroinflammation and 
AD. Furthermore, gene–drug interactions were characterized to identify drugs targeting lipid metabolism genes. 
Overall, these data show the lipid metabolism transcriptional response by murine microglia during AD progres-
sion with the potential for new treatment strategies directed towards AD.

Results
AD promotes differential expression of lipid metabolism genes. In order to identify lipid metab-
olism genes involved in AD-associated neuroinflammation, we analyzed gene expression datasets from LPS-
stimulated N9 microglia and microglia isolated from 8-month-old 5XFAD mice. Analysis of RNA-seq data from 
LPS-stimulated N9 microglia versus non-stimulated control cells revealed a total of 52 lipid metabolism DEG 
 (log2FC > 0.5, FDR-adjusted p-value < 0.05). Of these 52 DEG, 35 were up-regulated and 17 were down-regu-
lated (Fig. 1A). Apolipoprotein L 9a (Apol9a) was the most up-regulated lipid metabolism gene  (log2FC = 6.71) 
and transthyretin (Ttr) was the most down-regulated lipid metabolism gene  (log2FC =  − 4.66) (Supplementary 
Table S1).

We identified 86 lipid metabolism DEG  (log2FC > 0.5, p < 0.05) in publicly available transcriptional data from 
sorted microglia from female 8-month-old 5XFAD mice versus wild-type  mice21. The 5XFAD mouse model of 
AD rapidly develops severe amyloid pathology with Aβ plaque accumulation beginning around 2 months of 
 age22. Of the 86 lipid metabolism DEG, 55 were up-regulated and 31 were down-regulated (Fig. 1B). Fatty acid 
binding protein 3 (Fabp3) was the most up-regulated lipid metabolism gene  (log2FC = 4.58) and transthyretin 
(Ttr) was the most down-regulated lipid metabolism gene  (log2FC =  − 1.97) (Supplementary Table S2).

In total, 16 lipid metabolism DEG overlapped between the datasets (Fig. 1C). A complete list of the 16 lipid 
metabolism genes and their fold change values for both datasets is shown in Table 1.

Figure 1.  Differentially expressed lipid metabolism genes in AD. (A) Scatter plot of lipid metabolism DEG 
 (log2FC > 0.5, FDR-adjusted P-value < 0.05) by RNA-seq in N9 microglia stimulated with LPS (1 µg/ml) for 6 h 
versus unstimulated control cells. (B) Scatter plot of lipid metabolism DEG  (log2FC > 0.5, P < 0.05) by microarray 
in microglia isolated from the brains of 5XFAD mice versus wild-type mice (8 months old). For both scatter 
plots, up-regulated genes are shown in red and down-regulated genes are shown in green. Data are graphed as 
 log2FC versus −  log10 (P-value). (C) Venn diagram demonstrating overlap in lipid metabolism DEG between the 
N9 and mouse microglia datasets.
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Pathway and enrichment analysis of altered lipid metabolism genes. Gene ontology (GO), Kyoto 
Encyclopedia of Genes and Genomes (KEGG), and Search Tool for the Retrieval of Interacting Genes/Proteins 
(STRING) analyses were performed on the N9 and mouse microglial lipid metabolism DEG. For N9 microglia, 
Biological Process (BP) GO indicated the DEG participated in lipid metabolic process, lipoprotein metabolic 
process, lipid transport, fatty acid metabolic process, triglyceride metabolic process, positive regulation of angio-
genesis, cholesterol homeostasis, fatty acid biosynthetic process, and cholesterol metabolic process (Fig. 2A). 
Cellular Component (CC) GO indicated the N9 microglial lipid metabolism DEG were located in the intracel-
lular membrane-bounded organelle, endoplasmic reticulum, extracellular region, membrane raft, extracellular 
space, endoplasmic reticulum membrane, membrane, and Golgi apparatus (Fig. 2B). Molecular Function (MF) 
GO indicated the N9 microglial lipid metabolism DEG were involved in lipid binding (Fig. 2C). A complete list 
of the GO, false discovery rates, and genes associated with each GO is shown in Supplementary Table S3.

For mouse microglial lipid metabolism DEG, BP GO indicated the genes participated in lipid metabolic pro-
cess, cholesterol metabolic process, sterol biosynthetic process, steroid biosynthetic process, fatty acid metabolic 
process, cholesterol biosynthetic process, steroid biosynthetic process, lipid transport, cholesterol homeostasis, 
fatty acid biosynthetic process, long-chain fatty acid transport, triglyceride homeostasis, positive regulation of 

Table 1.  Altered lipid metabolism genes common to both datasets. 1 All gene IDs start with ENSMUSG000000.

Gene ID1 Description N9  Log2FC Mouse  Log2FC

Il1b 27398 Interleukin 1 beta 5.94 2.92

Zc3h12a 42677 Zinc finger CCCH type containing 12A 3.56 0.67

Olr1 30162 Oxidized low density lipoprotein (lectin-like) receptor 1 1.75 1.43

C3 24164 Complement component 3 1.59 1.09

Plaur 46223 Plasminogen activator, urokinase receptor 1.51 1.85

Cybb 15340 Cytochrome b-245, beta polypeptide 1.31 2.54

Ptgs2 32487 Prostaglandin-endoperoxide synthase 2 1.22 3.03

Cxcl16 18920 Chemokine (C-X-C motif) ligand 16 1.11 1.18

Plscr1 32369 Phospholipid scramblase 1 0.90 0.98

Fabp3 28773 Fatty acid binding protein 3, muscle and heart 0.74 4.58

Stard3 18167 START domain containing 3 0.52  − 0.52

Tlr4 39005 Toll-like receptor 4  − 0.53  − 0.99

Pik3cd 39936 Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit delta  − 0.63  − 0.59

Apoe 02985 Apolipoprotein E  − 0.68 1.54

Fdps 59743 Farnesyl diphosphate synthetase  − 0.79 1.25

Ttr 61808 Transthyretin  − 4.66  − 1.97

Figure 2.  N9 microglia GO enrichment analysis. Biological function analyses for the N9 microglial lipid 
metabolism DEG was performed using DAVID. Analyses were performed for biological process (BP) (A), 
cellular component (CC) (B), and molecular function (MF) (C). Pathways are shown in descending order based 
on −  log10 FDR. The number of genes associated with each GO term is shown above each bar. Only GO terms 
with a gene count ≥ 5 and FDR < 0.05 were considered significant.
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angiogenesis, lipoprotein metabolic process, cellular response to insulin stimulus, angiogenesis, memory, and 
lipid catabolic process (Fig. 3A). CC GO indicated the mouse microglial lipid metabolism DEG were located in 
the endoplasmic reticulum, very-low-density lipoprotein particle, high-density lipoprotein particle, endoplasmic 
reticulum membrane, extracellular region, membrane, intracellular membrane-bound organelle, membrane raft, 
extracellular space, caveolae, cell surface, cytoplasm, nuclear envelope, and cytosol (Fig. 3B). MF GO indicated 
the mouse microglial lipid metabolism DEG were involved in lipid binding (Fig. 3C). A complete list of the GO, 
false discovery rates, and genes associated with each GO is shown in Supplementary Table S4.

KEGG analysis was performed on the N9 and mouse microglial lipid metabolism DEG. For N9 microglia, 
KEGG identified three pathways (lipid and atherosclerosis, PPAR signaling pathway, cholesterol metabolism) 
associated with the DEG (Fig. 4A). A complete list of the KEGG pathways, false discovery rates, and genes associ-
ated with each pathway is shown in Supplementary Table S5. For the mouse microglial lipid metabolism DEG, 
KEGG identified a total of 14 associated with the DEG (Fig. 4B). The pathways included cholesterol homeostasis, 
steroid biosynthesis, metabolic pathways, AGE-RAGE signaling pathway in diabetic complications, lipid and 
atherosclerosis, PPAR signaling pathway, regulation of lipolysis in adipocytes, VEGF signaling pathway, insulin 
resistance, sphingolipid signaling pathway, insulin signaling pathway, diabetic cardiomyopathy, phosphatidylino-
sitol signaling system, glycerolphospholipid metabolism. A complete list of the KEGG pathways, false discovery 
rates, and genes associated with each pathway is shown in Supplementary Table S6.

To further understand the interactions of the lipid metabolism genes, we performed protein–protein interac-
tion (PPI) analysis on the N9 and mouse microglial DEG using STRING to identify known and predicted PPIs. Of 
the proteins encoded by the N9 microglial lipid metabolism DEG, 26 proteins clustered in a large network with 
two proteins forming a second, small cluster, and 24 proteins not clustering (Fig. 5A). For the mouse microglial 
lipid metabolism DEG, 52 proteins clustered in a large network, with 10 proteins forming four distinct smaller 
networks, and 24 proteins not clustering (Fig. 5B). The results suggest that the given proteins were highly enriched 
for both the N9 and mouse datasets (p < 1 ×  10–16) indicating that the interactions were significantly more than 
those expected for a random collection of input genes, and these PPI networks could be significantly altered in 
lipid metabolism and AD-associated microglial neuroinflammation.

Lipid metabolism gene targets for therapeutic drugs. In order to determine lipid metabolism gene 
targets for therapeutic drugs, we performed gene–drug interactions in the drug–gene interaction database 
(DGIdb)23,24 using the 16 lipid metabolism DEG common to both datasets (Table 1). A total of ten lipid metabo-
lism genes had interactions with therapeutic drugs (Fig. 6). Prostaglandin-endoperoxide synthase 2 (Ptgs2) had 
the most interactions (88 drugs) with most of the drugs identified used to treat arthritis, pain, fever, and inflam-
mation. The DGIdb gene–drug interaction tool also identified the hypertension drugs reserpine and atenolol 
as targets for Ptgs2. Transthyretin (Ttr) (the most down-regulated gene in both datasets), had nine drug inter-
actions identified with several of the drugs used for transthyretin-mediated amyloidosis (tafamidis, tafamidis 
meglumine, inotersen, patisiran). Interleukin 1 beta (Il1b) (highly up-regulated in both datasets) had 37 drugs 
interactions with the majority of the drugs used to treat arthritis and inflammation. Finally, several other drugs 
were also identified as potentially interacting with our genes of interest including those targeting hyperten-
sion (verapamil, nicardapine), cholesterol (pravastatin), bipolar disorder (lithium), and microglial activation 

Figure 3.  Mouse microglia GO enrichment analysis. Biological function analyses for the mouse microglial 
lipid metabolism DEG was performed using DAVID. Analyses were performed for biological process (BP) (A), 
cellular component (CC) (B), and molecular function (MF) (C). Pathways are shown in descending order based 
on −  log10 FDR. The number of genes associated with each GO term is shown above each bar. Only GO terms 
with a gene count ≥ 5 and FDR < 0.05 were considered significant.
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Figure 4.  KEGG pathway enrichment analysis. KEGG pathway analysis was performed on the lipid metabolism 
DEG from the N9 microglia RNA-seq (A) and mouse microglia microarray (B) using DAVID. Pathways are 
shown in descending order based on −  log10 FDR. The number of genes associated with each pathway is shown 
above each bar. Only pathways with a gene count ≥ 5 and FDR < 0.05 were considered significant.

Figure 5.  PPI analysis using STRING. STRING analysis was performed on the N9 (A) and mouse (B) 
microglial lipid metabolism DEG. For the analysis, text mining, experiments, and databases were chosen for 
active interaction sources, and a high value of 0.700 was selected as the minimum required interaction score. 
Line colors represent known interactions from curated databases (blue), experimentation (purple) and text 
mining (yellow). The proteins for which there were no connections to be mapped are not shown.
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inhibition (TT 301) drugs for Il1b. A complete list of the lipid metabolism DEG and their associated drugs is 
shown in Supplementary Table S7.

Cybb network analysis. Since Cybb was altered in both datasets, involved in several pathways at the inter-
section of diabetes and cardiovascular disease, and was the target of several drugs, expression network analy-
sis was performed to identify genes positively and negatively correlated with Cybb. In the positive correlation 
map, several genes involved in lipid metabolism and inflammation including Plaur (0.796), Irak3 (0.785), Prdx5 
(0.855), Casp1 (0.802), and Naip2 (0.784) displayed a positive relationship with Cybb (Fig. 7A). In the negative 
correlation map, Mtor (− 0.786), a gene that controls most metabolic processes in response to nutrients, dis-
played a negative relationship with Cybb (Fig. 7B). Together, these data suggest Cybb could be a promising target 
for future research investigating gene networks for AD treatment strategies.

Discussion
Investigating N9 and mouse microglial gene expression datasets, we identified several lipid metabolism genes 
which may be important in AD development. Diabetes, hypertension, hypercholesterolemia, and hypertriglyc-
eridemia have all been identified as major risk factors of AD, but the mechanisms between these metabolic 
syndromes and AD remains  unclear8,20,25. Statins are the most commonly used drugs for treating lipid disorders 

Figure 6.  Gene–drug interactions. Interactions between therapeutic drugs and the 16 lipid metabolism 
DEG common to both datasets. Genes identified with drug interactions are shown and the number of drugs 
associated with each gene is shown above each bar.

Figure 7.  Cybb expression network analysis. Gene constellations for Cybb were created using ImmGen. (A) 
Positive expression correlation of genes to Cybb. (B) Negative expression correlation of genes to Cybb.
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and are effective in reducing cholesterol and triglyceride levels. Conflicting results are reported when accessing 
statins specifically for AD, as several studies suggest statins slow the progression of  AD26–29 while others suggest 
statins provide no protective benefit against  AD30–32. Overall, the relationship between statins and cognitive func-
tion remains unclear, and further investigation is needed to determine if statins are an appropriate therapeutic 
strategy for AD.

Recently, several studies have highlighted the importance of microglial lipid metabolism in AD. Recent review 
articles provide a detailed overview of microglial lipid metabolism in regards to altered brain function in  AD9,10. 
In a single-cell RNA sequencing (scRNA-seq) study, Keren-Shaul et al. used the 5XFAD mouse model of AD 
to demonstrate a preference for lipids as a fuel source during the increased metabolic energy demands of acti-
vated  microglia33. Furthermore, their study identified a unique subset of microglia, disease associated microglia 
(DAM), which have a unique transcriptional profile associated with several lipid and metabolism genes, such as 
triggering receptor expressed on myeloid cells 2 (Trem2), lipoprotein lipase (Lpl), and ApoE33. In another study, 
Krasemann et al. described a distinct gene expression pattern associated with a TREM2- and APOE-dependent 
response by microglia to tissue damage in the  brain34. In human AD, and the APP-PS1 mouse model of AD, 
they demonstrated the APOE pathway, driven by TREM2, mediated a switch in microglial phenotypes from 
homeostatic to neurodegenerative, indicating activation of the TREM2-APOE pathway leads to the inability of 
microglia to regulate brain  homeostasis34. Further understanding of microglia-lipid interactions, along with 
advances in lipidomics  technologies35,36, could aide in the development of new treatment regimens for AD.

Neuroinflammation drives AD pathogenesis by exacerbating both amyloid and tau  pathologies37. Hypercho-
lesterolemia has been linked to cognitive dysfunction accelerated by neuroinflammation in  mice38 and  rats39 
fed a high fat diet. In these studies, activated microglia and astrocytes in the hippocampus released several 
proinflammatory cytokines, including IL-1β38,39. IL-1β was highly up-regulated in both our datasets, and is a 
vital component of lipid metabolism through the regulation of Lpl40,41. Activation of the nod-like receptor family 
pyrin domain containing 3 (NLRP3) inflammasome is a major source of IL-1β, and the NLRP3 inflammasome 
induces chronic neuroinflammation that significantly increases AD  pathology42. Recently, several studies have 
used the ketone metabolite, β-hydroxybutyrate, to block activation of the NLRP3 inflammasome as a therapeutic 
strategy for general inflammatory  disease43 and  AD44. The gene-drug analysis performed in our study, identified 
37 drugs targeting IL-1β. These data suggest therapeutic agents that block activation of the NLRP3 inflammasome 
and IL-1β as promising treatment strategies for inflammatory diseases, including AD.

Cytochrome b-245, beta polypeptide (Cybb) is a subunit of nicotinamide adenine dinucleotide phosphate 
(NADPH) oxidase that produces reactive oxygen species (ROS) which mediate microglial inflammatory 
 responses45. If not properly regulated, ROS production by microglia leads to neuron damage, dysfunction, and 
 death46. In our study, Cybb was up-regulated in both datasets. Network analysis revealed a positive correlation 
between Cybb and the inflammatory genes Casp1 and Naip2. BP GO analysis identified Cybb in the positive 
regulation of angiogenesis, and KEGG pathway analysis identified Cybb in the lipid and atherosclerosis, AGE-
RAGE signaling pathways in diabetic complications, and diabetic cardiomyopathy pathways. Additionally, our 
gene-drug interaction analysis identified three compounds that target Cybb. Taken together, these data suggest 
Cybb is at the intersection of cardiovascular disease, diabetes, and neuroinflammation, making it an attractive 
potential target for further investigation.

The identification of enriched lipid metabolism DEGs in cellular compartments (GO CC) such as the endo-
plasmic reticulum (ER), caveolae, and Golgi apparatus, provides further insight into the role of lipid metabolism 
DEGs in microglial-mediated neuroinflammation in AD. Increasing evidence suggests sustained ER stress con-
tributes to neuron damage, microglial polarization, and altered inflammatory responses, particularly in LPS-
stimulated  cells47–49. Furthermore, ER stress is shown to activate  microglia50 and inhibiting ER stress displays a 
neuroprotective effect in LPS-stimulated BV2  microglia51. The Golgi apparatus is essential for the synthesis and 
modification of proteins and lipids, and Golgi fragmentation has been observed in  AD52. Golgi fragmentation is 
suggested to promote neuronal ion channel damage and the accumulation of tau and Aβ53. Specialized regions 
of plasma membranes, such as caveolae, modulate reactive oxygen species (ROS) producing  systems54. Activated 
microglia produce ROS, along with many other proinflammatory molecules implicated in AD  pathogenesis2. In 
our study, a large number of lipid metabolism DEGs in N9 and mouse microglia were found in the ER and Golgi 
apparatus, including ApoE and Cybb. Additionally, several mouse microglial lipid metabolism DEGs localized in 
the caveolae, including low density lipoprotein receptor (Ldlr) which is a primary metabolic receptor responsible 
for ApoE lipoprotein  clearance55,56. In the study by Shi et al., a neuroprotective role for Ldlr was described as Ldlr 
overexpression attenuated tau pathology through preservation of myelin, inhibiting microglial activation, and 
reducing ApoE levels, suggesting drug discovery directed towards increasing Ldlr levels as a treatment option 
for AD and other  tauopathies57.

One of the primary limitations of our study is that only murine microglia were used. We examined several 
publicly available human AD transcriptome datasets in an attempt to correlate our findings to AD in humans. 
These datasets indicated most lipid metabolism genes identified in our study were differentially regulated in 
human datasets as well. The issue, however, was that even though the human datasets analyzed showed a large 
number of overall genes altered in AD brains versus non-AD controls, the level of differential gene expression 
was not nearly as robust as seen in our mouse and cell culture transcriptome datasets. Gene expression analysis 
of human brain tissue and cells is certainly a valuable tool for investigating AD in humans. Brain tissue, however, 
can only be collected postmortem, and peripheral tissues and blood, which can easily be collected from patients, 
may not express brain proteins that are central to AD development and  progression58. RNA stability in human 
samples is also a concern as confounding factors, like differences in postmortem interval, have been shown to 
contribute to inaccuracies in human brain transcriptomic  data59. Furthermore, comparing the mouse and human 
AD transcriptome remains unclear, as some studies indicated the transcriptomes are  similar60,61 while others sug-
gest they are  different62,63. A strength of our study is that N9 cell culture and primary microglia from mice were 
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used. By comparing these datasets, we were able to determine genes which are part of the neuroinflammatory 
aspect of AD development since lipopolysaccharide (LPS) treated N9 microglia would primarily represent the 
general neuroinflammation process. Overall, these data offer several microglial gene target–drug interactions 
for initial validation in mouse models of AD.

In summary, our transcriptome profiling data offers a useful resource to the field for understanding the 
inflammatory roles of microglial lipid metabolism genes in AD. Furthermore, our data identified drugs for 
microglial molecular targets for future investigation to attenuate/eliminate the pathological progression of AD.

Methods
Datasets. The N9 microglial RNA-seq dataset was published previously by our group (GSE183038)64. Briefly, 
immortalized murine N9 microglia were routinely  cultured65 and seeded at a cell density of 250,000 cells/well in 
a 24-well tissue culture plate. Cells were stimulated with LPS (1 µg/ml) from Escherichia coli O111:B4 (Invivo-
Gen) for 6 h. RNA was extracted using an RNeasy Plus Mini Kit (Qiagen, Cat. No. 74134). Quality and quantity 
of RNA was assessed using an Agilent 2100 Bioanalyzer (Agilent Technologies) and a Nanodrop spectrophotom-
eter (Thermo Scientific). All samples had an RNA integrity number (RIN) of 9.7 or higher. RNA library prepara-
tion and transcriptome sequencing were performed by Novogene using the Illumina NovaSeq 6000 Sequencing 
System. Genes with FDR-adjusted p-values < 0.5 and  log2FC > 0.5 were considered differentially expressed.

The mouse microarray has been published in a previous  study21 and the publicly available dataset (GSE65067) 
was used. Briefly, microglia from female 8 month old wild-type (n = 3) and 5XFAD (n = 5) mice (The Jackson 
Laboratory) were FACS-sorted directly into RTL-plus lysis buffer. RNA extraction from microglia was performed 
using an RNeasy Plus Micro Kit (Qiagen, Cat. No. 74034). Microarray hybridization (Affymetrix MoGene 1.0 
ST array) and data processing were performed at the Washington University Genome Center. Genes with p-val-
ues < 0.05 and  log2FC > 0.5 were considered differentially expressed.

Gene analyses. In order to identify lipid metabolism genes, the datasets were searched for the terms “lipid”, 
“lipoprotein” and “cholesterol”. Additionally, datasets were searched for lipid metabolism genes from lipoprotein 
signaling, cholesterol metabolism, and lipid metabolism pathway analysis gene lists (Supplementary Table S8).

Lipid metabolism genes found to be differentially expressed were selected for biological function analysis. 
The gene list was uploaded into the Database for Annotation, Visualization and Integrated Discovery (DAVID, 
v. 6.8)66,67 for GO and KEGG pathway analysis. KEGG pathways and GO BP, CC, and MF with gene counts ≥ 5 
and FDR < 0.05 were considered significant. Additionally, PPI analysis was performed to identify interactions 
of the selected proteins based on their gene IDs using the STRING  database68. For the analysis, text mining, 
experiments, and databases were chosen for active interaction sources using the high confidence (0.700) thresh-
old setting.

Scatterplots were created using Prism 9.0.0 (GraphPad). Venn diagrams demonstrating overlap in lipid 
metabolism DEG amongst the datasets were generated using  InteractiVenn69. Gene constellations identifying 
genes in the Cybb regulatory network were created with  ImmGen70 using the “myeloid cells” reference popula-
tions option. Gene-drug interactions of the common lipid metabolism DEG were identified using  DGIdb23,24 
using the default settings.

Data availability
The datasets generated and/or analyzed during the current study are available in the Gene Expression Omnibus 
(GEO) repository, GSE183038 and GSE65067.
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