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Automatic measurement 
of the Cobb angle for adolescent 
idiopathic scoliosis using 
convolutional neural network
Yoshihiro Maeda , Takeo Nagura , Masaya Nakamura  & Kota Watanabe *

This study proposes a convolutional neural network method for automatic vertebrae detection 
and Cobb angle (CA) measurement on X-ray images for scoliosis. 1021 full-length X-ray images of 
the whole spine of patients with adolescent idiopathic scoliosis (AIS) were used for training and 
segmentation. The proposed AI algorithm’s results were compared with those of the manual method 
by six doctors using the intraclass correlation coefficient (ICC). The ICCs recorded by six doctors and AI 
were excellent or good, with a value of 0.973 for the major curve in the standing position. The mean 
error between AI and doctors was not affected by the angle size, with AI tending to measure 1.7°–2.2° 
smaller than that measured by the doctors. The proposed method showed a high correlation with 
the doctors’ measurements, regardless of the CA size, doctors’ experience, and patient posture. The 
proposed method showed excellent reliability, indicating that it is a promising automated method for 
measuring CA in patients with AIS.

Scoliosis is a structural abnormality of the spine that involves bending and rotating. Children aged 10–17 years 
who have scoliosis of unknown cause are classified as having adolescent idiopathic scoliosis (AIS)1, which is the 
most common type of scoliosis that occurs in children at puberty  onset2. Standing whole-spine radiography is 
the standard imaging technique for evaluating the severity and characteristics of  scoliosis3. Scoliosis treatment 
is typically based on the severity of the spinal deformity, which is indicated by the Cobb angle (CA), and the 
risk of progression, which is determined by bone  maturity4. The CA is commonly used to quantify scoliosis 
 severity4 and is measured by estimating the angle between the two lines of the vertebral endplates at the upper 
and lower ends of the  curve5.

Until recently, manual spinal curvature measurements were made directly on X-ray images using a protractor; 
however, this technique is time-consuming and susceptible to relatively high interobserver and intraobserver 
 variabilities6. The measurement error was reported to be approximately 3°–10°6–10, with measurements differing 
up to 5° even with the same end  vertebrae7,11. The causes of measurement variability or errors are multifactorial 
and include improper selection of one or both end vertebrae and incorrect drawing of the lines through the end-
plates. Other potential causes of errors include the level of clinical experience of examiners and the magnitude 
of the curve, which may be a greater issue with larger  curves10.

Semiautomatic CA evaluation became possible with the advent of digitization in computed radiography. The 
picture archiving and communications system (PACS) has a built-in feature that allows users to digitally draw 
the required vertebral line, and the system automatically measures the CA. This method is more reliable and 
less variable than manual measurement on printed X-ray images using a  protractor12,13, and the measurement 
accuracy has improved to within ± 3.3° of the true  value14–21. However, PACS requires manual selection of the 
appropriate end vertebrae by surgeons.

At present, the development of a fully automated software tool that can eliminate the problem of repeatability 
and improve the accuracy of CA measurements has gained interest. In recent years, deep convolutional neural 
networks (CNNs) have shown great potential in the field of medical image  analysis19,22. Several studies have been 
conducted on the automatic measurement of the  CA15,18,23. Unlike traditional machine-learning  methods24–28, 
deep neural networks are superior in terms of feature extraction and can be trained for object detection and 
semantic  segmentation23.

Machine learning uses algorithms to analyze data and make informed decisions based on what is learned 
from that data. Deep learning uses a hierarchical structure of algorithms to build an artificial neural network 
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that is capable of learning and making intelligent decisions on its  own29. End-to-end deep learning replaces a 
machine-learning system that requires multiple stages of processing from the input of data to the output of results 
via a single large neural network with multiple layers and modules that perform various processes. Thus, CNNs 
are a suitable choice for extracting vertebral regions. Recent successes in precise image segmentation have been 
achieved using a U-Net  architecture30.

Wu et al. used the multiview correlation network (MVC-Net) for spine curvature estimation from multiview 
(anterior–posterior [AP] and lateral [LAT]) X-ray images to measure the  CA18. However, their method required 
a biplanar imaging approach. Zhang et al. developed a computer-aided method using deep neural networks, 
but it still required manual intervention, such as vertebral patch assignment, and the mean absolute difference 
values in radiographs exceeded 5°, with intraclass correlation coefficients (ICCs) of 0.771–0.835, making it 
unreliable for measuring the  CA19. Horng et al. proposed an automatic system based on the Residual U-Net for 
measuring the spinal curvature using AP view radiographs, which showed improved segmentation results over 
existing CNN methods. The ICC was > 0.93, which was better than that obtained via manual measurement, but 
only major curves could be  measured16,23.

In the present study, we proposed a CNN method for automatic vertebrae detection and CA measurement on 
X-ray images. Our method uses simple black-and-white inverted X-ray images, including supine side-bending 
X-ray images, to evaluate the flexibility of curves, and X-rays taken while wearing a brace. Those radiographic 
conditions have not been tested in previous studies. In addition, our method could measure all curves, including 
minor and major curves.

Materials and methods
Overview. For this study, we used 1021 full-length X-ray images of the whole spine of patients with AIS taken 
at Keio University Hospital between 2009 and 2020 as training data. Medical ethical permission was obtained by 
the Ethics Committee of Keio University School of Medicine. Since this is a form of secondary use of previously 
obtained clinical data, informed consent was not required and was handled on an opt-out basis. All procedures 
performed in this study were in accordance with the ethical standards of the national research committee. Each 
X-ray image depicted a complete spine, including 12 thoracic vertebrae and 5 lumbar vertebrae, and was used for 
subsequent training and segmentation. The X-ray images were retrieved from the institution PACS, anonymized, 
and exported as an image. The radiographs used were retrieved from patients’ medical records. No additional 
radiographs were generated for the purpose of this study. The inclusion criterion was patients diagnosed with 
AIS, whereas the exclusion criteria were patients who had (1) other musculoskeletal or neurological disorders 
or congenital vertebral anomalies or (2) previous spinal surgery. X-ray images taken in standing, supine, supine 
side-bending, and wearing-brace positions at our hospital were used for training. A total of 106 images were 
used for testing and 155 images were used for evaluation. The radiographs included 40 standing, 40 supine, 52 
supine side-bending, and 23 wearing-brace images. Because of its clinical significance, we evaluated the CA on 
supine side-bending images in the direction that corrects the curves by supine side-bending.

The results of our proposed artificial intelligence (AI) algorithm were compared with those of the manual 
method using ZedView (LEXI Co., Ltd., Tokyo, Japan) by six doctors with different levels of experience (two 
experts who specialize in scoliosis treatment, two intermediates who were spine specialists, and two novices who 
were doctors in their third year of post-graduate studies). Proximal thoracic, main thoracic, and thoracolumbar/
lumbar curves were evaluated, which were classified as major, minor 1, and minor 2 curves in the order of the 
magnitude of the CA.

Our proposed algorithm consists of three stages (Fig. 1). In the first stage, a region of interest (ROI) is identi-
fied on the X-ray image, which includes the whole spine with 12 thoracic and 5 lumbar vertebrae. In the second 
stage, the four corners of each vertebra are detected as feature points for the 17 vertebral bodies from T1 to L5 in 
the ROI. In the final stage, the detected feature points are used to measure the major and minor curves of the CA.

For the ROI detection stage and vertebra detection stage, we performed transfer learning based on the pre-
trained model of Residual Network (ResNet)31, a method known for its superior performance in image recogni-
tion tasks in machine learning.

ROI detection. The purpose of the ROI detection step is to identify the region of spinal deformity in a 
given X-ray image. In this step, the XY coordinate values of the upper-left and lower-right corners of the rec-
tangle indicating the region of spinal deformity are detected in the X-ray image. As the network architecture, 
we performed transfer learning based on the pretrained model of  ResNet3431. The input size of the network was 
512 × 512 × 3, and a gray-scale image of size 512 × 512 was used as the input. Transfer learning was performed 
by replacing the output layer of ResNet34 with a four-channel fully connected layer. The network output was 
trained with four real values from 0 to 1 representing the XY coordinates of the upper-left and lower-right cor-
ners of the ROI in the thoracolumbar region.

For training data, we used 1021 full-length X-ray images of the spines of patients with AIS taken between 
2009 and 2020. The training data included supine position, supine side-bending, and wearing-brace images in 
addition to the standing images as our aim was to ensure that the proposed algorithm was not limited to the 
standing position.

During learning execution, we performed the following preprocessing steps: we resized each image to a size 
of 512 × 512, scaled the intensity values of each image so that the maximum and minimum values ranged from 
0 to 1, and performed random black-and-white inversion processing and cropping on the input images as data 
augmentation.

We used the mean square error as the loss function and metric function for learning, Adam (learning factor 
1.25e−4) as the optimizer, and Exponential LR (decay rate 0.96) as the scheduler. The number of learning epochs 



3

Vol.:(0123456789)

Scientific Reports |        (2023) 13:14576  | https://doi.org/10.1038/s41598-023-41821-y

www.nature.com/scientificreports/

was set to 30. Our proposed method incorporates ROI identification of the thoracolumbar region into the AI 
algorithm for practical use in clinical practice.

Vertebra detection. The purpose of the vertebra detection stage is to detect four corner points of each 
vertebral body within the ROI on the image. First, we detected > 17 candidate points of the four corners of the 
vertebral body for each region (upper left, upper right, lower left, and lower right). Then, we grouped each fea-
ture point by determining which vertebral body it belongs to and assigned the top 17 groups with the highest 
scores as the feature points of the 17 vertebral bodies.

The vertebral body to which each feature point belongs was determined by capturing the center position of 
the vertebral body from each point using the output of the network and grouping the feature points with those 
whose center positions are close to those estimated for feature points in different regions.

Since the relative vectors from each feature point to the center point of the vertebral body to which it belongs 
and to the center point of a different vertebral body vary greatly, it is unlikely that the detected point will be 
recognized as a point of a different vertebral body.

In addition, since the points in the same region of different vertebrae are located some distance from each 
other and the possibility of confusing points in different regions is low, we can avoid duplication of reference 
points by simultaneously detecting reference points in each region.

This method can directly detect the positions of reference points. In contrast,  SpineNet32 has the disadvantage 
of detecting points that are clearly not on the vertebrae when it fails to detect the center point of the vertebrae. The 
proposed method directly detects reference points for each region, so there is little possibility that the detected 
result will be a point that is clearly not on a vertebra. However, a disadvantage of the proposed method is that 
some points may not be detected and remain missing, which requires post-processing for output.

Learning. Network architecture. For feature extraction, we used Conv1–Conv5 of the pretrained model of 
 ResNet3431 as the base model. The input size was 1024 × 512 × 3, and a gray-scale image of 1024 × 512 was used 
as the input. For each input, we used a heat map (four channels) for each feature point in the four corners of the 
vertebrae to identify the locations of the feature points. For one input, we simultaneously output three types of 
features, namely, heat map (four channels), center offset (two channels), and vertebral center offset (four chan-
nels), for each of the four vertebral angles to identify the locations of the feature points.

The loss function and metric function were defined as the sum of the loss functions of the feature point heat 
map, center offset, and vertebral center offset. For the loss function of the feature point heat map, we followed 
the variant of Focal  Loss33 described in the SpineNet method. We used L1 Loss as the loss function for center 

Figure 1.  Schematic of the proposed algorithm. In the first stage, a region of interest (ROI) is identified on the 
X-ray image, which includes the whole spine with 12 thoracic and 5 lumbar vertebrae. In the second stage, the 
four corners of each vertebra are detected as feature points for the 17 vertebral bodies from T1 to L5 in the ROI. 
In the final stage, the detected feature points are used to measure the major and minor curves of the CA.
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offset and vertebral center offset. Adam (learning factor 1.25e-4) was used as the optimizer, and Exponential LR 
(decay rate of 0.96) was used as the scheduler. The number of learning epochs was set to 50.

Feature point heat map. For each of the four corners of the vertebrae (upper left, upper right, lower left, 
and lower right), we prepared images with nonzero values only around the positions of the 17 feature points of 
the 17 vertebrae. They were defined using a Gaussian disk centered on the correct position of the feature points. 
The parameters and calculation method of the Gaussian disk are the same as those of SpineNet.

Center offset and vertebra center offset. Center offset is used to compensate for the effects of low 
resolution of the output image for computational cost reduction and learning stability. It is defined as a vector 
field that represents the gap between the actual correct position and the position when the image is reduced to 
a lower resolution. Vertebral center offset is used to estimate the center position of the vertebral body from the 
feature points of the four corners of the vertebral body and group the feature points. It is defined as a vector that 
points to the relative position of the center of the vertebra from each feature point.

CA measurement. For each vertebra, the inclination was calculated from the points at the four corners, and 
the vertebra with the maximum and minimum inclination values were searched. Among the adjacent vertebrae 
with maxima and minima, those with tilt differences of < 5° were removed, and T1 and L5 were added to the list 
of vertebrae with maxima and minima. From the top, vertebrae pairs with adjacent maxima and minima were 
taken out and considered curves, and the difference in the inclination between vertebrae was used as the CA 
value for each curve. The thoracic curve maximum 2 and the lumbar curve maximum 1 were assigned to each 
curve in order of the highest value. Figure 2 shows examples of the proposed method applied to standing, supine, 
supine side-bending, and wearing-brace X-ray images.

Evaluation. Dataset. The dataset was used for all postures. ROI information was used for training, and the 
ROIs were cropped from the original images. For data augmentation, the input images were randomly inverted 
in black-and-white, transformed in luminance value, and cropped by shifting the ROI position. As a part of pre-
processing, the image size was resized to 1024 × 512 and then adjusted so that the values were in the range of 0 to 
1, using the maximum and minimum luminance values. Standing, supine, supine side-bending, wearing-brace 
X-ray images taken at our hospital were used. Of these, 915 images were used for training, 106 for testing, and 
155 for evaluation. Because of its clinical significance, on bending films, the CA was evaluated in the direction 
that corrected the curves by lateral bending.

Figure 2.  Results of CA measurement using the proposed method. The upper row shows the detected ROI 
indicated by a rectangle on the image, and the lower row shows the CA measurement results. Each column 
shows examples of (A) standing, (B) supine, (C) bending, and (D) wearing-brace X-ray images.
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Verification and analysis. Statistical analysis was performed using IBM SPSS, version 28.0 (IBM SPSS Statistics 
for Windows, IBM Corp., Armonk, NY, USA). ICCs according to the two-way random-effects model and two-
way mixed model were used to analyze reliability; ICCs < 0.70, 0.70–0.79, 0.80–0.89, and 0.9–0.99 were consid-
ered poor, fair, good, and excellent,  respectively34. In addition, 95% confidence intervals (CIs) were calculated.

Validation was performed using simple X-ray images of 155 cases to evaluate the interobserver reliability as 
the angular difference between the CA measurement by the average of six doctors and the AI measurement as 
well as the ICCs (Supplementary information). To assess the intraobserver reliability associated with the meas-
urement technique, one intermediate doctor performed a second set of measurements 3 weeks after the first set 
using 90 radiographs to reduce the effect of memory.

Results
Average angle difference for all conditions. The average CA determined by the six doctors and that 
by the AI are shown in Table 1 for each condition. The average CA difference ranges approximately from 2.8° to 
4.6°. The largest difference between the manual average CA and the AI average CA was 4.6° at the minor 2 in the 
bending position. Intraobserver reliability by one intermediate doctor was good, with an ICC = 0.953 for major, 
ICC = 0.933 for minor 1, and ICC = 0.894 for minor 2.

Evaluation by posture. The ICCs measured by the six doctors for each condition (standing, supine, wear-
ing-brace, and supine side-bending) are shown in Table 2: ICC > 0.907 for the major, ICC > 0.882 for minor 1, 
and ICC > 0.878 for minor 2. The results of the AI measurements were compared with those by the six doctors 
for each condition, as shown in Table 3.

In the standing position, the ICC was > 0.96 in all groups. Especially in the major curve, the ICC exceeded 
0.97, which is very high. In the supine position, the ICC was 0.952 for major, 0.954 for minor 1, and 0.848 for 
minor 2. In the wearing-brace condition, the ICC was 0.964 for the major, 0.880 for minor 1, and 0.901 for minor 
2. In the bending condition, the ICC was 0.953 for the major, 0.855 for minor 1, and 0.655 for minor 2.

Table 1.  Average Cobb angle of standing, supine, bending, and wearing-brace radiographs measured via 
manual measurement and the AI program. Major, Minor 1, and Minor 2 curves in order of increasing Cobb 
angle value. AI artificial intelligence.

Conditions Number of subjects

Manual average Cobb angle (degrees) AI average Cobb angle (degrees) Difference between means

Major Minor 1 Minor 2 Major Minor 1 Minor 2 Major Minor 1 Minor 2

Standing 40 39.6 ± 15.6 27.2 ± 11.7 17.7 ± 9.4 37.3 ± 15.4 24.8 ± 11.3 15.3 ± 9.9 3.2 ± 2.8 3.1 ± 2.5 2.8 ± 2.2

Supine 40 44.2 ± 10.4 31.5 ± 9.2 19.8 ± 7.0 42.5 ± 10.0 29.4 ± 10.5 17.7 ± 6.9 2.9 ± 2.2 2.8 ± 2.2 3.2 ± 3.0

Wearing brace 23 30.2 ± 13.4 20.5 ± 9.7 12.1 ± 8.2 29.5 ± 13.3 19.2 ± 9.6 10.4 ± 9.0 3.2 ± 2.6 3.0 ± 2.2 2.9 ± 2.3

Supine side-bending 52 50.6 ± 6.9 21.7 ± 8.5 9.0 ± 6.0 49.9 ± 7.5 19.9 ± 9.0 6.9 ± 8.2 3.4 ± 3.0 3.1 ± 2.9 4.6 ± 3.2

Table 2.  Interobserver reliability of Cobb angle measurements made by six doctors. ICC (2, 1) Intraclass 
correlation coefficient (two-way random-effects model).

Condition

Major Minor 1 Minor 2

ICC (2, 1) 95% CI ICC (2, 1) 95% CI ICC (2, 1) 95% CI

Standing 0.956 0.931 0.974 0.926 0.884 0.957 0.899 0.844 0.940

Supine 0.919 0.872 0.953 0.902 0.847 0.942 0.887 0.828 0.933

Wearing brace 0.951 0.915 0.975 0.882 0.797 0.940 0.889 0.816 0.942

Supine side-bending 0.907 0.844 0.952 0.893 0.817 0.945 0.878 0.700 0.970

Table 3.  Interobserver reliability of Cobb angle measurements performed by six doctors and by AI. ICC (3, 1) 
Intraclass correlation coefficient (two-way mixed model).

Condition

Major Minor 1 Minor 2

ICC (3, 1) 95% CI ICC (3, 1) 95% CI ICC (3, 1) 95% CI

Standing 0.973 0.949 0.986 0.964 0.932 0.981 0.963 0.931 0.980

Supine 0.952 0.912 0.975 0.954 0.915 0.975 0.848 0.731 0.917

Wearing brace 0.964 0.921 0.984 0.880 0.751 0.944 0.901 0.791 0.954

Supine side-bending 0.953 0.898 0.979 0.855 0.703 0.932 0.655 0.365 0.829
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Evaluation by angle magnitude. The errors of the six doctors and AI were evaluated for each CA size 
(Table 4). The error of the means were 2.23° for CA < 20°, 1.71° for 20° ≤ CA < 40°, and 2.21° for CA ≥ 40°.

Evaluation of measurements by years of experience. Table 5 shows the reliability of the measure-
ments by years of experience and AI. The ICC was good or excellent for all groups except for the minor 2 curve 
in the supine side-bending position.

Discussion
Characteristics of this study. In this study, we developed a preprocessing method for spine segmentation 
and vertebrae detection as well as a deep-learning architecture using CNNs to automatically measure the CA in 
AIS. Recently, there has been an increase in the use of machine-learning methods in various fields, and several 
studies have been conducted on automatic evaluation of radiological parameters of the spine. Some previous 
studies have used CNNs to detect spinal landmarks and measure the CA in AIS  patients18,35. As mentioned in 
the previous section, this study utilized previously obtained full-length X-ray images as training data. The data 
collection period extended from 2009 to 2020, X-ray images taken under a wide range of imaging conditions 
with varying operators and imaging equipment. To enable our proposed system to handle X-ray images captured 
under diverse imaging conditions in clinical settings, we made two main improvements. Firstly, we employed 
data augmentation to enhance the variety of imaging conditions. Secondary, we structured the AI network into 
a two-step configuration, consisting of an ROI detection network and a vertebral body detection network. In 
our learning process, we utilized data augmentation techniques to generate multiple variations of a single image 
by adding operations, such as black-and-white inversion, left–right inversion, adding slight noise, and also per-
forming image cropping on the input image. The learning conditions were less affected by factors, such as noise, 
contrast, and posture. Through the utilization of data augmentation, it became possible to construct a network 
that robustly identifies the ROI for the thoracolumbar spine from standing X-ray images. The robust operation 
of the ROI detection network resulted in an improvement in the stability of subsequent vertebra detection net-
work. The method we used for vertebral body detection involves learning the four corner points of each vertebra 
and a vector that points to the center of the vertebra. This network is relatively robust against detection failures 
because it detects the four corner points of the vertebral body as separate heatmaps. Even if only three out of the 
four points are detected for a particular vertebral body, it is possible to implement post-processing to estimate 
the position of the fourth point based on the successfully detected three points. In comparison to the previous 
study,  SpineNet32, both methods are heatmap-based vertebral detection techniques. However, while SpineNet 
estimates the center of the vertebral body using heatmaps, we believe that our vertebra detection method has a 
relatively smaller impact in cases of false detection or detection failure.

In previous reports using  CNNs15,18,19,23,36,37 only the major curve in the standing position was evaluated. How-
ever, our study is unique because it can measure the major, minor 1, and minor 2 curves regardless of posture. 
Wu et al. were able to reduce the circular mean absolute error in the CA measurement to 4° by iterative training 

Table 4.  Evaluation of the measurement error between the AI and six doctors for measurements in the 
standing and supine positions.

CA Difference between means (AI–6 doctors) 95% CI

< 20° − 2.23 − 3.91 − 0.56

20°–40° − 1.71 − 2.82 − 0.59

≥ 40° − 2.21 − 3.28 − 1.13

Table 5.  Evaluation of measurements by years of experience.

Condition

Major Minor 1 Minor 2

ICC (3, 1) 95% CI ICC (3, 1) 95% CI ICC (3, 1) 95% CI

Standing 0.968 0.940 0.983 0.957 0.920 0.977 0.943 0.895 0.969

Supine 0.953 0.913 0.975 0.942 0.893 0.969 0.850 0.734 0.918

Wearing brace 0.951 0.895 0.978 0.883 0.756 0.946 0.888 0.767 0.948

Supine side-bending 0.959 0.910 0.981 0.865 0.722 0.937 0.654 0.357 0.831

Standing 0.970 0.945 0.984 0.962 0.930 0.980 0.961 0.928 0.979

Supine 0.937 0.883 0.966 0.932 0.875 0.964 0.807 0.662 0.894

Wearing brace 0.950 0.891 0.977 0.875 0.740 0.942 0.877 0.746 0.943

Supine side-bending 0.936 0.862 0.971 0.856 0.706 0.933 0.725 0.454 0.873

Standing 0.959 0.923 0.978 0.938 0.884 0.967 0.945 0.897 0.971

Supine 0.934 0.878 0.964 0.937 0.885 0.966 0.838 0.714 0.911

Wearing brace 0.967 0.927 0.985 0.846 0.686 0.928 0.878 0.747 0.943

Supine side-bending 0.928 0.846 0.967 0.815 0.629 0.912 0.578 0.252 0.786
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of a CNN incorporating AP and lateral views from 154  patients18. However, their method requires a biplanar 
imaging approach and may not be used when only AP image information is available. Zhang et al. developed a 
computer-assisted method using a deep neural network, but it still required manual intervention, such as verte-
bral patch assignment, and was unreliable when using in vivo radiographs to measure the  CA19. In the previous 
reports, the size of the CAs was limited to less than 50°, and only two or three people measured  them15,18–20,23,34. 
In addition, the highest report for ICC was > 0.9323, while others were below 0.90. This study supports a wide 
range of angle magnitudes (0°–70.5°), involves as many as six observers with different levels of experience, and 
can handle various imaging conditions by estimating the ROI of the thoracolumbar spine in combination with 
the AI. Compared with previously reported automatic measurements, the ICC was particularly high (ICC > 0.963) 
in the standing position, and the ICC was > 0.848 in all groups except for the minor 2 in the bending, indicating 
the possibility of clinical application regardless of posture.

Evaluation by posture. In the standing, supine, wearing-brace, and supine side-bending positions, the 
ICCs among the evaluation by six doctors and those by AI were excellent or good, with a particularly high value 
of 0.973 for the major curve in the standing position. The reliability among the six doctors was excellent, with 
ICC for the major curve being the highest in all postures. The ICC for the major curve was also excellent in the 
reliability between doctors and AI. The results of the interobserver analysis suggest that AI measurements can be 
a good substitute for those made by doctors.

Evaluation by angle magnitude. The difference in means between AI and doctors was not affected by 
the angle size, with AI tending to measure 1.7°–2.2° smaller. In the 0°–40° range, slight angle changes must be 
detected to optimize conservative treatment results. The error of 1.7°–2.2° appears very small because manual 
CA measurements are known to have errors of 3°–10°. Therefore, we believe that AI measurement is useful not 
only for cases with large CA that would be indicated for surgery but also for patients with a small CA that are 
indicated for conservative treatment or screening.

Evaluation of measurements by years of experience. Expert, intermediate, and novice subjects all 
scored excellent or good, except for the minor 2 of bending. Minor 1 in the bending position, the ICCs were 
0.865 and 0.856 for experts and intermediate subjects, but 0.815 for the novice subjects, suggesting that novice 
subjects may have been unfamiliar with the measurement in the supine side-bending. It has been reported that 
the experience and presence of a specialist do not affect the results of CA  measurements38; however, this evalua-
tion is based on the standing position only, and depending on the posture, the results may be affected. The high 
reliability of the AI with expert and intermediate subjects suggests that the AI can be used to accurately measure 
the CA regardless of the experience level of the measurer.

Clinical applications. In this study, high accuracy was achieved not only in the standing position, but also 
in the side-bending position, which may allow for future reference to treatment methods. AIS has the Lenke 
 classification39, and depending on the type, the range of fixation for corrective fixation can be  decided40. Since 
major and minor curves are evaluated in the lateral flexion position, it may be possible in the future to determine 
the Lenke type using AI and determine the surgical strategy. In the present study, the accuracy was high regard-
less of the size of the angle; since AIS progresses gradually with growth, it is important not to miss the curve 
in the early stages of the disease. Therefore, the ability to detect even small angles may be useful in screening 
for AIS. The proposed method executes two AI networks, a ROI detection network and a vertebrae detection 
network. The total computation time, including execution of both AI networks, is within a few seconds per case. 
Quantitative benchmarking has not been performed, but this is considerably shorter than manual Cobb angle 
measurements. Therefore, it is expected to save time and reduce the burden on physicians in medical examina-
tions, where a huge number of scoliosis measurements are required.

Limitations. The limitations of this study were as follows: all of the braces used at our hospital were able 
to be measured successfully by our algorithm, but there were three cases in which the vertebral body could not 
be identified in images of braces made at other hospitals. Future studies should include a broader database of 
images, such as operated spines with spinal implants, infantile scoliosis, and adult scoliosis. Unlike AIS, the 
detection of vertebral bodies may be difficult in adult scoliosis with much spinal degeneration.

Conclusion
The proposed method measurements showed high correlation with the doctors’ measurements regardless of 
the CA size, doctors’ experience, and patient posture. The proposed method showed reduced measurement 
error among doctors and excellent reliability assessment, indicating that it is a promising automated method 
for measuring CA in patients with AIS.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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