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The amino acid metabolomics 
signature of differentiating 
myocardial infarction 
from strangulation death in mice 
models
Song‑Jun Wang 1,4, Bing‑Rui Liu 1,4, Fu Zhang 2, Xiao‑Rui Su 1, Ya‑Ping Li 1, Chen‑Teng Yang 1, 
Zhi‑Hua Zhang 3* & Bin Cong 1*

This study differentiates myocardial infarction (MI) and strangulation death (STR) from the perspective 
of amino acid metabolism. In this study, MI mice model via subcutaneous injection of isoproterenol 
and STR mice model by neck strangulation were constructed, and were randomly divided into control 
(CON), STR, mild MI (MMI), and severe MI (SMI) groups. The metabolomics profiles were obtained 
by liquid chromatography‑mass spectrometry (LC–MS)‑based untargeted metabolomics. Principal 
component analysis, partial least squares‑discriminant analysis, volcano plots, and heatmap were 
used for discrepancy metabolomics analysis. Pathway enrichment analysis was performed and 
the expression of proteins related to metabolomics was detected using immunohistochemical and 
western blot methods. Differential metabolites and metabolite pathways were screened. In addition, 
we found the expression of PPM1K was significantly reduced in the MI group, but the expression of 
p‑mTOR and p‑S6K1 were significantly increased (all P < 0.05), especially in the SMI group (P < 0.01). 
The expression of Cyt‑C was significantly increased in each group compared with the CON group, 
especially in the STR group (all P < 0.01), and the expression of AMPKα1 was significantly increased in 
the STR group (all P < 0.01). Our study for the first time revealed significant differences in amino acid 
metabolism between STR and MI.

Determination of the cause of death is an indispensable part of judicial evidence collection and plays an impor-
tant role in forensic medicine  practice1. Nowadays, the determination or diagnosis of cause of death is performed 
primarily at the histological level by examining morphological lesions or changes during autopsy and tissue 
section  observation2. However, the identification of cause of death is difficult due to the pathophysiological 
processes involved in death are still poorly understood. For example, myocardial infarction in sudden cardiac 
death is the most common pattern of death in forensic medicine and is mostly caused by coronary atherosclerotic 
heart disease. But it is difficult to determine cause of death as myocardial infarction when atherosclerosis of the 
coronary artery is not serious and morphological changes are  nonspecific3. In addition, mechanical asphyxia 
(e.g. strangulation death) leads to death by external violence disrupting respiratory function, and the current 
determination of the cause of death is based on the full findings from the autopsy and case analysis. However, 
the identification of cause of death as mechanical asphyxia always causes some errors because of lacking specific 
 signs4. Moreover, in trials, forensic pathologists are often requested to distinguish between primitive cardiac 
causes myocardial infarction and strangulation death. Thus, selecting effective indicators for the identification of 
cause of death in myocardial infarction and strangulation death and elucidating the different pathophysiological 
processes are the focus of forensic medicine research.
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Metabolomics refers to the analysis of metabolites in biological fluids or tissues, which focuses on discovering 
the biomarker with the aim of the identification of metabolites that is relevant to various  diseases5. Metabolomics 
is a tool that is used to analyze the metabolic response of various diseases, identify potential diagnostic or prog-
nostic biomarkers, and discover toxicity-related or drug-related metabolic pathways, which has attained good 
 prospects6–10. More importantly, metabolomics has also been widely used in the field of forensic  medicine11. Dian 
Wang et al. studied the metabolomics alterations associated with acute myocardial ischemia in the rat myocar-
dium and identified several important metabolites that provide new clues in forensic  medicine12. Dimitrios et al. 
found succinate overproduction in asphyxia conditions by analyzing the metabolomics alterations in animal 
plasma, suggesting succinate metabolism has a potential prognostic  value13. Amino acids are the main metabolites 
for maintaining cell survival and play regulatory roles in key intracellular signaling  pathways14. Meanwhile, amino 
acids, a hot spot in metabolomics research, are used as biomarkers to identify various  diseases15. Previous studies 
have shown that the dysmetabolism of amino acids especially branched-chain amino acids (BCAAs) contributes 
to myocardial infarction cardiac dysfunction and  remodeling16. Several metabolomics studies to determine bio-
markers of cause of death in forensic practice have found that amino acids could be potential  metabolites2,13,17. 
However, there are lacking evidence on whether amino acids can be used as a valid target to discriminate between 
myocardial infarction and strangulation death. Thus, we conducted experiments to elucidate the alterations of 
metabolites in myocardial infarction and strangulation death from the perspective of amino acid metabolism 
and its signaling pathways to find potential diagnostic indicators to differentiate the cause of death.

Material and methods
Experimental protocol. Forty-eight clean-grade healthy inbreed male C57 mice (9 weeks old, weight 
20 ± 2 g) were obtained from the Experimental Animal Center of Beijing University of Medical Sciences (Bei-
jing, China). All mice maintained under identical housing (housed under a 12 h light/dark cycle environment 
with a constant temperature of 23 ± 2 °C and relative humidity of 50%) and feeding conditions. All animals were 
adaptive to a new environment for 7 days before starting the experiment. Animal procedures were conducted 
according to the Experimental Animal Research Protocol approved by the Laboratory Animal Management 
Committee of Hebei Medical University (No.20223011), and all experiments were performed in accordance with 
relevant guidelines and regulations. Here we state that all methods in this study are reported in accordance with 
ARRIVE guidelines.

Forty-eight animals were randomly divided into 4 groups including control (CON, n = 12), STR (n = 12), mild 
MI (MMI, n = 12), and severe MI (SMI, n = 12) groups. The mice were anesthetized by intraperitoneal injection 
of 1% sodium pentobarbital. For the mice model of CON, the mice were subjected to decapitation without any 
treatment under anesthesia. For the STR group, strangulation was generated through ligature. A noose made 
of cotton thread was placed around the neck, and a small stick was inserted into the noose from the back of the 
neck. Then, the noose was tightened by rotating the stick to asphyxiate the rat under steady pressure until the 
rat died (approximately 4–5 min). For the MMI group, death was caused after 10 min intraperitoneal injection 
with 1 g/kg isoproterenol. For the SMI group, death was caused after 3 min intraperitoneal injection with 1.5 
g/kg isoproterenol. The mice models in all groups were verified using hematoxylin–eosin (HE) staining. Left 
ventricular wall myocardial tissues were harvested to make sections for subsequent metabolomics analysis, liquid 
chromatography-mass spectrometry (LC–MS) assay of ceramide, immunohistochemistry, and western blot.

Sample preparation. For metabolomics analyses, quickly removed the heart tissue of mice on ice and 
wiped off excess blood. The heart tissue was added hypothermic saline and homogenized. Then placed it into 
a freezing tube and quenched in liquid nitrogen for 15 min. A portion of the left ventricular wall tissue was 
extracted and stored frozen at – 80 °C for western blot analyses. In addition, a portion of the left ventricular wall 
tissue was extracted and fixed in 10% formaldehyde solution, dehydrated in gradient alcohol, soaked in paraffin, 
and a 5 μm-thick section was cut for histological examination.

The metabolomics profiles were obtained with an ACQUITY UPLC I-Class plus-QE plus combined system 
(Thermo Fisher Scientific, USA). Chromatographic separation was performed on an ACQUITY UPLC HSS T3 
column (2.1 × 100 mm, 1.8 μm, America Advanced Material Technology Cor.) with a constant temperature of 
35°C. The mobile phases were water with 0.1% formic acid as solvent A and acetonitrile with 0.1% formic acid as 
solvent B. The flow rate was 0.35 mL/min and the injection volume was 2 μL. The gradient elution procedure was 
as follows: 0–2 min, 5% B; 2–4 min, 5–30% B; 4–8 min, 30–50% B; 8–10 min, 50–80% B; 10–15 min, 80–100% B; 
15–16 min, 100–5%. The positive and negative ion scanning modes were processed to collect the quality spectrum 
signal of the samples, which were equipped with an electrospray ionization (ESI) source.

Data analysis of metabonomics. Before data pre-processing for pattern recognition, raw data were pro-
cessed by metabolomics software Progenesis QI v2.3 software (Nonlinear Dynamics, Newcastle, UK) for base-
line filtering, peak identification, integration, retention time correction, peak alignment, and normalization. The 
precursor tolerance was set at 5 ppm, product tolerance was set at 10 ppm, and the product ion threshold was set 
at 5%. Compound identification was based on precise mass numbers, secondary fragmentation, and isotopic dis-
tribution according to the Human Metabolome Database (HMDB), Lipidmaps (v2.3), and METLIN databases as 
well as self-built libraries for characterization. For the extracted data, the ion peaks with the missing value > 50% 
were deleted and the 0 values were replaced by half of the minimum values. The compounds obtained from the 
characterization were screened according to a score of 36 (the total score was 60), and the results below 36 were 
considered inaccurate and deleted. Then, the positive and negative ion data were combined into a data matrix 
that contains all the information extracted from the raw data that could be used for analysis, and as the basis for 
subsequent analysis.
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Principal component analysis (PCA) merging method with unsupervised was used to recognize the distribu-
tion status of the overall sample, natural aggregation, and abnormal samples. The aggregation of the quality con-
trol (QC) sample was used to evaluate the quality of data and QC samples were prepared by mixing the extracts 
of all samples in equal volume (a QC sample was injected every 10 samples during the whole analysis). The 
supervised orthogonal partial least squares-discriminant analysis (OPLS-DA) model and partial least squares-
discriminant analysis (PLS-DA) were applied to maximize inter-group discrimination. Before multivariate analy-
sis, the data was log-transformed and normalized by using Pareto scaling. R2x (for interpretation ability) and Q2y 
(for prediction ability) provided a measure of the OPLS-DA model fit. The 200 permutation testing were applied 
to check the risk of overfitting in OPLS-DA models. The most important metabolites were selected by variable 
importance in projection (VIP) value that was obtained based on OPLS-DA. The fold change analysis (FC) and 
Wilcoxon test were conducted between the control and experimental group to discover metabolic characteristics. 
In addition, a t-test was further used to verify the significance of differential metabolites between groups. In the 
OPLS-DA model, the metabolites with variable important in projection (VIP) > 1.0, FCs > 1.5 or < 0.6667 (the 
FC cutoff was 1.5), and p values of t-test < 0.05 were considered statistically  significant18.

PCA plots, S-plots, volcano plots, and heatmaps were constructed and metabolites with VIP values > 1.0 and 
p values of t-test < 0.05 were labeled. Metabolites that increase or decrease were marked red or blue, respectively. 
The pathway enrichment analysis was performed by the KEGG database.

Immunohistochemical analyses. Anti-AMPKα1 (ab32047), Cyt-C (ab133504), mTOR (ab109268), 
PPM1K (ab135286), and S6K1 (ab32529) (Abcam, Cambridge, UK) antibodies were applied in 1:100 dilutions at 
4°C for 12 h according to the protocol of the immunohistochemistry kit. Left ventricular wall myocardial tissues 
were incubated with biotin-labeled secondary antibody for 1 h, followed by horseradish peroxidase for 30 min. 
3,3’-Diaminobenzidine (DAB) was used as the chromogenic agent to detect the target protein. Hematoxylin was 
used as a nuclear re-dyeing agent. Exclude negative controls for each tissue section of the primary antibody and 
perform appropriate positive controls for each set of sections. Experimental conditions remain stable through-
out the process. Slides for immunohistochemistry were scanned using an Aperio ScanScope (Aperio Technolo-
gies, Vista, CA, USA). After saving each digital image, the left ventricular wall region (excluding edge effects) 
was selected for analysis. The average positive intensity of AMPKα1, Cyt-C, mTOR, PPM1K, and S6K1 positive 
cells was assessed using computer-aided image analysis and the cytoplasmic V2.0 algorithm of the Aperiosme-
scope software (Aperio, Vista).

Western blot analyses. Protein extracts were obtained from the left ventricular wall myocardial with 
a mammalian protein extraction reagent (Pierce, ThermoScientific, Rockford, IL, USA). Protein concentra-
tion was determined using a bicinchoninic acid protein assay. The protein extracts of 50 µg were separated 
by SDS-PAGE under reducing conditions and electrophoretically transferred onto a polyvinylidene fluoride 
membrane. Proteins of interest were detected with specific antibodies: anti-AMPKα1, anti- Cyt-C, anti-mTOR, 
anti-PPM1K, and anti-S6K1 at 1:1000 dilution each. Then incubated with a re-probed with horseradish perox-
idase-labeled secondary antibody coupled with labeled chemiluminescence or fluorescent molecule, visualized 
all band intensities. Thereafter, the protein was detected using SuperSignal substrate and the quantitative analysis 
was employed by the Image J software.

Statistical analysis. The Kolmogorov–Smirnov test showed a normal distribution between all groups 
(P > 0.1) and data were presented as the mean ± standard error of the mean (SEM). The significance of the differ-
ences between the two groups was determined by t-tests. The statistical differences among three or more groups 
were evaluated by one-way ANOVA with tukey’s post hoc test. There was a statistically significant difference 
between the two groups when the p-value < 0.05.

Ethics statement. The animal use protocol for this study has been reviewed and approved by the Institu-
tional Review Board for Animal Experiments at Hebei Medical University, and all experiments were performed 
in accordance with relevant guidelines and regulations. Meanwhile, all methods in this study are reported in 
accordance with ARRIVE guidelines.

Results
Successful construction of mice models. We evaluated the success of the construction of the mice 
model by HE staining results. The results of HE staining (Supplementary Fig. S1) showed deeper and enhanced 
in the experimental group than control group, which might be ascribed to the increased eosinophilic compo-
nents. It might indicate the occurrence of heart injury. Among them, cardiomyocytes showed excessive contrac-
tion leading to rupture and eosinophilic variation of endochylema in STR group; cardiomyocytes contained 
dispersed lamellar in MMI group; cardiomyocytes contained lamellar in SMI group. The results showed that 
cardiomyocyte injury and energy metabolism disorder occurred in the experimental group compared to the 
control group. These findings suggested that well-established mice models in the experimental groups were dif-
ferent from those in the control group.

PCA, PLS‑DA, and OPLS‑DA analysis. After preprocessing the original data of left ventricular wall tis-
sue samples, PCA was performed to separate the samples and visualize the overall differences in the data set. The 
result of PCA score plots showed that all QC samples clustered together and did not show a separation trend, 
indicating the collection and analysis of the data were performed as reliable, stable, and correct (Fig. 1A). The 
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PCA completely separated into different groups, and each group showed definite differences in distribution 
compared to the other groups, suggesting that the distribution of metabolites differed across the samples of 
each control group (Fig. 1B). Moreover, PCA analysis between each of the two groups further confirmed that 
each sample was classified into different metabolite profiles (CON vs. STR, CON vs. MMI, CON vs. SMI, STR 
vs. MMI, STR vs. SMI, and MMI vs. SMI, Fig. 1C), indicating considerable differences in metabolite profiles in 
samples across each cause of death and the control group, and across each control group.

In order to further analyze the distribution of metabolites in STR and MI samples, the orthogonal partial least 
square discrimination analysis (OPLS-DA) model was built. Firstly, the cross-validation with 200 permutation 
tests showed that this OPLS-DA model was reliable, with intercepts of  R2 and  Q2 equal to 0. 592 and − 1.99, 
respectively (Fig. 2A). The  R2 and  Q2 values of the OPLS-DA model between the two groups were greater than 
0.5 and close to 1, which revealed the separation was effective. Next, we established two PLS-DA (all groups and 
CON vs. MI) and six OPLS-DA models (CON vs. STR, CON vs. MMI, CON vs. SMI, STR vs. MMI, STR vs. 
SMI, and MMI vs. SMI). The PLS-DA score plots showed a better separation for all groups, suggesting different 
significant metabolic profiles between groups; MMI group were closer to the SMI group, suggesting that the 
metabolic composition of the two groups was more similar (Fig. 2B). The OPLS-DA score plots showed there 
was a clear trend of clustering and were well differentiated between groups. Among them, STR clusters together 
tighter with a greater intergroup variability than MMI and SMI, even when compared to controls. This may 
suggest that STR had a stronger effect on metabolism (Fig. 2C).

Screening and classification analysis of differential metabolites. In the OPLS-DA model, VIP 
scores of metabolites were used to confirm the metabolites contributing to separate groups. The metabolites 
were selected as potential biomarkers based on the VIP of the results of PLS-DA (VIP > 1)19, fold-change thresh-
old (FC ≥ 1.5 or FC ≤ 0.5), and t-test threshold (P < 0.05). We used the S-plot and VIP plots to visualize the 

Figure 1.  PCA scores plots. (A) The PCA score plot of all groups; (B) The PCA score plot of the STR group, 
MMI group, and SMI group. (C) The PCA score plot of the CON vs. STR group, CON vs. MMI group, CON vs. 
SMI group, STR vs. MMI group, STR vs. SMI group, and MMI vs. SMI group.
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influences of variables when selecting metabolites with strong model contributions and high statistical reliability. 
The results showed that, compared with the control group, 6, 6, and 16, respectively metabolites were responsible 
for the discrimination of metabolites in the STR group, MMI group, and SMI group (all P < 0.05; Fig. 3A–C). 
Compared with the STR group, there were 8 and 12, respectively differential metabolites in the MMI group, and 
SMI group (all P < 0.05; Fig. 3D,E). There were 11 metabolites characterized by the metabolic discriminations 
between the MMI group and SMI group (all P < 0.05; Fig. 3F). The differential metabolites related to the three 
cause of death groups were detailed in Supplementary Table S1.

A volcano plot containing the p values of the student’s t-test and fold changes was performed among different 
groups to identify the discrepancy in metabolite distribution. The heatmap depicted the expression chances of 

Figure 2.  PLS-DA and OPLS-DA analysis. (A) The permutation test (200 times) of the OPLS-DA model; (B) 
PLS-DA score plot of all groups and MI vs. CON groups; (C) OPLS-DA score plot of CON vs. STR group, CON 
vs. MMI group, CON vs. SMI group, STR vs. MMI group, STR vs. SMI group, and MMI vs. SMI group.

Figure 3.  VIP plots and S-plots. (A) VIP plot and S-plot of CON vs. STR group; (B) VIP plot and S-plot of 
CON vs. MMI group; (C) VIP plot and S-plot of CON vs. SMI group; (D) VIP plot and S-plot of STR vs. MMI 
group; (E) VIP plot and S-plot of STR vs. SMI group; F: VIP plot and S-plot of MMI vs. SMI group. VIP plot 
with VIP value > 1. In S-plot plot, the variables far from the origin contributed significantly to differentiate the 
clustering between two groups and were considered as potential biomarkers.
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the top 50 discrepancy metabolites by the most significant differences (VIP). The result of the heatmap showed 
again the obvious discrepancy in amino acid metabolism between the different cause of death (all P < 0.05; 
Fig. 4A). The result of STR vs. MI (all P < 0.05; MMI group and SMI group) group showed inosine, arachidonic 
acid, L-isoleucine, hosphohydroxypyruvic acid were decreased in the STR group (all P < 0.05; Fig. 4B). Compared 
with the control group, creatine and hypoxanthin were decreased, but adenosine and inosinic acid were increased 
in the STR group (all P < 0.05; Fig. 4C). Moreover, creatine was increased and L-Isoleucine was decreased in 
the SMI group when compared with the MMI group (all P < 0.05; Fig. 4D). Other groups (all P < 0.05; CON vs. 
MMI, CON vs. SMI, STR vs. MMI, and STR vs. SMI; Supplementary Fig. S2) of volcano plots and heatmaps also 
show the obvious discrepancy.

Enrichment analysis of metabolomics pathway. To further investigate the metabolomics pathways 
between the different cause of death, we tried to use bubble charts to show the possible related metabolomics 
pathways. The result showed that the metabolomics were mainly enriched in the following metabolomics path-
ways: lincieic acid, aminoacyl-tRNA biosynthesis, mTOR signaling, and purine (all P < 0.05; Fig. 5A). Compared 
with the MI group, the significantly different metabolomics signaling pathways in the STR group were mainly 

Figure 4.  Volcano plot and heatmap. (A) Heatmap of top 50 metabolites of all groups; (B) Heatmap of top 50 
metabolites of STR group, MMI group, and SMI group; (C) volcano plot and heatmap of top 50 metabolites in 
CON vs. STR group; (D) Volcano plot and heatmap of top 50 metabolites in MMI vs. SMI group. In volcano 
plot, the red dots represent up-regulated, the blue dots represent down-regulated, and the grey dots represent 
no significant difference (namely, metabolites that are detected but did not meet the filtering parameters for 
screening). R language “limma” package (http:// www. bioco nduct or. org/ packa ges/ relea se/ bioc/ html/ limma. 
html) was applied to identify diferentially expressed genes.

http://www.bioconductor.org/packages/release/bioc/html/limma.html
http://www.bioconductor.org/packages/release/bioc/html/limma.html
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enriched in aminoacyl-tRNA biosynthesis, mTOR signaling, and beta-alanine metabolism (all P < 0.05; Fig. 5B). 
The enrichment analysis of group STR vs. CON showed that ampk signaling pathway was also enriched (P < 0.05; 
Fig. 5C). Moreover, when comparing the SMI group with the MMI group, pathways including purine, aminoa-
cyl-tRNA biosynthesis, and mTOR signaling were enriched (all P < 0.05; Fig. 5D). The result of bubble charts in 
other groups (CON vs. MMI, CON vs. SMI, STR vs. MMI, and STR vs. SMI;) showed in Supplementary Fig. S3. 
In addition, the results of metabolic pathway classification suggested that a large proportion of metabolism was 
enriched in multiple pathways associated with amino acid metabolisms such as aminoacyl-tRNA biosynthesis, 
beta-alanine metabolism, and mTOR signaling (all P < 0.05; Fig. 5E). This enrichment result was similar to the 
enrichment analysis of STR and MI groups (all P < 0.05; Fig. 5F).

Immunohistochemical and western blot analyses. To assess the level of expression of proteins related 
to amino acid metabolomics events in the different cause of death processes, immunohistochemical and western 
blot were performed. As the result shown in Fig. 6A, the expression of Cyt-C was significantly increased in each 
experimental group compared with the CON group, especially in the STR group (all P < 0.01). The expression 
of AMPKα1, mTOR, and S6K1 was significantly increased (all P < 0.05), while PPM1K was reduced in the MI 
group and STR group when compared with CON groups. Moreover, compared with the STR group, the expres-
sion of AMPKα1 was significantly increased while mTOR and S6K1 were significantly reduced in the MI group 
(all P < 0.05), especially the change was more significant in the SMI group (P < 0.01). Similar results were also 
observed by the western blot (Fig. 6B).

Discussion
Identifying cause of death is often the primary goal of the practice of forensic medicine, especially in cases of 
unexpected sudden death usually caused by heart  disease20. The main method of determining the cause of death 
is based on macroscopic and microscopic morphological  features2. However, myocardial infarction, a com-
mon cause of sudden cardiac death, is often difficult to distinguish from asphyxial death (such as strangulation 
death) when corpse signs may be nonspecific, unrepresentative, or even absent, or when the deceased has an 
underlying disease that can lead to sudden unexpected  death21,22. The existing studies suggest that amino acid 
metabolism may play an important role in myocardial infarction and mechanical  asphyxia23,24, but researches 
that have focused on identifying the cause of death in myocardial infarction and asphyxial death are limited. 
Therefore, investigating the amino acid metabolomics features and identifying candidate biomarkers in different 
cause of death is essential.

Figure 5.  Bubble chart and bar chart of KEGG enrichment analysis. (A) Bubble chart of KEGG enrichment in 
all groups. (B) Bubble chart of KEGG enrichment among STR group, MMI group, and SMI group. (C) Bubble 
chart of KEGG enrichment in CON vs. STR group; (D) Bubble chart of KEGG enrichment in MMI vs. SMI 
group. (E) Bar chart of KEGG enrichment in all groups; (F) bar chart of KEGG enrichment among STR group, 
MMI group, and SMI group.
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First, we preliminary revealed the expression of metabolites in different cause of death by metabolomics. 
We visualized the differential expression of metabolites in each cause of death group by cluster analysis such 
as S-plot, heatmap, and volcano map, and we found metabolism varied significantly in different groups. This 
is consistent with a study by Zhang et al., which found obvious changes in metabolite during different death 
processes by using untargeted  metabolomics2. Meanwhile, OPLS-DA analysis of metabolite differences showed 
a greater intergroup variability in STR group than MI group in our study, suggesting there might be a stronger 
effect of asphyxial mechanism on metabolome. Two studies showed significant metabolic differences between 
ventricular fibrillation cardiac arrest and asphyxia cardiac arrest, as well as a a more significant correlation from 
asphyxia mechanism to metabolomics, which is consistent with our  study13,24. Further, we have identified several 
different metabolites associated with amino acids altered in this study, which is consistent with a metabolomics 
study conducted by Yang et al. on rats with hypoxia and high-altitude pulmonary hypertension found signifi-
cant changes in amino acid  metabolism25. A study showed that hypoxia is associated with reduced l-arginine 
transport in normal  cells26, which can explain our findings that L-arginine metabolism was downregulated in 
the STR group due to a sudden decrease of oxygen in asphyxial death. Moreover, proline is likely to provide an 
important energy source for organismal activity and can be converted to enter the metabolomics cycles such as 
the TCA cycle and yield Acetyl  CoA27. In our study, we found that compared with the CON group, the expression 
of proline was significantly reduced in the STR group, suggesting that mechanical asphyxia caused by strangu-
lation caused a significant increase in myocardial energy expenditure and proline decreased due to excessive 
depletion. However, BCAA such as L-valine and L-isoleucine was significantly increased in the MI group. This 
may be related to myocardial damage directly caused by the cardiotoxic effects of isoprenaline injection (a model 
of MI established by injecting isoproterenol in this experiment), which affects the metabolism of amino acids 
in the myocardium and lead to the accumulation of BCAAs. This is consistent with previous findings, Li et al. 
found amino metabolism dysfunction indirectly affects cardiac energy metabolism and Wahid et al. reported 
the accumulation of BCAAs in the heart during isoprenaline to induce myocardial resulted in a decrease in the 
levels of BCAAs in  serum28,29.

Subsequently, we conducted the pathway analysis and explored potential biomarkers for differential metabo-
lites. In our study, we identified 4 significantly different signaling pathways related to amino acid metabolism in 
the different groups, including aminoacyl-tRNA biosynthesis, beta-Alanine metabolism, the mTOR signaling 
pathway, and the AMPK signaling pathway. This is consistent with the findings in several studies on the pathway 
in mechanical asphyxia and myocardial  infarction30–32. Creatine is a key regulator of energy metabolism and 
phosphocreatine is essential to maintain ATP levels in tissues with high energy  demands33. Our study discov-
ered that creatine and were increased in STR compared to SMI, suggesting in creatine levels were decreased 
and more severe energy impairment in the SMI group. When energy metabolism was impaired AMPK can be 
phosphorylation and then phosphorylated AMPK/AMPKα1 can reduce the activity of mTOR and  S6K134,35. 

Figure 6.  Immunohistochemical and western blot analyses of the level of expression of proteins related 
to amino acid metabolic events. (A) The expression of AMPKα1, Cyt-C, mTOR, S6K1, and PPM1K by 
immunohistochemical (40 × , bar = 500 μm). (B) The expression of AMPKα1, Cyt-C, mTOR, S6K1, and PPM1K 
by western blot. (*Compared with STR group, p < 0.05; **p < 0.01; #Compared with CON group, p < 0.05; 
##p < 0.01.). Full-length blots, used to create this (B), are available in the Supplemental Fig. S4.
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This is consistent with our results of western blot and immunohistochemical, in our study compared with STR 
group, the expression leavels of AMPKα1 was significantly increased, and mTOR and S6K1 was significantly 
desearsed in the SMI gruop. In addition, BCAAs are essential amino acids and the accumulation of BCAAs have 
showed associated with many metabolomics diseases including  MI36,37. Meanwhile, BCAAs metabolism levels 
were strongly associated with the PPM1K  gene38. In our study, we found a significant decrease in the expression 
of PPM1K in the MI group, especially in the SMI group. This is also confirmed in another study by Peng et al. 
that the decrease in PPM1K led to the accumulation of the cellular BCAA, which affected myocardial  function39. 
Moreover, BCAA accumulation can stimulate mTOR which regulates mTOR/S6K1 signaling and mediates vari-
ous biological effects of insulin, and  energy38,40. A recent report showed that amino acids affect insulin signaling 
through mTOR/S6K1 phosphorylation of  IRS141. In our study, we found that the expression of mTOR and S6K1 
was significantly increased in the MI group, especially in the SMI group, suggesting that the disturbance of 
amino acid metabolism in myocardial infarction further triggered insulin resistance, leading to impaired energy 
metabolism in cardiac myocytes. This is consistent with a previous study showing amino acid induces cardiac 
insulin resistance to aggravate myocardial  infarction42. In addition, Cyt-c is a small soluble electron carrier 
hemeprotein located in large amounts in the inner mitochondrial membrane, and leaks from the mitochondria 
to the cytoplasm when the impairment of the mitochondrial membrane  potential43. Our study found that the 
expression of Cyt-C was significantly increased in experimental group especially in STR group, indicating that 
Cyt-C may be a valid biomarker for differentiating the cause of death. This is in agreement with previous study 
which have shown that Cyt-C increased significantly after cardiac  arrest44.

However, this study has some potential limitations. First, these findings were drawn from the animal model, 
which was not enough to translate into the complex framework in humans. Second, targeted metabolomics 
was not conducted in our study, which could further validate the different metabolites identified by untargeted 
metabolomics. Third, the experiments performed on biomarkers of different cause of death in this study are 
still relatively limited and further verification is needed to identify the precise biomarkers and their functions.

Conclusion
Our study revealed significant differences in amino acid metabolism between strangulation death and myocardial 
infarction and due to different causes and mechanism of death. In parallel, we found some amino acid metabo-
lism, especially BBCA metabolism, and its signaling proteins may be effective biomarkers to discriminate between 
strangulation death and myocardial infarction. This study provides a practicable path to study the determina-
tion of complex causes of death. Besides, the identification of specific profiles or potential biomarkers of amino 
acids may help in building causative hypothesis to be tested. In the future, this could be investigated in human 
beings by using quantitative detection and confirmatory experiments. Meanwhile, further studies are needed to 
explore its precise biomarker and its mechanism to promote the determination of cause of death in the future.

Data availability
The datasets analyzed during the current study are available from the corresponding author upon reasonable 
request.
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